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Abstract: In this paper, a model predictive control (MPC) with guaranteed stability is used for 
controlling an active front steering system in an autonomous vehicle. At each control interval, it is 
assumed that by using information obtained from the sensors on the vehicle, a trajectory is known over a 
finite horizon, and then it is the predictive controller duty to compute the front steering angle as the 
control input until the vehicle follows the trajectory. In addition, for reducing computational load of 
implementing the controller we convert the MPC optimization problem into linear matrix inequality 
(LMI) form so the problem can be solved more efficiently. The effectiveness of the proposed MPC 
formulation is demonstrated by simulation. A comparison is made between the time consumed for 
solving LMI form of the problem and another approach of solving. 
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1. INTRODUCTION 

Using Computers, electronics and controls in automotive 
industries have increased recently, especially in the active 
safety mode. Passive safety is involved as an accident or 
crash happened while active safety helps to avoid crashing 
and is used to improve controllability and stability of a 
vehicle especially in dangerous situations (Kolmanovsky et 
al., 2009; Falcon et al., 2007). 

In this paper we assume that a trajectory planner is available. 
The aim is to use the active front steering in order to control 
the yaw vehicle dynamics. Considering the physical 
limitation of vehicle, the controller computes the front 
steering angle so that the car will follow the predetermined 
path with the lowest error and the side slip angle have to be 
zero or near zero. 

Model Predictive Control (MPC) is a kind of control 
algorithm that predicts the future behavior of the plant in an 
interval which is called the prediction horizon using the 
explicit system model for its prediction. In each time step 
MPC tries to compute a sequence of control inputs in a 
control horizon such that the future behavior of the system 
will be optimized and the current state is used as initial state 
in each control interval (Qina and Badgwel, 2003; Wang, 
2009). 

The main feature that makes MPC a popular controller in 
both theoretical and practical systems is its ability to cope 
with hard constraints. Moreover, the works of (Wang, 2009; 
Haeri et al., 2003; Falcon, 2008; Scattolini, 2009) show that 
the MPC can be used to control a vast majority of systems 
like MIMO systems, non-minimum phase systems and 
systems contain delays. 

The general form of MPC is an optimization problem with a 
finite horizon cost function and the system dynamics and 
limitations on the inputs and states of the system as 
constraints (Bitmead et al., 1990).  

There are two main issues in implementing MPC in practical 
systems. The first is that the general form of MPC does not 
guarantee the stability of the obtained closed loop system 
(Bitmead et al., 1990) and the other is the computational 
burden of such controllers which limits the applications for 
systems with slow dynamics or large sampling time (Wang 
and Boyd, 2010). 

If we can convert the MPC problem into some kind for which 
there is an appropriate solution and solver then this problem 
can partly be overcome. 

In order to overcome the first issue (stability problem) several 
solutions have been proposed so far. In order to use the cost 
function as a Lyapunov function for proving the stability of 
the closed loop system, (Keerthi and Gilbert, 1998) propose 
to increase the control and prediction horizons to infinity.  

The same authors proposed another solution which is using a 
terminal state constraint to the problem in order to force the 
states at the end of the finite prediction horizon to be zero 
hence, for a non-disturbed system the states will stay at the 
origin due to zero control action at the end of the horizon. But 
these two methods have a large computational load for 
practical implementing. 

It is shown in (Michalska and Mayne, 1998) that the dual 
mode control is also a method to design a stable MPC. It uses 
both MPC and linear state feedback controller in order to 
force the states to become zero at the end of the prediction 
horizon. 
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In (Esfanjani and Nikravesh, 2001), a terminal cost function 
and a terminal region are used to achieve asymptotic stability 
for some nonlinear constrained systems with discrete and 
distributed delays. 

In this paper, we will use one of the best methods to design 
an MPC controller with guaranteed stability which has been 
introduced by (Chen and Allgower, 1998). This method is 
called quasi-infinite horizon nonlinear MPC. The objective 
function which should be minimized on-line is a finite 
horizon cost plus a terminal cost and constraints are system 
dynamics, limitations on inputs and states and an additional 
terminal state inequality constraint.  

One of the main features of this method is that it has less 
computational load and is more general than the other 
methods of designing stable MPC. More details will be given 
in future sections. 

For reducing computational load of implementing MPC in 
practical systems, several approaches are proposed so far. We 
will review some for linear MPC. 

One of the most successful methods for implementing fast 
MPC is to create a lookup table in which the elements are 
functions of the initial condition of the under controlled 
system (Bemporad et al., 2002; Tondel et al., 2001). But the 
drawback is that by increasing parameters of MPC such as 
the horizons and the dimensions of inputs and states the 
elements in the table will increase exponentially. 

Another solution for implementing linear MPC in a fast 
manner is using Laguerre networks proposed in (Wang, 
2009) and used in (Jafari et al., 2012), which are a set of 
discrete orthonormal basis functions. By using these 
functions the number of parameters that the controller has to 
deal in an interval will reduce significantly.   

In order to overcome the implementing load of predictive 
controller we will translate the optimization problem of the 
designed MPC into Linear Matrix Inequality (LMI) form.  

Since various computationally difficult optimization 
problems can be effectively approximated by LMI problems 
this translation may help to solve the optimization problems 
more efficiently. So we can reduce the time needed for MPC 
optimization problem in fast processes. This helps to 
implement this kind of controllers for higher speed of the 
vehicle. 

In this paper considering the physical limits on a vehicle, we 
will design a model predictive controller with guaranteed 
stability for an active front steering in an autonomous vehicle 
and it will be formulated in LMI form. The control input is 
front steering angle in order to force the vehicle to follow a 
desired trajectory as close as possible. 

In continuation, the paper is structured as follows; Section 2 
describes the vehicle dynamics which will be used in the 
controller design.  Section 3 briefs stable MPC formulation 
using quasi-infinite horizon. Section 4 describes how to 
convert the MPC problem into LMI form. The simulation 
results of the applying of the proposed controller of the 

vehicle are presented in Section 5. Finally, paper is concluded 
in Section 6.  

2. VEHICLE MODELLING  

This section describes the vehicle and the tire model used for 
simulations and control design (Rajamani, 2005). 

In this paper the longitudinal speed of the vehicle, V 
considered to be constant. Vehicle states are yaw angleψ , 
the vehicle yaw rateψ& and the position of its center of gravity 
[x, y] as illustrated in Figure 1. We show the side slip angle 
of the vehicle by β  and m is the total mass of the vehicle. 

 

Fig. 1. Vehicle slip model used to MPC controller. 

The lateral tire force, Fy is computed as the product of each 
tire’s cornering stiffness (C) and sideslip angle (α) as shown 
in Figure 2. 

 

Fig. 2. The linearized tire model used in the equations of 
motion. 

The nonlinear equations of motion for the slip model include: 
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By linearizing the above model about a constant speed and 
assuming small slip angles, the equations become: 
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where ,f rx x are the distances of front and rear wheels from 
center of gravity(they are car geometry parameters).    
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This linear model will be used in designing the MPC 
controller. As it is mentioned above the state variable is 

considered as [ ]Tx x y β ψ ψ= & . So the linear state 
space equation will be described as: 

2
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The input to this system is steering angle, fδ which will be 
controlled such that the position y will be appropriate 
correspond to the desired trajectory and the side slip angle 
maintain in zero.  

3. PROBLEM FORMULATION 

In this section the mathematical expressions and derivations 
of the MPC algorithm are given.  

3.1  Model Predictive Control with guaranteed stability 

Now we will use the Quasi-Infinite Horizon MPC scheme to 
design the controller. It should be pointed out again that the 
idea of the presented stable MPC is firstly proposed by (Chen 
and Allgower, 1998). 

There are two main parameters in this method which should 
be determined offline. The first is a region around the origin 
which is called terminal region and it has been proved that 
the states at the end of the finite prediction horizon are in this 
region if the terminal inequality constraint is feasible. The 
second is a terminal penalty matrix. 

A linear state feedback is determined during the design 
procedure for computing the above parameters, but it has 
never been applied to the system.  

For designing a quasi-infinite horizon MPC for a system, one 
of the main requirements is that the Jacobian linearization of 
the nonlinear system or just the linear system which must be 
controlled have to be stabilizable. 

The ordinary differential equations for describing the system 
are: 

0( ) ( ( ), ( )),      (0)x t f x t u t x x= =&               (4) 

with state vector ( ) nx t R∈ , input vector ( ) mu t R∈ . The input 
constraints are: 

( ) ,   0u t U t∈ ∀ ≥           (5) 

In order to apply this method it is assumed that: 

A1- : n m nf R R R× →  is twice continuously differentiable 
and (0,0) 0f = . 

A2- mU R∈  is compact, convex and 0 mR∈ is contained in 
the interior of U. 

A3 – There are a unique solution for any initial condition and 
any piecewise continuous and right-continuous input to the 
system (4). 

Note that the system which will be used in this paper is linear 
so the conditions A1 and A3 are satisfied. In following we 
will introduce the constraints on input signal which will 
satisfy condition A2. 

In the following we describe the problem setup. The open-
loop optimal control problem at time t with initial state x(t) is 
formulated as: 
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where n nQ R ×∈ , m mR R ×∈ and n nP R ×∈ are positive-definite, 
symmetric weighting matrices; and P is the terminal matrix 
penalty; pN  is a finite prediction horizon and uN  is a finite 
control horizon. The model used for future prediction is 
initialized by the actual system states x(t) at time t. 

The cost function of (6) consists of a finite horizon quadratic 
cost to specify the desired control performance and a terminal 
cost to penalize the states at the end of the finite prediction 
horizon. The terminal inequality constraint will force the 
states at the end of the prediction horizon to be in the 
terminal region Ω which is a neighbourhood of the origin.  

In order to design the controller for the system used in this 
paper which is a linear one, a procedure to determine a 
terminal penalty matrix P and a terminal region Ω , 
(preferably as large as possible) off-line can be specified as 
follows: 

Step1: Find a locally stabilizing linear state feedback gain 
K for the linear system 
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The linear optimal control technique (LQR) may be 
an appropriate method for determining K. 

Step2: Choose a constant [0, )κ ∈ ∞  

satisfying max ( )Aκ λ< −  and solve the Lyapunov 
equation  
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positive-definite and symmetric matrix P. 

Step3: Find the largest possible α  such 
that :x Kx Uα∀ ∈ Ω ∈ .  

Indeed in the design procedure it has been proved that there is 
an (0, )α ∈ ∞ that specifies a neighbourhood of the origin in 
the form: 

: { | }n Tx R x Pxα αΩ = ∈ ≤             (9) 

such that: 

i. For all x α∈ Ω we have Kx U∈  which means that the   
linear feedback controller satisfies the input constraints in the 
region αΩ .  

ii. For the system controlled by linear state feedback 
u Kx= the terminal region αΩ  is invariant.  

iii. For all 1x α∈Ω the infinite horizon cost function subject 
to linear system (7), with initial state 1 1( )x t x=  and 
controlled by the local linear state feedback u Kx= is 
bounded from above as 1 1 1( , ) TJ x u x Px∞ ≤  where 

1

2 2
1( , ) ( ( ) ( ) )

Q R
t

J x u x t u t dt
∞

∞ = +∫ . 

Note that because the system is linear, the terminal region 
will only be limited by input constraints. 

3.2  Optimization Problem  

According to the previous sections we can formulate our 
problem for an active front steering vehicle. It should be 
noted that the designed stable Model Predictive Controller 
will be applied approximately to a discrete system.  

Consider a nominal model for the system: 

( 1) ( ) ( ),
( ) ( )

x k Ax k Bu k
y k Cx k

+ = +
=            (10) 

where it has been discretized by a sampling time sT  and 
nx R∈ is the state vector; mu R∈  is the input vector; 

qy R∈ is the output vector and , ,A B C are constant matrixes 
with appropriate dimensions. 

Consider that the constraints in the MPC problem are defined 

by: 
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where r is the reference signal, (. | ), (. | )u k y k are the 
predicted input and output signals over the control and 
prediction horizon respectively. 

The norms in J are defined as: 

2( | ) ( ( | )) ( ( | ))T
Q

r y k i k r y k i k Q r y k i k− + = − + − +        (12) 

Similarly for the other norms. 

For converting 2( | ) Qr y k i k ′− +  to 2( | )
Q

x k i k+ simply we 

can define TQ C Q C′= . 

In many problems like active steering control of a vehicle we 
may have some constraints on the rate of change of input 
signals ( | ) ,   i 1,..., uu k i k U N∆ + ∈∆ =  so we have to 
translate it to the constraints on input signals. Note that in 
order to be able to apply the method in designing stable 
MPC, U∆ should be a compact, convex set too. 

4. CONVERSION TO A LINEAR MATRIX INEQUALITY 
PROBLEM 

In this section the designed stable MPC will convert to the 
LMI form. 

4.1  Linear Matrix Inequality  

A Linear Matrix Inequality (LMI) is an expression in form: 

0 1 1( ) : ... 0n nF x F x F x F= + + + <           (13) 

where 1( ,..., )nx col x x=  is a vector of n real numbers called 

the decision variables and , 0,...,T
j jF F j n= =  are real 

symmetric matrices. Moreover ( ) 0F x <  in (13) means it is a 
negative definite matrix, i.e. all eigenvalues of the matrix are 
negative. 

By using LMI we can define convex constraints on x, 
i.e., : { | ( ) 0}S x F x= <   is convex which means that 
if 1 2, ,0 1x x S θ∈ ≤ ≤  then 1 2(1 )x x Sθ θ+ − ∈ . 
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Another important feature of using LMI is that solution set of 
systems of k individual LMIs 1( ) 0,..., ( ) 0kF x F x< <  are 
representable as a single LMI as bellow: 

1( ) 0 0
( )

0 0 ( )k

F x
F x

F x

 
 =  
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M M O M

L                    (14) 

And the last but most important feature of LMI problem is 
that nonlinear matrix inequalities can be converted to linear 
matrix inequalities by Schur complement. Let F be an affine 
function with: 
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We will use the last feature in converting the problem in the 
form of LMI.. 

4.2  LMIs forms of the designed MPC problem 

Based on the model presented in (10), the predicted states can 
be calculated by: 
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We define the metrixs: 
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The last block of Y and T  is added to consider the terminal 
penalty in LMI form too. 

Now we can rewrite the objective function in (11) in the 
augmented form: 

( ( )) ( ( )) ( ) ( )T TJ k k k k= − − +T Y Q T Y U RU        (19) 

and the augmented weightings are 
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By substituting the predicted states in the form of (17) in into 
(10) for 1,..., pi N= and the augmented vectors and 
weightings matrixes in (18) and (19), predicted output 
sequence ( )kY can be expressed as: 
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where the last row is added because of terminal constraint. 

By utilizing an auxiliary scalar t and substituting to (19) the 
cost function of the MPC problem and the constraints on 
system dynamics can be replaced by: 
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where 0J  is the optimal value of the cost function J and 
scalar t acting as an upper bound of J. Applying Schur 
complements to the constraint in the above problem, it is 
converted into 

0 , ( )
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t k

J t=
U

 

Subj. to 

       (24) 
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where * indicates symmetric terms in the matrix and x(k) is 
the state measurement at instant k. This problem is in the 
form of a semi-definite optimization problem. 

Now we will convert the constraints on the input and rate of 
input changes into LMI form. Since the U is a compact, 
convex set we can write: 
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Similarly for the rate of input change 
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In order to convert the constraints on rate of input change into 
constraints on input signals and to state them in the form of 
LMI, we can write the input signals as: 
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so 
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Finally by augmenting the constraints on input signals and 
rate of input signals we have: 
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where: 

1 min 1
2 2 1

1 11 max 1
2 2 1

min

2 2 max

( 1 | )
; ;

( 1 | )

;

C U C C u k k
M N

C U C C u k k

I U
M N

I U

− −

− −

   − −∆ − −
= =   ∆ + −   

−  − 
= =   

   

       (32) 

then: 

MU γ≤                        (33) 

where M is a representative of constraints with its number of 
rows equal to the number of constraints and number of 
columns equal to the dimension of u (Wang, 2009). 

5.  SIMULATION RESULTS 

In this section the parameters in the introduced quasi-infinite 
model predictive control will be determined for the linear 
model of the described linear model of the vehicle and then it 
will be converted in the form of LMI. The simulation results 
are given too. 

We will use the parameters which are represented in table 1.  

The model of the car which is used in controller design is 
stabilizable. So the controller design method can be applied 
for controlling this system. 
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Table 1.  Car Parameters. 

( )M Mass  1070 kg  
(   )zzI Moment of Inertia  2100 2.kg m  

(     )fC cornering stifness of forward tire
 90624 /N rad  

(     rC cornering stifness of rare tire  90624 /N rad  

rx  1.3 m  

fx
 1.1 m  

(  )V lingitudinal velocity  50 /km h  

The weighting matrix for output and control input signals are 
(Falcon, 2007): 

75 0 0 0
1 0 0 0 75 0 1 0 0 0 0 500 0 0

, 150
0 1 0 0 0 500 0 1 0 0 0 0 0 0

0 0 0 0

T

Q R

 
        = = =            
 
 

 
(34) 

By choosing 7κ = the design parameters of the stable MPC 
computed as follows. The penalty matrix P is: 

    0.0192    0.1135    0.1574    0.0002
    0.1135    0.7559    1.0562    0.0067

1.0e+004 *
    0.1574    1.0562    1.4623    0.0090
    0.0002    0.0067    0.0090    0.0001

P

 
 
 =
 
 
 

 

and the terminal region is: 

( | ) : { | 0.1216}n T
Px k T k x R x Pxα+ ∈ Ω = ∈ ≤  

The car model is discretized by using a sampling time 
0.2sT = . 

In all simulations we use the LMI Toolbox of MATLAB 
software and a Core2Duo 2.3GHz CPU Laptop. 

For a straight roadway which the goal is reaching the middle 
line of the road and the prediction and control horizon are 
chosen as 7, 5Np Nu= =  respectively, the simulation results 
are as follows(the road boundary lines are y=1 and y=5: 

 

Fig. 3. The trajectory followed by the car for a straight 
roadway. 

where the dashed lines show the boundary of the roadway.    

 

Fig. 4. Side slip angle of the car for a straight roadway. 

 

Fig. 5. The steering angle(control signal) for a straight 
roadway. 

As it is clear the optimal output is reached and the constraints 
on input signals have been met. 

Now we apply the controller for a lane-keeping in another 
kind of roadway like a sinusoidal. Here the prediction and 
control horizon are chosen as 9, 7Np Nu= =  respectively. So 
we will have: 

 

Fig. 6. The trajectory followed by the car for a sinusoidal 
roadway. 
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Fig. 7. Side slip angle of the car for a sinusoidal roadway. 

 

Fig. 8. The steering angle (control signal) for a sinusoidal 
roadway. 

In this case the optimal output is reached too while the 
constraints on input signals have been met. 

The proposed linear MPC in the form of LMI scheme has 
computational advantages when compared to other existing 
methods of solving MPC problems. To show this, we 
compare the proposed controller using the LMI Toolbox of 
MATLAB to solve and Yalmip Toolbox for solving the 
problem in the form (11). 

For a total simulation time of 3 time-units, the elapsed 
CPU times for the LMI form using LMI Toolbox is 44 
seconds while for the other one this time is about 97 
seconds.  

It is clearly seen that the proposed controller needs less CPU 
time than the other form. 
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