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4. LECTURE FOUR. HYPERSTABILITY 

OF DYNAMICAL SYSTEMS 

 

Hyperstability is a general theory issued from 

absolute stability theory or, to be closer to the 

basic idea [1], from the study of the stability 

considered as a property not only of isolated 

systems but also of families of systems. 

 

We have already seen that absolute stability of 

the trivial solution for the system  

 

)( * xcbAxx ϕ−=&  (1) 

from Fig.1 is in fact global asymptotic stability 

of that solution for the family of systems defined 

by the family of nonlinear functions satisfying 

the sector condition 

 

ϕ
σ

σϕ
ϕ ≤≤

)(
. (2) 

 

It has been also seen that if the control function 

))(()( ttu σϕ−=  with xc
*=σ  is introduced, 

then (2) can be replaced by the following 

quadratic type restrictions on u and x 
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Fig.1 Feedback structure associated to the 

problem of absolute stability 

 

Moreover, the application of the frequency 

domain method of Popov lead to the 

construction of the integral index 
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which, after an integration by parts, leads to the 

form 
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This integral index was used together with the 

state differential equation 

 

)(tbuAxx +=& . (4) 

 

The first natural generalization of the above 

index structure was to consider a general 

quadratic form under the integral 
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Along the solutions of system (1) the integral (3) 

satisfies the inequality 
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Even for the case of integral blocks we still have 
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Such inequalities are considered to define a 

generalized feedback. The generalized feedback 

thus introduced, as well as the way of 

considering the frequency domain method of 

Popov justifies the introduction of a new 

mathematical object: equation (differential, 

difference, integral) plus a “cummulative” 

(integral, sum) index. It is for such systems 

(sometimes called Popov-type systems) that the 

notion of hyperstability is introduced. 
 

 

4.1 Hyperstability - definition and basic 

elements 

 
Our main object will be in the following the 

Popov system defined by 
 

),,( tuxfx =&  (6) 
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where m
u Ρ∈  is the control vector and n

x Ρ∈  

is the state vector. We assume that f  is such that 

satisfies the conditions of existence of a solution 

on any interval ],[ 10 tt  and ψϕ ,  are continuous 

with respect to all variables. The integral index 

has to be considered as defined along the 

solutions of (6); by solution we understand any 

pair ( ))(),( tutx  that satisfies (6). 

 

As in the Liapunov theory we shall need in the 

following the so-called Kamke-Massera 

functions: a function ++ ΡΡ a:α  is a Kamke-

Massera function if 0)0( =α , it is continuous, 

strictly increasing for all positive arguments and 

∞=∞→ )(lim ραρ . 

 

Definition 4.1  By a solution of a system having 

the form (6)-(7), on the interval ],[ 00 Tt , 00 tT >  

we mean any set consisting of: a) a pair 

)(),( txtu of functions defined on that interval 

and satisfying (6); b) a function ),( 101 ttt ηa  

defined on the interval ],[ 00 Tt  connected with 

)(),( txtu  by (7). 

 

We are now in position to state the main 

definition 

 

Definition 4.2 (definition of hyperstability) 

System (6)-(7) is said to be hyperstable (in the 

sense of V. M. Popov) if there exist four Kamke-

Massera functions α, β, γ, δ such that the 

following two properties hold 

 

(Hs) For every interval ],[ 00 Tt , 00 tT >  and any 

solution on that interval, the fulfilment of the 

inequality 

 

0],,[,),( 000
2
00 ≥∈∀≤ ββη Ttttt  (8) 

 

implies the fulfillment of 
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(Hp) For every interval ],[ 00 Tt , 00 tT >  and 

every solution on that interval the following 

holds 
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The property seems somehow aside the 

mainstream of the stability theory but the 

connection with stability will appear later. 

Consider first the following result - a direct 

consequence of the hyperstability 

 

Proposition 4.1  If (Hs) holds then for every pair 

of constants 0
~

,0
~

21 ≥≥ ββ  satisfying 
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one has also 
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Remark that if 0
~~

21 == ββ  then (12) means 

such a boundedness of )(tx  that can give at 

once Liapunov stability (because of the 

invertibility of the Kamke-Massera functions). 

Another remark is that if (Hp) holds for 

0== δγ  we have 0),0( ≥tη . This inequality, 

called by Popov hyperstability “in the large”, is 

nothing more but passivity as it is defined in 

Circuit Theory. 

 

Sometimes it appears useful to replace 

properties (Hs) and (Hp) by a single one that may 

be viewed as a sufficient condition of 

hyperstability. 

 

Proposition 4.2 Assume the existence of Kamke-

Massera functions γβα ~,
~

,~ such that for any 

solution of system (6)-(7) the following 

inequality holds 
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Then system (6)-(7) is hyperstable in the sense 

of Definition 4.2. 

 

The proofs of Propositions 4.1 and 4.2 which 

are straightforward may be found in [1]. 

 

4.2 The “sum” of two hyperstable systems 

 
Consider two systems of the form (6)-(7) 

 

),,( tuxfx iiii =&  
(14) 
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By definition the “sum” of these two systems is 

also a system (6)-(7) obtained as follows: 

equation (6) is obtained as the Cartesian product 

of the two equations (14) and the index (7) is 

defined as the sum of the two indices 
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(16) 

),(),(),( 10210110 tttttt ηηη += . (17) 

 

To the above relations one may add, possibly, 

some restrictions of the form 

 

0),,,,( 2121 =tuuxxh  (18) 

 

where h is a continuous vector-valued function. 

It is clear that the introduction of (18) means 

that one considers a subset of the sum system 

defined above. 

 

The main property of the sum system is 

contained in the following result 

 

Proposition 4.3 The sum of two hyperstable 

systems is a hyperstable system. 

 

The proof may be found in [1] and we shall omit 

it because of its very special but enough 

straightforward character. All one has to do is to 

use the estimates (inequalities) for the two 

systems and, starting from the 8 Kamke-Massera 

functions, to associate the 4 Kamke-Massera 

functions for the sum. 

 

 

4.3 Hyperstable blocks and their connections 

 
A block is, as previously, a couple of input-

state-output relations: a state differential 

equation 

),,( tuxfx =&  (19) 

and a readout mapping 

 

),,( tuxgy =  (20) 

 

In the following we shall assume that the block 

is “square” i.e. the number of the output 

variables equals the number of the input 

variables. For any block (19)-(20) one can 

associate a Popov system described by 
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After associating the above Popov system to the 

block all the definitions and results of the 

previous sections are immediately extended to 

the blocks. For instance, we have 

 

Definition 4.3  We shall call block (19)-(20) a 

hyperstable block if the associated system (21) is 

hyperstable in the sense of Definition 4.2. 

 

Remark that a block is defined whenever the set 

of all its solutions is known, what allows a 

considerable generalization of the concept of 

block. An important system-like feature of the 

blocks is that they may be combined together in 

various ways thus obtaining from two or more 

distinct blocks new and more complicated ones. 

Some of these combinations are well known but 

they are also of particular interest since they 

have the property that if the component blocks 

are hyperstable then the resulting block is also 

hyperstable. 

 

Consider for instance two blocks iΒ , i = 1, 2 

described by relations of the form  (19)-(20) 
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 (22) 

 

and assume that all vectors ii yu ,  have the same 

number of components. 

 

One may define a new block with the input u 

and the output y by introducing, according to the 

chosen interconnection rule (Fig. 2) these new 

vector valued functions. 
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Fig. 2. Block interconnections 

 

For instance, if 

 

2121 , yyyuuu +===  (23) 

 

this corresponds to the parallel connection (Fig. 

2b) and yields the block 
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We have 
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and if the associated Popov systems of the 

blocks )(),(),( 21 pΒΒΒ  are introduced we 

have 

 

),(),(),( 10210110 tttttt ηηη +=  

It can be also seen that any solution of the 

system associated to ( pΒ ) is also a solution of 

the sum associated to ( 1Β ) and ( 2Β ). To be 

more formal, the set of solutions defined by 

uuu == 21  is a subset of the solutions of the 

Cartesian product of the systems associated to 

( iΒ ). Therefore we have 

 

Proposition 4.4  Any block resulting from the 

parallel connection of two hyperstable blocks is 

hyperstable. 

 

A similar property holds for the negative 

feedback connection (Fig. 2c). In this case we 

have 

 

11221 ,, yyyuyuu ==−= . (25) 

 

Assume also that the nonlinear equations 
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have a solution of the form 

 

),,,( 2102 tuxxgy =  

 

where g0 is piecewise continuous for all the 

values of the variables involved. We define 

further the block ( fΒ ) as follows 
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(26) 

 

Introducing again the associated systems 

)(),(),( 21 fΣΣΣ we have 

 

),(),(),( 10210110 ttttttf ηηη +=  

 

since 
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From (25) and (26) it follows once again that the 

solutions of (26) are a subset of the Cartesian 

product of ( 1Β ) and ( 2Β ). This subset is in fact 

determined by the feedback equations (25). We 

have thus proved 

 

Proposition 4.5  Any block resulting from the 

negative feedback connection of two hyperstable 

blocks is hyperstable. 

 

Remark that negative is crucial: it is not possible 

to change sign of the feedback including the 

sign in the equations of the block because this 

would imply that the block is no longer 

hyperstable (hyperstability is defined by 

input/output inequalities). 
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Remark also that the parallel and negative 

feedback connections are not the only ones with 

the property that the resulting block is 

hyperstable whenever the component blocks are 

hyperstable. This property holds whenever one 

replaces (23) or (24) by any other relation which 

leads to the sum of the integral indices. 

 
 

4.4 Inherent stability of hyperstable blocks 
 

Proposition 4.6 Assume (19)-(20) be 

hyperstable. Then the equation 

 

),0,( txfx =&  

 

obtained from (19) by letting 0≡u  has the zero 

solution 0)( ≡tx  and this solution is uniformly 

stable (in the sense of Liapunov). Moreover, all 

solutions of this equations are bounded. 
 

Indeed if 0≡u  then 0),( 10 ≡ttη  for ),( 10 ttη  

defined by (21). The block being hyperstable 

(Hs) holds for 00 =β  hence 

 

( )|))0((||)(| 1
xtx βα −≤  

 

and all the solutions are bounded. If we consider 

the solution that corresponds to 0)( 0 =tx  it 

follows from the above inequality that 0)( ≡tx  

hence the equation admits the zero solution. But 

in this case the above inequality combined with 

the properties of the functions α and β signifies 

uniform Liapunov stability with 

( ))()( 1 εαβεδ −= . 

 

Combining Proposition 4.6 with Proposition 

4.5 we see, for instance, that the block with 

negative feedback has a uniformly stable zero 

solution for the input 0≡u  if the blocks ( 1Β ) 

and ( 2Β ) are hyperstable. 

 

4.5 Some hyperstable blocks 
 

It becomes quite clear from the previous 

development that the problem is finally to 

recognize hyperstable blocks. The book of 

Popov [1] contains necessary and sufficient 

conditions for hyperstability and even a list of 

hyperstable blocks, both linear and nonlinear. 

Without giving details on theorems and proofs, 

we give below some hyperstable blocks. 

 

1. Linear time invariant blocks with lumped 

parameters described by: 
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where nx =dim , myu == dimdim  and 

matrices A, B, C, D have appropriate 

dimensions. This block is hyperstable if and 

only if its matrix transfer function 
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is real positive i.e. 0)( ≥sH  (in the sense of the 

quadratic forms) for all Χ∈s  with 0)(Re ≥s . 

 

2. Nonlinear blocks containing sector restricted 

nonlinear functions: 
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where 0>β  and 2)(0 ξϕξξϕ ≤≤ . Indeed we 

have: 
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and taking into account the sector inequalities 

we obtain 
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and we have to apply Proposition 4.2 with  
 

0)(,)()()( ≡≡≡ ργρβψρβρα . 

3. Nonlinear blocks containing monotone 

functions 0)0( =ϕ  and 0)()( 12 >− νϕνϕ  for all 

12 νν >  
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The last inequality is due to the property of 

monotonicity that )(σϕ  has. Next 

 

( ) ( ))0(
1

),0()(
1

1

1

1

1

ξρψ
ρ

ηξρψ
ρ

+≤ tt , (31) 

 

where )(σψ  is the same as previously and we 

have to apply again Proposition 4.2 with the 

same choices of the Kamke-Massera functions 

as above. 

 

4.6 Conclusions and perspectives (in 2007) 

 
As mentioned from the beginning, these lectures 

are from 1991-1992 and they display somehow 

the state of the art and the scientific/engineering 

philosophy of the time (the reader may consult 

e.g. the author's monographs of 1987 or 1993 

[2], [3]. With respect to this we are entitled to 

ask the evergreen philosophical question: “was 

bleibt?” (“what stands”, in German); this is, let 

us say, always urgent, but in Control Theory we 

have in mind a remark made by R.E. Kalman to 

A. Halanay: “Technology chose other ways than 

those prescribed by us” [4]. 

However the new dynamics models that arose 

from the technology of the last two-three 

decades e.g. hybrid systems, networked and 

embedded systems etc. still contain the 

requirement of inherent or feedback stability. 

This speaks for the fact that the “stability 

postulate” coined by one of the classics of the 

stability theory, namely N.G. Četaev [5] still 

remains. And this confers some actuality to 

these lectures. 
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