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Abstract: In this paper, a solution for the pH control of the residual water, at the overflowing point from 
a blunting system, is proposed. The modeling-simulation of the blunting process and of the proposed 
feed-forward control structure is based on the matrix of partial derivatives of the state vector, associated 
with Taylor series. The approached control strategy generates much better results than in the case of 
using a simple control structure, fact that results from the comparative simulations presented in the 
“Simulations Results” chapter. Also the modeling method offers the advantage of the possibility of the 
simulation and control of the pH value in each point from the neutralizing tank’s volume. Another 
singularity of this paper is the inclusion of a distributed parameter process (modeled through an equation 
with partial derivatives) in a control structure.   
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

1. INTRODUCTION 

The treated blunting system is used to neutralize the residual 
water resulted from the manufacturing flow of producing 
seamless steel pipes in a metallurgical factory. The residual 
water has to be overflowed in the closest river, being 
necessary to respect some chemical limits in order to avoid 
the river’s pollution (Mureşan, 2012). The most important 
chemical parameter that has to be considered is the residual 
water pH value, value that has to be maintained between 6.5 
(the minimum limit) and 7.5 (the maximum limit). Due to the 
high values of the disturbances that appear in the system and 
due to the importance of the blunting system, it is better if the 
pH value tends to 7 (the neutral value for the pH). In this 
context, an on-off control structure or a simple control 
structure with a single PID (Proportional-Integrator-
Derivative) controller is not sufficient. The solution that was 
chosen to be approached in this paper is the usage of a feed-
forward control structure. 

In the case of the considered blunting system, the residual 
water, has only an acid character (the pH value smaller than 
7), the neutralizer being the cream of lime (a basic solution 
with the pH 12). The blunting system contains four 
neutralizing tanks connected in series. The connection 
between two consecutive tanks is made at their edges in 
relation with their length (the tanks have a parallelepipedic 
form) through the connection orifices (connection points). 
Both the reactants (the acid residual water and  the cream of 
lime) are introduced in the reaction in the first tank, at its 
edge that does not communicate with the second tank, 
through the corresponding pipes. This point is considered the 

input point in the blunting system. The output point of the 
blunting system is considered the overflowing point from the 
tank number four. This point is at the edge of tank number 
four that does not communicate with the third tank.  

The four tanks contain each a barbotage mix up system. The 
barbotage system has the purpose to accelerate the chemical 
reaction between the two reactants and the purpose to 
homogenize the pH value of the residual water in the tanks. 
The air, under pressure, is introduced in the lower part of the 
tanks through a system of pipes. Due to the barbotage system, 
due to the fact that between each two consecutive tanks, a 
difference of level exists and due to the fact that the reactants 
are continuously introduced in the reaction, the chemical’s 
circulation from the input point of the system to the output 
point (the overflowing point) of the system appears. In Fig. 1, 
the general diagram of the blunting system is presented.  

The feedback signal associated to the pH controller (AC) is 
generated by a pH transducer that is placed at the 
overflowing point from the blunting system. The control 
signal generated by the pH controller is applied to the 
actuator, in this case an electro-valve installed on the cream 
of lime pipe, the effect being the variation of the cream of 
lime flow (in this case, the actuating signal). The main 
disturbances are the acid’s pH and the acid’s input flow. 
These two quantities are measured using a pH transducer and 
a flow transducer, both placed on the acid pipe. The feedback 
signal associated to the second controller (the compensation 
block CB) results as the product between the output signals 
of the two transducers (from the acid pipe), the explanations 
regarding this aspect being given in the following chapters.     
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Fig. 1. The general diagram of the blunting system.  

The final control signal results subtracting the control signal 
generated by the compensation block (Golnaraghi, 2009) 
from the control signal generated by the main controller (AC) 
The communication between the two controllers and the 
corresponding three transducers, respectively between the 
controllers and the actuator is made through unified current 
signals (4-20 mA).     

2. MODELING OF THE BLUNTING PROCESS 

The four tanks have the same technical characteristics and the 
same role to homogenize the chemical’s pH value from the 
blunting system. Considering these aspects, the four tanks 
can be viewed and treated as an equivalent tank. Both the 
technical characteristics of each tank, respectively the 
technical characteristics of the equivalent tank are presented 
in the following table (Table 1). 

Table 1. The technical characteristics of the tanks 

The technical 
characteristics 

of the tanks  

The 
length 

The 
width 

The 
depth 

The 
volume 

Tanks 1,2,3,4 5 m 2 m 1.5 m 15 m 3  
The 

equivalent 
tank  

20 m 2 m 1.5 m 

 

 

60 m 3  

Due to the circulation of the substances from the input point 
to the overflowing point of the blunting system, the reaction 

between the two reactants appears progressively. This remark 
implies the fact that besides the time variable (t) the pH value 
of the chemical from tanks depends on their position in the 
tank, too. The blunting process, depending on more than one 
independent variable, is a distributed parameter one (Curtain, 
2009; Li, 2011; Russell, 2010). The three independent 
variables (p), (q) and (r) that define the position in the 
blunting system are introduced using the Cartesian space 
representation, as it can be remarked from the general 
structure of the equivalent tank presented in Fig. 2. 

The back-up cream of lime pipe from Fig. 2, is used only in 
failure procedures and will not be considered in the model of 
the process. Also, in Fig. 2, the difference of level between 
the input and the overflowing point of the tank is shown (the 
difference of level is necessary in order to maintain the same 
conditions as in the Fig’s 1 case). The origin line is 
considered at the input in the system (the edge of the 
equivalent tank where the two reactants are introduced) at the 
separation limit between the chemical from the tank and the 
air. The origin of the Cartesian space is placed on the origin 
line in the center of the tank related to its width.   

The pH variation on the tank’s length, width and depth 
corresponds with the pH variation on the 0p, 0q, respectively 
0r axes. The pH’s value homogenization is made with a very 
high efficiency especially in the tank’s width, respectively 
depth due to the barbotage system. This aspect implies the 
fact that the pH variation on the 0q and 0r axes have an 
insignificant weight comparing with the pH variation on the 
0p axis case. 
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Fig. 2. The general structure of the equivalent tank. 

Considering the previous remark, the conclusion is that in the 
model of the blunting process, only the pH variation on the 
0p axis case is considered, more exactly besides the time 
independent variable (t) only the “length” independent 
variable (p) is considered.   

The model of the distributed parameter processes can be 
expressed using equations with partial derivatives (PDE) 
(Mureşan, 2010; Krstic, 2006). In the case of the considered 
blunting process, its model can be expressed using an 
equation with partial derivatives of second order with two 
independent variables (time and length) (PDE II·2). If the 

notation 



 

T+P

TP T P

y
y

t p
 is made, where T=0,1,2….., and 

P=0,1,2,….., the general form of the equation that describes 
the process work is presented in the following relation:            

00 00 10 10 01 01 20 20

11 11 02 02 00                                   

a y a y a y a y

a y a y 
       

    
.           (1) 

The previous notation is valid for φ function, too. Also, in (1) 
the coefficients are constant and the functions y(t,p) (the pH 
value of the chemical from the tank) and φ(t,p) respect 
Cauchy conditions of continuity. 

In the modeling procedure (Maga, 2011) it has to be taken in 
consideration the fact that in the equivalent tank, two 
reactants are introduced. Considering this aspect, the blunting 
process can be decomposed in two sub-processes. The first 
sub-process represents the effect of the acid introduced in the 
reaction upon the output signal, respectively the second sub-
process represents the effect of the cream of lime introduced 
in the reaction upon the output signal. The output signal (the 
pH of the chemical at the overflowing point) of the blunting 
process will result as the sum between the output signals of 
the two sub-processes. To obtain the model of the two sub-
processes, the hypothesis that the equivalent tank is full with 
liquid of pH value equal to 7 (the pH indifferent value) is 
considered. Also, in the modeling procedure, the flows of the 

two reactants are considered constant and equal between 
them, the variation of the output signal resulting as an effect 
of the variation of the pH values of the two substances at the 
input in the process.   

In Fig. 3, the block diagram of the blunting process, 
decomposed in two sub-processes is presented. In Fig. 3, it 
can be remarked that the first sub-process model is 
represented using PDEA, respectively the second sub-process 
model is represented using PDEB. Also, in Fig. 3, the input, 
the output and the intermediary signals are represented. Next, 
the modelling procedure for the two sub-processes is 
presented. In the first sub-process case, the acid is introduced 
in the tank and in the same time, through the cream of lime 
pipe, a liquid with the pH value equal to 7 is introduced. The 
input signal ( )Au t  has the value equal to the difference 

between the acid’s pH and 7. Hence, the input signal will 
have a negative step variation form. The effect of applying 
this signal at the input of the sub-process is a decreasing 
evolution of the value of the output signal yA(t,p) under the 
value of 7 (the pH indifferent value from the chemical point 
of view). In the second sub-process case, the cream of lime is 
introduced in the tank and in the same time, through the acid 
pipe, a liquid with the pH value equal to 7 is introduced.  

 

Fig. 3. The block diagram of the blunting process.  
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The input signal ( )Bu t  has the value equal to the difference 

between the cream of lime’s pH and 7. Hence, the input 
signal will have a positive step variation form. The effect of 
applying the positive step signal at the input of the second 
sub-process is an increasing evolution of the value of the 
output signal yB(t,p) over the value of 7. The model of each 
sub-process can be expressed using the equation from 
relation (1) by replacing y function with yA(t,p) (y00A(t,p)) or 
yB(t,p) (y00B(t,p)). The output signal of the blunting process 
associated to the equivalent tank will be the sum between the 
output signals from the two sub-processes:  

yT(t,p)  = yA(t,p) + yB(t,p).                                                     (2) 

The yT(t,p) signal represents the pH value of the chemical 
from the equivalent tank if both the acid and the cream of 
lime are introduced through the corresponding pipes. 

Only a subscript attached to the functions 0 ( )Au t , 

respectively 0 ( )Bu t  (without considering the A and B letters 

that determine the sub-process) signifies the differentiation 
order of those elements related to the independent variable 
(t). This notation remains valid for the following intermediary 
signals presented in this paper, too. 

The approximating analytical solutions that verify relation 
(1), for the two sub-processes are: 

00 0 0 0( , ) ( ) ( ) ( )ANi y Ti Pi iy t p K F t F p u t                                    (3) 

where i can be A or B. In relation (3) yK  represents the 

proportionality constant of the process. yK  is a 

dimensionless coefficient and after some analytical 
calculations resulted 0.25yK  . Also 

1 21 2
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t t
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T T
F t

T T T T

 
    

 
, and  

1 2
0 0 1 2( ) e e

p p

P P
PAiF p   

 
     . 1T  and 2T  are the time 

constants of the process and 1P  and 2P  can be called “the 

length constants” of the process. The relations of the   
coefficients will be presented later in this chapter. The 
analytical model was approximated using some intermediary 
representative measurements from the process. The 
measurements are based on the step response of the process. 
The experimental curves are obtained measuring the 
evolutions in time of the pH value in different points from 
lengths of the tanks from the system (including the input 
point in the system, some intermediary points and the 
overflowing point from the system). 

After accomplishing the necessary experiments on the plant, 
it results that the speed of the chemical reaction decreases 
with the length increasing on the 0p axis. The effect of this 
remark is that the value of the time constants 1T  and 2T  

differs for different points on the 0p axis. Hence, higher the 
value of the distance from the origin of the Cartesian system 

on the 0p axis is, higher the values of the time constants are. 
The evolution of the analytical solution of the equation from 
relation (1) singularized for the sub-process A, related to the 
two independent variables (t and p), ( )Au t  being a negative 

step signal, is qualitatively presented in Fig. 4. Also, the 
evolution of the analytical solution of the equation from 
relation (1) singularized for the sub-process B, related to the 
two independent variables (t and p), ( )Bu t  being a positive 

step signal, is qualitatively presented in Fig. 5.   

In Figs. 4 and 5, the indeces 0 signify the initial values, i 
indeces signify the initial values too, f  indeces signify the 
final values, respectively indeces α and β signify the 
difference between the settling time of the response for 0p  

and for fp . On the origin line, the reaction does not occur, 

the value of the response remaining constant at the value 7 
( iy ). In the immediate neighbourhood of the origin ( 0p ), the 

reaction occurs very fast but the pH value (for ft  ) remains 

near 7 ( iy ) because the reaction is only at the start. At the 

overflowing point ( fp ) the reaction appears slower but the 

pH value (for ft  ) presents a maximum variation in relation 

to ( iy ) because the reaction is complete.   

From Fig. 4 and Fig. 5, results the antagonistic effect of the 
acid, respectively of the cream of lime introduced in the 
process. Making the sum of the two effects and considering 
the appropriate values of the flows of the two substances, the 
resultant will become null creating the possibility to control 
(Inoan, 2010) the pH value.  

The time constants were identified using the tangent method 
(Abrudean, 1998), resulting the values 1 2.56minT    and 

2 3.84minT    for 0, )y(t p , respectively 1 7.04minT    

and 2 10.56minT    for ( , )fy t p . The evolution of the time 

constants from 0p  to fp  is approximately linear and is 

given by the relations: 1 1
1

0f

T -T
T p

p p
 

  


, 2 2
2

0f

T -T
T p

p p
 

  


 

where 0 fp p p   and t t t    . “The length constants” 

of the process were identified using a method based on an 
interpolation procedure, resulting the values 1 1.6mP   and 

2 2.4mP  . Using these values, the a... coefficients from 

relation (1) can be calculated with the next formulae:  

00 1a  , 10 1 2+a T T  , 20 1 2a T T   ,  01 1 2a P P  , 

02 1 2a P P   and 11 1 2 1 2( ) ( )a T T P P     . Also   

coefficients from the relations of 0 ( )PiF p   can be calculated 

with the following formulae: 

0
0

fi
i

i

y

u
  , 0 1

1
0 1 2

( , )f i fi
i

i

y t p y P

u P P



 


, respectively 

0 2
2

0 2 1

( , )f i fi
i

i

y t p y P

u P P



 


 where  i{A,B}. The 
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identified time and length constants, being structure parameters, remain the same for both two sub-processes.

Fig. 4. The evolution of the analytical solution related to t and p, for the sub-process A.  
 

 

Fig. 5. The evolution of the analytical solution related to t and p, for the  sub-processes B. 

3. MODELING AND SIMULATION OF THE pH 
CONTROL SYSTEM  

The feed-forward control structure for the pH control is 
presented in Fig. 6. The significance of the new notations 
from Fig. 6 is: AC–the main pH controller of PID type (Love, 

2007); CB–the second controller (the compensation block); 
A–actuator (the electro-valve); MT1, MT2–pH transducers; 

MT3–the flow transducer; a(t)=a 0 –error signal; ca(t)=ca 0 –

the control signal generated by the main pH controller; 

cb(t)=cb 0 –the control signal generated by the compensation 

block (the second controller); cf(t)= 0cf – the final control 

signal applied to the actuator; w(t)= 0w –the reference signal; 

f(t)= 0f –the actuating signal, representing the flow of the 

cream of lime, after the actuation generated by the 
controllers; mT(t)= 0mT  – the measurement signal generated 

by the pH transducer placed at the overflowing point from the 
equivalent tank, mA(t)= 0mA – the measurement signal 

generated by the pH transducer placed on the input acid pipe; 
mF(t)= 0mF – the measurement signal generated by the flow 

transducer placed on the input acid pipe. KpH represents a 
proportionality constant equal to 5 (pH of cream of lime – 7). 
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Fig. 6. The feed-forward control structure. 

In the case of the control structure, ( )Au t  and ( )Bu t  

represent the product between the flow of the two reactants 
and the values of the differences between their pH and 7. 
Hence, 0 ( ) ( ) (pH ( ) - 7)A A Au t F t t  , respectively 

0 pH( ) ( ) KB Bu t F t  , where ( )AF t  is the input flow of the 

acid, ( )BF t  is the input flow of the cream of lime and 

pH ( )A t  is the input pH of the acid. In the control structure 

(Miron, 2010; Sita, 2012), the effect of the acid reactant (the 
output of PDEA) can be viewed as a disturbance signal 
(Teppa-Garran, 2013). But this effect is given by both ( )AF t  

and pH ( )A t  signals, these being considered the disturbance 

signals. Reductively, the feedback from the disturbance will 
result measuring the ( )AF t  and pH ( )A t  signals. The 

analogue modeling of the system presented in Fig. 6 starts 
from the following system of equations: 

Transducer 1: 
0                                                                         

1 00 00 0
  1

[ ( ) ].       T A B
T

mT

 mT K y y mT
T



     


  (4) 

Transducer 2: 
0                                                                               

1 0 0
  1

[ pH ].                        T A
T

 mA

mA K mA
T



    


  (5) 

Transducer 3: 
0                                                                                   

1 0 0
  1

[ ].                        TF A
TF

 mF

mF K D mF
T



    


(6) 

The main PID controller (AC):  

0                                                                                                                                                                                                     ca     

1 0 0 1 1 0

2 1 1 0 0

     

1
[ ( ) ( ) ]                                                                                     

1
[ ( ) ( )        .                   

PR DR
R

PR IR
R

 ca K w mT K w mT ca
T

  ca K w mT K w mT
T

       

       

2 2 1

        (7)                                                     

        ( ) ]DRK w mT ca










   
  

The second controller (the compensation block) (CB): 

0                                                                                                                                                         cb

1 0 0

1 0 0 1 0

2 1 0 0 1

1
[ ( )

        ( ) ]                                  (8)                    

1
[ ( )

    

    

      

PRC
RC

DRC

PRC
RC

 cb K mA mF
T

K mA mF +mA mF cb

  cb K mA mF mA mF
T

0 0

2 0 1 1 0 2 1

         ( )                                                                                      

         ( 2 ) ]



   

        
IRC

DRC

K mA mF

K mA mF mA mF mA mF cb













 

The final control signal: 

0 0 0cf ca cb  .                                                                   (9) 

Actuator: 
0                                                                      

1 pH 0 0
1

(K ) 

B

B EE B
EE

u

u K cf u
T



     


.                 (10)  

Sub-processes 1 and 2 (i{ A,B}) (PDE II·2):     

00

10

20 00 00 00 10 10
20

01 01 11 11 02 02

1
[ (

        )]

i

i

i i i i

i i i

y

y

y a y a y
a

a y a y a y






       


     

.                 (11) 

In the previous relations, the following symbols have also 
been used: TK –the proportionality constant of the pH 

transducers, TT –the time constant of the pH transducers (the 

two pH transducers are of the same type), TFK –the 

proportionality constant of the flow transducers, TFT – the 

time constant of the flow transducers, PRK –the 

proportionality constant of the main controller (AC),       

IRK –the integrative constant of the main controller (AC),       
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DRK –the derivative constant of the main controller (AC),  

RT –the inertial time constant of the main controller (AC), 

PRCK –the proportionality constant of the compensation 

block (CB), IRCK –the integrative constant of the 

compensation block (CB),  DRCK –the derivative constant of 

the compensation block (CB),  RCT –the inertial time constant 

of the compensation block (CB) EEK –proportionality 

constant of the actuator and EET –the time constant of the 

actuator. In (8), the extended terms from the round brackets 
resulted from the first, respectively from the secondary 
differentiation of the term ( 0 0mA mF ).  

The elements of the state vector xB associated to the control 
system, presented in transposed form in (12) are obtained 
from the relations (4)-(8) and (10)), respectively the elements 
of the state vector xA associated to the sub-process 1 (PDEA), 
presented in transposed form in (13) are obtained from the 
relation (11).  

 

                                                                                            (12) 

. (13) 

Considering the values M=8 and N=35, respectively M=8 
and N=5 definitive for the dimension of matrices M pdxB  and 

M pdxA  (the matrix of partial derivatives of the state vector), 

these are presented in relations (14) and (15) [Coloşi T., 
2013]. 

 ,                                    (14) 

.                                       (15) 

The matrices and vectors that occur in relations (14) and (15) 
are: the state vector xi; the vector of partial derivatives related 
to time (t) of the state vector x Ti ; the matrix of partial 

derivatives related to independent variable (p) of the state 
vector xPi; the matrix of partial derivatives related to time (t) 
and to the independent variable (p) of the state vector x TPi ; i 

can be A or B. Thus, it results that the matrices M pdxB  and 

M pdxA  have the dimensions (M pdxB (49·9)), respectively 

(M pdxA (7·9)). 

To start the numerical simulation, the initial conditions of the 
elements of the two M pdx  matrices are needed to be known 

or calculated. A possibility to calculate them is to use the 
analytical solution of the two sub-processes. After doing the 
calculations, we can make the matrices (M pdxi ) (i{A,B}) 

for the initial conditions ((M pdxi ) IC ) that correspond to the 

start sequence (k-1). In order to advance from sequence (k-1) 
to sequence (k) we need to use the Taylor series (Coloşi, 
2013). The numerical simulation is finished when t  ft   

(final simulation time β). In all the relations from this section 
we considered that the integration step (t ) has a value that 
is small enough, so that the numerical integration is being 
done correctly. For the case of blunting process composed of 
two sub-processes, the relation (2) can be applied to obtain 
the process output.     

4. THE SIMULATIONS RESULTS 

The simulation applications were developed in MATLAB 
environment (User Guide). After simulation, the comparison 
between the response that resulted through numerical 
integration and the analytical response of the system was 
made, through the calculus of the cumulated relative error in 
percentage (Ungureşan, 2011). The simulations were made 
for the case of continuous functioning. 

The main controller’s parameters (AC): 9.6PRK  , 
10.5455minIRK   and 40.5504minDRK   were obtained 

using an adapted form of the module criterion for PDEs. The 
compensation block (CB) was tuned using the classical 
method for feed-forward control systems considering the 
inertia of the elements from the secondary loop associated to 
the disturbance signal. After calculus, the following 

parameters resulted: 2.6667PRCK  , 10minIRCK   and 

11.2640minDRCK  . It can be remarked that the main 

controller is of PID type and the compensation block is of PD 
type. 

In Fig. 7 the comparative graph between the analytical and 
the numerical response of the automatic control system is 
presented (the variation in time of the yT(t,p) signal  the pH 
value of the chemical at the overflowing point from the 
equivalent tank). The reference signal’s value was fixed at 7 
(the indifferent pH value) and the disturbance signal was 
generated from the PDEA’s input step type signal: 

0 ( ) ( ) (pH 7)A A Au t F t   , where the acid’s flow 

( ) const. 3l / sAF t    and the acid’s pH pH const. 3 A . 

The previous relation shows that the value of the first sub-
process output signal can be modified either through the 
value of ( )AF t  or the value of pHA . In the tank, at the initial 

moment, the value 7 for the chemical’s pH was considered. 
Also this simulation is made at the overflowing point            
(p = fp ) from the equivalent tank.    
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Fig. 7. The comparative graph between the analytical and the 
numerical response of the process for p = fp . 

In Fig. 7, it can be remarked that the value of the overshoot is 
0.3%    (value smaller in module than the imposed one: 

 7%) and the value of the steady state error at position 
0stpa  (the imposed value). Practically, the system 

“remains” in steady state regime because the response is 
enclosed into the stationary band of ±3% near 7, introducing 
the possibility that the value of the settling time to be 
considered 0. The very good performances of the control 
system is due to the action of the compensation block that 
forces the input of a high quantity of cream of lime in the 
moment when the disturbance appears (in this case at the start 
of the simulation). Practically, the effect of the disturbance is 
rejected “almost” in the same time with its propagation. Very 
important in this case, is the derivative component of the CB 
element. 

On Fig. 7, we cannot differentiate the two responses due to 
the very small error between them. The variation in time of 
the cumulative error in percentage is presented in Fig. 8. The 

maximum value of the error is 52.5 10 %  right at the 
beginning of the numerical simulation. This maximum is due 
to the fact that the pH value presents in this domain a high 
variation in relation to time, implying high values for the 
derivatives in relation to time.  

After the first integration steps, the value of the error 
decreases and, in steady state regime, it remains constant, 

approximately to 64.44 10 % . These very low values (near 
0) show the very good performances of the numerical 
simulation method. 

The actuating signal (f(t)) simulated through numerical 
integration is presented in Fig. 9. From Fig. 9, it results that 
the maximum and also the steady state value of the actuating 
signal is 2.4 l/s, value smaller than the saturation limit (4 l/s). 
Also a very important aspect is that the actuating signal does 
not present value jumps. 

Another advantage of the numerical simulation method is the 
fact that the user can have access to the intermediary values.  

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5 x 10
-5

TIME [min]

T
H

E
 E

R
R

O
R

 [
%

]

 

 

The cumulative relative error in percentage

 

Fig. 8. The cumulative relative error in percentage between 
the analytical and the numerical response. 

In Fig. 10 is taken the example of the control signal generated 
by the main pH controller, of the final control signal and of 
the error signal. The variation of these signals is presented 
considering the 0 value (4mA) for the unified current signals 
(4-20mA).   

From Fig. 10, results the fact that the control signals have 
lower values than the saturation limit (20mA). Also, the error 
signal, in steady state regime, tends to the value 0, showing 
that the pH value at the overflowing point from the 
equivalent tank is the imposed one. 

In Fig. 11, the comparative graph between the numerical 
response of the automatic control system in the case of using 
the feed-forward control structure (the previous presented 
case) and the numerical response in the case of using a simple 
structure (with only one pH transducer placed at the 
overflowing point from the blunting system) are presented.  

From Fig. 11 we can remark the fact that the performances 
obtained in the case of using the feed-forward structure are 
much more superior than in the case of using the simple 
structure. 
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Fig. 9. The actuating signal simulated through numerical 
integration. 
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Fig. 10. The intermediary signals simulated through 
numerical integration. 

This simulation was made for the best controller that could be 
obtained for the simple control structure ( 8.2286PRK  , 

10.4675minIRK   and 34.7575minDRK  ), the 

corresponding performances being 
6.65%   (| 6.65% |>>| 0.3% |), the settling time is 

64minrt   (in the case of the feed-forward structure the 

settling time can be considered 0 min) and the value of the 
steady state error at position 0stpa   (in both cases). Also, 

the minimum value of the response of the simple control 
structure is very close to the minimum limit of 6.5, fact that 
has to be avoided in order to assure the safety in working. 

A very important aspect is the study of the feed-forward 
control structure when the two disturbances ( )AF t  and 

pH ( )A t  are more severe than in the previous case.  
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Fig. 11. The comparative graph between the cases of using 
the feed-forward and the simple control structure. 
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Fig. 12. The comparative graph between the initial case and 
the case of introducing more severe disturbances.  

In Fig 12 are presented a comparative graph between the 
system’s response for the initial case (case of Fig. 7; in Fig 
12 with dashed line) and the system’s response if 

( ) const. 4l / sAF t    and pH const. 2A    (in Fig. 12 with 

continuous line).    

In Fig. 12, it can be remarked that the effect of the 
disturbance is rejected (the steady state value of the system’s 
response is 7). The main difference between the two cases is 
the value of the overshoot 1 0.5%    in the case of 

considering more severe working conditions. However, this 
difference is insignificant in the analysis of the control 
system’s performances. The conclusion of the simulation 
from Fig. 12 is the fact that the feed-forward control structure 
is very efficient and it generates very good results 
(performances). 

5. CONCLUSIONS 

1. The paper proposes a feed-forward control strategy for the 
pH control in a residual water blunting system. The 
modeling-simulation method, for the automatic control 
system of the blunting process, used for the presented 
application is based on the matrix of the partial derivatives of 
the state vector (Mpdx), associated with Taylor series, 
method that assures a very high accuracy of the numerical 
simulation.  

2. The very high accuracy is demonstrated by the fact that the 
cumulative relative error in percentage calculated between 
the analytical and the numerical response of the process has 
very small values (near to 0). The error was presented only 
for the simulation from Fig. 7, but the obtained errors from 
all the simulation from this paper have approximately the 
same values as in the mentioned case. 

3. The value of the integration step used for the numerical 
simulation is 0.01mint = , an appropriate value for this 
application.   

4. The procedure of decomposing the process in two sub-
processes connected in parallel has very big advantages in the 
implementation of the pH automatic control system because 
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the effects of the two reactants on the output signal can be 
separated. Practically, the purpose of the control structure, in 
the context of a blunting system, is the annulment of the two 
antagonistic effects introduced by two reactants (an acid and 
a base).     

5. Although the input signals in the sub-processes are 
products between the reactants flows, respectively the 
reactants pH, we use the simplifier hypothesis that these do 
not introduce non-linearity (Godasia, 2002) in their models, 
due to the big volume of the tanks.  

6. The two sub-processes from the structure of the blunting 
process are viewed as processes with distributed parameters 
and are modeled through equations with partial derivatives. 
This approach permits the pH control in different points on 
the tanks lengths.  

7. All the imposed performances to the control system were 
respected. Also, in the simulation from Fig. 11, it was shown 
the fact that the feed-forward control structure generates very 
good results comparing with the simple control structure, its 
implementation being justified. 

8. In the control structure, the two main disturbances are 
considered (the acid’s pH and the acid’s flow), being assured 
the feedback in relation with the both mentioned signals. The 
resulted measurement signals are operated after a PD control 
law by the second controller (the compensation block – CB).    
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