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Abstract: The objective of this paper is to design the robust and optimal controller to control the attitude 
of sun seeker system (SSS) mounted on a space vehicle to extract maximum possible current by photo 
voltaic (PV) cells. PV cells which are employed to provide energy to the space vehicle generates 
maximum current when sun’s rays are vertically incident over it. Hence sun seeker axis (SSA) position is 
continuously controlled to adjust the position of PV cells. Internal model controller (IMC) for robust and 
linear quadratic regulator (LQR) for optimal control is proposed. The result of proposed controller is 
compared with classical proportional integral derivative (PID) controller and pole placement technique 
(PPT) based controller. 
Keywords: IMC, LQR, Optimal control, PID, PPT, Robust control, Renewable energy sources, Space 
vehicle, Sun-seeker system. 

 

1. INTRODUCTION 

In the light of the inevitability of burgeoning crisis of 
conventional energy resources, hunt for alternative renewable 
energy source is indispensable. In recent years increasing 
concern of environment and ecology has made the use of 
non-conventional energy sources obligatory for modern 
scientists and researchers. The exhaust emissions of the 
conventional internal combustion engine vehicles are the 
major source of urban pollution that causes the greenhouse 
effect, which in turn leads to global warming (Husain, 2011). 
On the other hand, photovoltaic (PV) cell and for that matter 
any other renewable energy sources (RESs) is need of the 
hour. Furthermore, RESs such as PV cell having no 
emissions are capable of tackling the pollution problem in an 
efficient way and may lead to the design of zero emissions 
vehicles (ZEVs) which eventually obviates the pollutant 
emission like carbon monoxide, hydrocarbon and nitrogen 
oxide etc. (Husain, 2011; Gevorkian, 2011; Ehsani et al., 
2011; Kiencke et al., 2007; Yadav et al., 2011). 

In order to understand the subtlest and inscrutable aspect of 
this nature and environment, the space scientist world over 
are engaged to employ space vehicle for exploration works. 
Under the precarious and dwindling condition of fossil fuels, 
government world over is trying to use renewable energy 
sources in every walk of life. In light of this in the present 
work, photo voltaic (PV) cells are employed to provide the 
required energy to space vehicle. Since the current generated 
by each PV cell is proportional to illumination of the cell, 
light need to be precisely centered on the cells. Hence PV 
cells generate maximum current when sun’s rays are 
vertically incident over it. The sun seeker system (SSS) is 
mounted on space vehicle to adjust the position of PV cells 
so that sun’s light is precisely centered on it. The objective of 
sun seeker system is to manoeuvre its own attitude 

continuously so as to extract maximum possible current from 
photo voltaic cell to be instantly used by space vehicle. The 
implication of attitude control of SSS is nothing but to 
control the position of sun seeker axis (SSA) continuously to 
bring it in the direction of sun’s ray. The benefit of sun seeker 
system is that it is designed and tested to endure all weather 
condition and up to 25% more power is generated as 
compared to permanently fixed or tilted system provided the 
SSS should be robustly and optimally controlled while 
tracking the sun.  In order to extract maximum energy under 
erratic conditions and parametric uncertainties, study and 
design of robust and optimal controller has drawn the 
attention of many researchers in recent years (Kiencke et al., 
2007; Yadav et al., 2011). The designed system is said to be 
robust if it remains insensitive to the presence of parametric 
uncertainties and optimal if response is faster and energy 
consumption is minimum.  

In this paper the example of sun seeker system (SSS) is 
presented to precisely control its attitude so that it will track 
the sun with high accuracy and efficiency (Kuo et al., 2003). 
Here we intend to control SSA of SSS mounted on space 
vehicle so that the efficiency of photovoltaic cell is 
maximum. In order that the SSS track the sun with high 
accuracy and efficiency, SSA should completely align with 
the solar axis. Therefore the main objective here is to 
minimize the error of alignment between these two axes to 
zero value.  But due to relative movement between sun and 
the earth, solar axis changes its position continuously 
therefore only way out to get maximum current by PV cell is 
to somehow align the sun seeker axis (SSA) repeatedly in the 
direction of sun ray. For accomplishing this task the attitude 
of the SSS must be controlled by some sophisticated control 
mechanism so that the SSA may be realigned with the solar 
axis in order to generate maximum current by PV cell. Here 
for this purpose optimal and robust controller has been used 
to control the attitude in a robust and optimal manner 
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leveraging the robust and optimal features of the respective 
controller. So, whenever there is nonalignment between 
solar-axis and SSA due to relative movement between sun 
and earth, an error is generated and the same is sent to 
controllers and servo amplifiers which in turn will cause the 
motor to drive the system back into alignment minimizing the 
error to zero. Hence proper tuning of PID, LQR and IMC are 
done and most effective controller is identified for better 
performance of the SSS.  

From the standpoint of environmental and ecological 
repercussions and burgeoning popularity of RESs in the 
market, bewildering variety of energy management system is 
devised. As pioneers of intelligent energy management in 
RESs some authors have proposed an extensive classification 
and overviews of state of the art control strategies. The 
conventional control methods such as PID (Mikles and Fikar, 
2007; Skogestad and Postlethwaite, 2001) have been found 
not so adequate and many control problems have come up 
due to imprecise input output relation and unpredictable 
nature of parameter variation (Gopal, 2009; Kakilli et al., 
2009; Gollman et al., 2009; Peterson, 2009; Kirk, 1970). 

Next the state feedback control technique such as PPT and 
LQR controller of optimal control segment came up with 
beautiful features of the later one to improve dynamic as well 
as steady state performance (Mi et al., 2005; Canale et al., 
2009; Amuthan et al., 2009; Li and Deng, 2006; 
Hamedmouna and Lassad, 2007). Some parameters of SSS 
are not always constant and may vary due to erratic conditions 
through which the vehicle has to pass. The system not being 
immune and insensitive to parameter variations necessitates 
the design of robust controller for better performance of PV 
cells. The attitude control of SSS is mainly achieved by 
controlling the servo motor which in turn controls the SSA 
position of SSS so that its ability to track the sun light is 
greatly optimized. Another control scheme such as IMC for 
the robust control of the SSS is also introduced which gives 
better performance as compared to PID, PPT and in some 
respect to LQR under parametric variations (Li and Deng, 
2006; Hamedmouna and Lassad, 2007; Malan et al., 2004; 
Harnefors and Nee, 1998; Borrelli and Keviczky, 2008; 
Yadav and Gaur, 2013). 

2. PROBLEM FORMULATION AND MODEL 
DESCRIPTION 

The schematic diagram of SSS is given in fig.1 (a) and 
corresponding simplified block diagram is given in fig.2 
(Kuo and Golnaraghi, 2003). The principal elements are two 
mall silicon PV cells A and B mounted behind a rectangular 
slit. PV cells are used as current sources and connected in 
opposite polarity to the input of an op-amp. Since the current 
generated in each of the PV cell is proportional to the 
illumination of the cell, an error signal will occur at the 
output of the amplifier when the light is not precisely centred 
on the cells. This error voltage, when fed to controller in 
conjunction with servo amplifier, will cause the motor to 
drive the system back into alignment i.e., solar axis and SSA 
coincides with each other.  

In the present system, tracking the sun in only one plane is 
accomplished and the angle   between solar axis and SSA is 
to be minimized. The reference axis of the coordinate system 
of the SSS is taken to be along the fixed frame of DC motor 
and all rotations are measured with respect to this axis. The 
angle    denotes the desired angular position of SSA (in the 
direction of solar axis) and angle    denotes the angular 
position of sun seeker axis with respect to reference axis 
respectively. Fig.1 (b) depicts the coordinate system for 
angular position of solar axis, sun seeker axis, and reference 
axis respectively. Fig.1(c) shows the schematic diagram of 
error discriminator of SSS. A general control model for the 
sun seeker system is presented in detail in appendix-A.  

The motor position is given by angle   . The angular 
position of the output gear    and the motor position    are 
related in terms of gear ratio n as   =   / .  In this section 
a sun-seeker system is modelled in order to facilitate its 
attitude control optimally so that it may track the sun with 
high accuracy. The numerical values of the parameters used 
for analysis of SSS are given in table 1. 

Table 1. Numerical values of SSS parameters. 

Parameters Notation Value (SI unit) 
Op-Amp Gain Rf 10,000 ohm 
Armature Resistance Ra 6.25 ohm 
Back EMF constant Kb 0.0125 V/rad/sec 
Torque constant Ki 0.0125 N-m/A 
Moment of inertia J 10-6 kg-m2 
 Error Discriminator constant Ks 0.1 A/rad 
Viscous Friction Coefficient B 0 
Gear Ratio N 800 
Servo Amplifier Gain K   0.5 (nominal value) 

 
The objective of the control system is to minimize the error  (t) between   ( ) and   ( ), to zero:  (t) =    ( ) −   ( )            (1) 

When the SSA is aligned perfectly with the solar axis,  (t) = 0, and the current   ( ) and   ( ) of cell A and cell B 
are equal i.e.   ( ) =   ( ) =  , or   ( ) −   ( ) = 0. From 
the geometry of the sun ray and the photovoltaic cells shown 
in fig.1(c) of error discriminator, when the SSA is not aligned 
perfectly with the solar axis,  (t) ≠ 0, and the current   ( ) 
and   ( ) of cell A and cell B are dependent on α(t) as 
follows.   =   +        ( )      =   −        ( )   

where    denotes the width of the sun ray that shines on cell 
A, and    is the same on cell B, for a given  ( ). Since the 
current   ( ) is proportional to   , and   ( ) is proportional 
to   , we have   ( ) =  +           ( )      ( ) =  −           ( )   
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Fig. 1. (a) Schematic diagram of sun- seeker system. 

 

 
Fig. 1. (b) Coordinate system of sun seeker system. 
 

 
Fig. 1. (c) Schematic diagram of error discriminator of SSS. 

Hence from above two equations for   ( ) and   ( ), we get 
the final equation for error discriminator as   ( ) −   ( ) =           ( )  
or 

  ( ) −   ( ) =    ( )                                                        (2) 

where   =      , is called the error discriminator constant.  

The relation between output of op-amp and the currents   ( ) 
and   ( ) is   ( ) = −  [  ( ) −   ( )]           (3) 

The output of the servo amplifier is expressed as   ( ) = − [  ( ) −   ( )] = −   ( )          (4) 

The output voltage of the tachometer et is related to the 
angular velocity of the motor through the tachometer constant 
Kt.   ( ) =     ( ) =    ̇             (5) 

The angular position of the output gear is related to the motor 
position through the gear ratio1/n, hence    =                  (6) 

The DC motor is modelled as below   ( ) =     ( ) +   ( )            (7)   ( ) =     ( )            (8)   ( ) =    ( )             (9)   ( ) =     ( )  +    ( )         (10) 

After combining (1) to (10), the open loop transfer function 
(OLTF) of SSS in terms of associated parameters is 
represented as OLTF: 

   ( ) =   ( ) ( ) =        /                      (11) 
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where   ( ) is SSA position and  ( ) is the Laplace 
transform of error signal  (t). 

Putting the values from the table 1 in (11) we get OLTF:   ( ) =   ( ) ( ) =                       (12) 

The corresponding state space representation of sun seeker 
system for K=0.5 (nominal value) is given as A =  0 1 0 −25 ,  =  01250 ,  = [1  0],        (13) 

where the matrix A, B, and C represents the system matrix, 
input matrix, and output matrix respectively. 

In order to see the relative effectiveness of different 
controllers for the desired SSA position, here PID, PPT, IMC 
and LQR controllers are taken into consideration. 

3. PID CONTROL 

PID controllers are widely used in industrial control 
applications due to simple structures, comprehensible control 
algorithms and low cost. Fig. 3 shows the block diagram of 
PID control system. Fig.4 shows the simulink model of SSS 
with PID controller. 

The transfer function of PID controller is given as   ( ) =   +    +    =    1 +     +            (14) 

where Kp= Proportional Gain, Ki= Integral Gain, Ti= Reset 
Time = Kp / Ki, Kd = Derivative gain, Td= Rate time or 
derivative time = Kd  /KP. Fig.4 shows the simulink model of 
SSS with PID controller. Here the set value (SV) is taken as 
the summation of step and ramp signals. 

4. MODERN CONTROL TECHNIQUES 

Here mainly two state space design methods, pole placement 
technique (PPT) and linear quadratic regulator (LQR) based 
techniques are considered. In pole placement design all closed 
loop poles are placed at desired locations. 

4.1 State Feedback Control using PPT 

Consider the linear time invariant (LTI) system with nth –
order state differential equation   ̇( ) =   ( ) +   ( )           (15) 

In the state feedback design, the control signal input u is 
realized as linear combinations of all the states, that is  ( ) = −    ( ) −     ( )−⋯    ( )          = −  ( )            (16)  = [    … .  ]            (17) 

k is a constant state feedback gain matrix. 

The closed loop system is described by the state differential 
equation  ̇( ) = ( −   ) ( )            (18) 

The characteristics equation of the closed loop system is given 
as |  − ( −   )| = 0           (19) 

The desired characteristics equation is ( −   )( −   ) … … … . ( −   ) = 0         (20)

 
Fig. 2. Block diagram of sun seeker system. 

  

 
Fig. 3. Block diagram PID Control system. 

 
Fig. 4. Simulink model of plant with PID controller. 
 



74                                                                                                                  CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

where   ,   , …    are desired location of closed loop poles. 
The selection of desired closed loop poles requires a proper 
balance of settling time, rise time, bandwidth, and overshoot 
etc. The values of k are obtained by equating (19) and (20). 
Fig.5 shows the simulink model of State feedback controller 
via PPT. 

 
Fig. 5. Simulink model for PPT and LQR. 

4.2 Linear Quadratic Regulator 

Here an important class of optimal control problems known as 
linear regulator problem has been considered. Any problems 
having linear plant dynamics and quadratic performance 
criteria are referred to as linear regulator problem (Yadav et 
al., 2011; Kirk, 1970). The process i.e. SSS to be controlled is 
described by the state equations  ̇( ) =  ( ) ( ) +  ( ) ( )         (21) 

Here the problem is to find an admissible control u* that 
causes the above process to follow an admissible trajectory x* 
that minimizes the performance measure J of (22), which in 
turn will minimize the angle    between solar axis and vehicle 
axis.  =               + ∫   [    +     ]              (22) 

S and Q are real symmetric positive semi definite matrices; R 
is real symmetric positive definite matrix. 

We can get the state equation, costate equation, and other 
important equation by defining the Hamiltonian as  ( ( ),  ( ), ( ),  ) ≜  ( ( ),  ( ),  )     +  ( )[ ( ( ), ( ),  )]          (23) 

Using this notation, the necessary conditions can be written as 
follows:  ̇∗( ) =     ( ∗( ), ∗( ),  ∗( ),  )       (24.a)  ̇∗( ) = −     ( ∗( ), ∗( ), ∗( ),  )      (24.b) 0 =     ( ∗( ), ∗( ), ∗( ),  )       (24.c) 

and        ∗    ,    −  ∗(  )     +    ∗    , ∗    , ∗    ,    +       ∗    ,        = 0    (25) 

Here from the performance measure (22) the Hamiltonian is  [ ( ), ( ),  ( ),  ] =       +       +     +              (26) 

Using the equation (24) through (25)     = 0 =  ( ) ( ) +   ( ) ( )          (27)     = − ̇ =  ( ) ( ) +   ( ) ( )          (28) 

with the terminal condition      =     (  ) =   (  )           (29) 

Thus it is required that  ( ) = −   ( )  ( ) ( )          (30) 

And it is inquired whether this may be converted to a closed-
loop control by assuming that the solution for the adjoint is 
similar to (29)   ( ) =  ( ) ( )            (31) 

 A closed control form is obtained from (30) and (31)  ( ) = −   ( )  ( ) ( )           = −   ( )  ( ) ( ) ( )          (32) 
or  ( ) = − ( ) ( )                    (33) 

where  ( ) = −   ( )  ( ) ( )          (34) 

This indicates that the optimal control law is a linear time 
varying function of the system states. Equation (33) gives the 
final optimal control law. The matrix  ( ) may be obtained 
by solving the matrix Riccati equation for finite duration. In 
order to arrive at eq. (34), where the feedback gain matrix is 
time varying, linear time variant system (21) is taken for finite 
duration. In the appendix-B, Kalman’s modified matrix 
Riccati equation for a process of infinite duration has been 
derived where Kalman has shown that - if a few hypotheses 
( = 0 and the matrix  ,  ,   and   are constants) are 
satisfied then the matrix  ( ) will become a constant matrix   
for an interval of infinite duration i.e. if   → ∞. Hence from 
eq. (34) feedback gain matrix  ( ) will become constant 
feedback gain matrix  . Details of the derivation of Riccati 
equation for finite and infinite duration are explained in 
appendix B (Gopal, 2009; Kirk, 1970). 

5. INTERNAL MODEL CONTROL 

In this section the SSS under parametric uncertainties is 
controlled by internal model control which makes it robust 
and insensitive to parameter variation. The IMC consist 
mainly of the controller and system model (Mikles and Fikar, 
2007; Hamedmouna and Lassad, 2007; Borrelli and Keviczky, 
2008). The block diagram of IMC structure is given by fig.6. 

 
Fig. 6. Block diagram of IMC. 

From fig.6  ( ) =  ( ) ( )          (35)  ( ) =  ( ) −   ( ) ( )          (36) 



CONTROL ENGINEERING AND APPLIED INFORMATICS    75 
  ( ) =  ( )( ( ) −  ( ))          (37) 

From (35) to (37)  ( ) =  ( ) ( ) ( )   ( )  ( )   ( )           (38) 

The condition for perfect set point tracking is obtained if 
Gm(s) = G(s) and C(s)=1/G(s). If G(s) is strictly proper, then 
its inverse model (1/G(s)) becomes improper. Hence in order 
to make a proper transfer function one filter is incorporated as 
a part of controller. The new controller is now defined as  
  ( ) ≜  (    )  ( )            (39) 

Here n is suitably taken to make C(s) proper. The filter 
parameter   influences the speed of response. Fig.7 shows the 
simulink model of IMC. 

 
Fig. 7. Simulink model of IMC. 

6. SIMULATION RESULTS AND DISCUSSION 

In this section the results obtained from the open loop system 
without controller and closed loop system with various 
controllers are presented. The response of the system with 
controllers such as PID, PPT, Optimal LQR, and IMC are 
presented and compared for different values of servo 
amplifier gain K. Fig. 8 shows the open loop step response of 
sun seeker (SS) axis position with respect to time for different 
values of K which shows that the open loop system is 
unstable. 

 
Fig. 8. Open loop step response. 

Fig. 9a gives the response with P, PI and PID controller 
whose gains are tuned using Ziegler-Nichols (ZN) tuning 
method. The values of gains for P controller is KP = 0.84 and 
for PI controller these are KP = 0.756 and KI = 6.52. The gains 
for PID controllers are given in table 2. It is observed from 
fig. 9a that steady state error (Ess) for P controller is larger in 
comparison to PI and PID, whereas for PI, overshoot is larger 
in comparison to P and PID. Therefore PID controller has 
been selected from the standpoint of both transient and steady 
state response. Fig. 9b shows the response of PID Controller 

only for nominal value of K = 0.5. Here PID controller is 
tuned using Hand-tuning rule (Amuthan et al., 2009), Integral 
Time of Absolute Error (ITAE) and Ziegler-Nichols (ZN) 
method. The corresponding values of controller parameters 
are given in table 2. 

After comparing the responses corresponding to different 
tuning method with respect to the set value (SV), it is 
observed that hand tuning method gives better performance. 
Initially only nominal value of K is considered from fig.10 
through fig.12 to compare the performance of controller. 
Next, from fig.13 through fig.16, parametric uncertainties in 
terms of various values of K are taken into consideration to 
adjudge the efficacy of robust IMC and optimal LQR 
controller over PPT and classical PID controller. 

 
Fig. 9a Response with P, PI and PID Controller. 

Table 2. PID Controller Parameters. 

Tuning Method KP KI KD 
Ziegler-Nichols 1.26 14.49 0.0175 

ITAE 0.3872 2.7 0.001 
Hand-tuning 7 1.8 0.05 

 

 
Fig. 9b. Response with PID Controller. 

Fig.10 shows the response of sun seeker system (SSS) for 
PPT and LQR controllers for nominal value of K when the SV 
comprises sum of unit step and different ramp signal. In order 
to obtain a reasonable speed and damping in the response of 
designed system desired closed loop poles at  = −13,−13, 
are obtained after a number of trials so that the settling time is 
0.3 to 0.5 sec. with negligible maximum overshoot. The 
corresponding desired characteristic equation for PPT is   + 26 + 169 = 0. 

In LQR the relative weights of matrix Q and R are taken as Q 
= 1 00 0 , R=10. The values of feedback gain constants    and    for PPT and LQR respectively are calculated by MATLAB 
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and given in table 3. Fig.10 shows the Optimal LQR response 
for SSS. 

Table 3. State feedback gain parameters. 

Techniques       
PPT 0.1352 0.0008 
LQR 0.3162 0.0101 

 
Fig. 11 shows the IMC response of sun seeker (SS) axis 
position versus time with reference to SV taken to be same as 
the previous one and K is again nominal. For proper design of 
controller Q(s) of IMC, different value of filter parameters are 
taken as μ = 1, 0.5, 0.1, 0.01 for studying the effect of μ on 
the system performance. On decreasing the value of μ from 1 
downward, settling and rise time is improved hence transient 
and steady state response is improved and system becomes 
faster. 

 
Fig. 10. PPT and Optimal LQR response . 
 

 
Fig .11. IMC response for different value of μ. 

From fig. 11 it is obvious that μ=0.01 gives better 
performance with respect to other values of μ considered. 

Hence in the consecutive discussion wherever IMC is 
involved, this best value of μ (= 0.01) only is taken into 
consideration. Smaller µ makes the response faster as is 
evident from fig. 11, which has direct implication with the 
bandwidth in frequency domain. As it is well known that the 
bandwidth is normally inversely proportional to the rise time 
hence if the system becomes faster for smaller µ it means 
bandwidth is higher. In this paper only time domain analysis 
has been considered. Fig.12 shows the unit step response of 
all controllers corresponding to nominal value of K and table 
4 shows the performance index of these controllers for unit 
step input. 
 

 
Fig. 12. Unit step response of all controller. 

On the basis of fig.12 and table 4, the PPT, IMC and LQR has 
got negligible maximum overshoot (OS) and steady state error 
(Ess). The rise time (RT) and settling time (ST) for IMC is 
least in comparison to PPT, LQR and PID controllers. Hence 
IMC gives better performance result for nominal value of K 
(0.5) in comparison with other designed controllers i.e. PPT, 
LQR and PID etc. Subsequently relative efficacy of 
controllers is judged under parametric uncertainties. 

Table 4. Performance indexs of controllers for unit 
step input. 

Controller ST(s) RT(s) OS (%) Ess (%) 
PID (ZN) 0.175 0.0525 41.62 0.0 

PPT 0.42 0.263 0.0 0.0 
LQR 0.25 0.16 0.0 0.0 

IMC (μ=0.01) 0.055 0.034 0.0 0.0 

Unit step response of SS axis position with PID, PPT, LQR, 
and IMC are shown in fig.13 to 16 under parametric 
uncertainties for different value of K for robust and optimal 
analysis. Using these figures the comprehensive table 5 is 
accomplished for robust and optimal analysis of designed 
controllers. 

 
Fig. 13. Response with PID controller for different value of K. 

 
Fig. 14. Response with PPT for different value of K. 
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Fig. 15. Response with LQR for different value of K. 

In table 5 the values of ST, RT, OS and Ess for PID, PPT, 
LQR and IMC are presented from the step response of fig. 13 
to 16 respectively under parametric uncertainties for different 
values of K. Comparing the step response characteristics of 
sun seeker system using different controllers it is seen that the 
PID though is slightly faster in response than PPT yet highly 
oscillatory due to very large OS. It is also observed that under 
parametric uncertainties if the overshoot is condoned, IMC 
outperforms all other controllers as far as speed of response is 
concerned. It is obvious from table 5 that the rise time band 
for K varying from 2 to 0.1 is 0.0125 sec to 0.2 sec for IMC 
controller whereas for LQR is 0.08 sec to 0.684 sec. Similarly 
the settling time band under same range of variation of K for 
IMC is 0.038 sec to 0.35 sec whereas for LQR is from 0.13 
sec to 1.1 sec. 

 
Fig. 16. Response with IMC for different value of K. 

Table 5. Performance Index of Controllers for 
different K. 

Controller Gain(K) ST (s) RT (s) OS(%) Ess (%) 
 
 

PID 
 

0.1 1.05 0.1148 57.84 1.14 
0.5 0.175 0.0525 41.62 0.0 
1 0.17 0.0397 31 0.0 
2 0.168 0.033 19.2 0.0 

 
 

PPT 

0.1 2.75 1.549 0.0 0.0 
0.5 0.42 0.263 0.0 0.0 
1 0.295 0.1936 3.1 0.0 
2 0.22 0.1023 12.1 0.0 

 
 

LQR 
 

0.1 1.1 0.684 0.0 0.0 
0.5 0.25 0.16 0.0 0.0 
1 0.16 0.104 0.2 0.0 
2 0.13 0.08 0.1 0.0 

 
 

IMC 

0.1 0.35 0.2 0.0 0.0 
0.5 0.055 0.034 0.0 0.0 
1 0.04 0.025 4.32 0.0 
2 0.038 0.0125 15.25 0.0 

Similarly taking the rise-time band and settling-time band for 
PID and PPT under same parametric uncertainties, and 
comparing it with LQR and IMC, following findings and 
inferences are drawn. First it is observed that under 

parametric uncertainties, IMC controller gives robust 
performance. Similarly if the efficacy of controllers are 
investigated in terms of overshoots and oscillations it is 
observed that the OS for PID is maximum (57.84%) followed 
by IMC and PPT respectively. The most startling fact is that 
the OS for LQR is negligible. Hence the response 
corresponding to LQR is less oscillatory and exhibits less 
maximum overshoot. Hence with regard to overshoot and 
oscillation, LQR outperforms all the other controllers. OS in 
the system has some implication with the energy 
consumption. The presence of overshoot is akin to the uneven 
road where vehicle would consume more fuel hence this way 
optimal controller mitigates the overshoot and gives less 
oscillatory response which in turn consumes less energy. In 
context with the present SSS, high oscillation and OS implies 
the nonalignment of vehicle axis with solar axis and hence the 
presence of error signal which will put the respective 
controller in action till these spurious things dies out. In doing 
so heavy energy loss takes place and by using LQR we can 
optimize the energy consumption to a great extent because OS 
is negligible. 

7. CONCLUSION 

In this paper the sun seeker system (SSS) which consists of 
Photo voltaic (PV) cells are mounted on space vehicle to 
provide the required electrical energy to it. The objective of 
sun seeker system is to manoeuvre its own attitude 
continuously so as to extract maximum possible current from 
PV cell. In this paper the design of robust and optimal 
controllers are presented to precisely control the sun seeker 
axis position of sun seeker so that maximum possible current 
may be supplied by the PV cells. The results of proposed 
controllers, IMC for robust and LQR for optimal control 
under perturbed conditions are compared with classical PID 
controller and PPT. It is observed that if the negligible 
overshoot is condoned, IMC outperforms other controllers 
with regard to transient and steady state response. Conversely 
if overshoot feature is not condoned then LQR gives overall 
best performance because it completely decimates the OS and 
makes the design less oscillatory. So even for the other 
processes where perturbation exists, LQR controller will be 
the preferred choice. In a similar way for the system where 
there is big scope of parametric variations, system will be 
sluggish if controller does not take swift action. Hence for 
these systems IMC displays the desired robust feature. So 
even when the space vehicle encounters the erratic situation, 
IMC and LQR in tandem, may work as a panacea. This kind  
of research work may encourage for maximum use of 
renewable energy sources in every walk of life which 
otherwise is sparingly used all over the world. 

APPENDIX A 

A general control model for the sun seeker system is 
presented below. The LQ optimal control model, PID and 
IMC controllers can be derived as special cases of the model. 
Let   ( ) be the sun ray’s angle relative to a fixed reference 
and let   ( ) be the angle turned by the dc motor. Let   ( ) 
be the angle turned by the sensor (PV) plates relative to the 
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fixed reference. The aim of the sun seeker system is to make   ( ) =   ( ) i.e.  ( ) =   ( ) −   ( ) = 0. If  ( ) ≠ 0, 
then the motor receives an input current equal to  ( ) = ( ( )) =  (  ( ) −   ( )). The angle turned by the motor   ( ) is proportional to   ( ) i.e.   ( ) =  .  ( ), where   is a constant, determined by the gear system. So the 
dynamics of the servo motor is given by 

   ̈ ( ) +   ̇ ( ) =   (  ( ) −  .  ( )).    (  ( ))  
      (40) 

The function g satisfies  (0) = 0 and   ( ) > 0      if               0 <  <  2  ( ) < 0      if    −  /2 <  < 0 

This guaranties that   ( ) increases if the error 

  ( ) =   ( ) −   ( ) =   ( ) −  .  ( ) > 0  

and decreases if   ( ) =   ( ) −   ( ) =   ( ) −  .  ( ) < 0. 

By changing the function g we achieve any desired 
performance. Optimal control will be used if we desire to 
spend minimum energy in achieving alignment. 

Suppose we wish alignment at time T, then the current 
through the motor which is  ( ( )) =  (  ( ) −  .  ( )) 
may be modified to  (  ( ) −  .  ( ), ( )) where  ( ) is 
a control input and the energy spent is proportional to  = ∫      ( ) −  .  ( ), ( )            (41)   is now a new function of two variable. This energy must be 
minimized subject to the final point constraint.  .  ( ) =.  ( ), and the equation of motion  ̇ ( ) =   ( ),           (42)   ̇ ( ) +    ( ) =  (  ( ) −  .  ( ), ( )).    (  ( )  ;0 ≤ t ≤ T       (43) 

Therefore the functional to be minimized after incorporating 
Lagrange multipliers   ( ),   ( ) and   ( ).     (∙), (∙), λ (∙), λ (∙), λ (∙)  =       ( ) −  .  ( ), ( )    

  

+    ( )  ̇ ( )−   ( )    
  

+    ( )   ̇ ( ) +    ( ) 
 −      ( )−  .  ( ), ( )     +  ( .  ( ) −   ( ))          (44) 

APPENDIX B 

Derivation of Matrix Riccati Equation for a Process of 
Finite Duration 
In order to apply optimal control law, the matrix  ( ) is 
required which is normally obtained by solving the matrix 

Riccati equation. Hence here the general matrix Riccati 
equation for linear time variant system has been derived from 
the already derived equations (21) through (34). Next the 
same for time invariant system are derived with some 
additional conditions (Gopal, 2009; Kirk, 1970). 

Clubbing of (21), (32) and (33) we get   ̇ =  ( ) ( ) −  ( )     ( ) ( ) ( )        (45) 

Also from (31)  ̇( ) =  ̇( ) ( ) +  ( ) ̇( )         (46) 

And from (28)  ̇( ) = − ( ) ( ) −   ( ) ( ) ( )         (47) 

Combining (46) and (47)  ̇( ) ( ) +  ( ) ̇( ) = − ( ) ( ) −   ( ) ( ) ( )(48) 

But from (21), we get  ̇ =  ( ) ( ) +  ( ) ( ) which when 
clubbed with (48) gives   ̇( ) +  ( ) ( ) +   ( ) ( ) − ( ) ( )   ( )  ( ) ( ) +  ( )] ( ) = 0       (49) 

Since this must hold for all non-zero  ( ), the term pre-
multiplying  ( ) must be zero. Thus the matrix  ( ), which 
is a  ×   symmetric matrix, must satisfy the matrix Riccati 
equation − ̇( ) =  ( ) ( ) +   ( ) ( ) − ( ) ( )   ( )  ( ) ( ) +  ( )        (50) 

Equation (50) is known as matrix Riccati equation. Since   is 
an  ×   matrix, Eq. (50) is a system of    first order 
differential equation. Actually, it can be shown that   is  

symmetric; hence, not    but  ( + 1)/2 first order 
differential equation must be solved. These equations can be 
integrated numerically by using a digital computer. The 
integration is started at  =    and proceeds backward in time 
at =    ; matrix  ( ) is stored, and the feedback gain matrix  ( ) is determined from (34).  

Kalman’s Modified Matrix Riccati Equation for a Process of 
Infinite Duration  

In previous section matrix Riccati equation has been derived 
for finite duration. Here in this section the Kalman’s 
modified matrix Riccati equation has been considered for an 
interval of infinite duration. The situation wherein the process 
is to be controlled for an interval of infinite duration merits 
special attention. Kalman (Kirk, 1970) has modified the 
original matrix Riccati equation by considering the following 
changes in the parameters of performance measure: 

The plant is completely controllable  = 0, and 

Matrix  ,  ,  , and   are constant matrices 

Kalman has shown that if the above hypotheses are satisfied 
then the matrix  ( ) will become a constant matrix   for an 
interval of infinite duration i.e. if   → ∞. The engineering 
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implication of this result is very important. If the above 
hypotheses are satisfied, then the optimal control law for an 
infinite duration process is stationary. This means that the 
implementation of the optimal controller in this case also is 
as usual except that  ( ) is constant. From a practical 
perspective, it may be feasible to use fixed control law even 
for process of finite duration. Taking reference of many 
practical examples of process of finite duration where 
objective of the controller is to regulate the value of different 
states be zero level within stipulated final time   , it is 
observed that the states reach the zero level well before the 
stipulated time. This means that constant matrix   can be 
used without significant performance degradation. Hence the 
designer needs to compare system performance using the 
steady state gains with performance using time varying 
optimal gains to decide which should be implemented. To 
determine the   matrix for an infinite time process, the 
Riccati equation is integrated backward in time until a steady 
state solution is obtained or solving the nonlinear algebraic 
equations 0 = −  −    +         −          (51) 

obtained by setting  ̇( ) = 0 in Eq. (50). Equation (51) is 
Kalman’s modified matrix Riccati equation for an interval of 
infinite duration. 
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