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Abstract: Starting with the basic notions about Liapunov and input/output stability there are
presented those elements that represent the minimal knowledge of Stability Theory and its
methods.A particular attention is paid to absolute stability of feedback systems and connected
Jframework (Liapunov functions, frequency domain inequalities, hyperstability and dissipativity).

Keywords: Stability, Absolute stability, Hyperstability.

4. LECTURE FOUR. HYPERSTABILITY
OF DYNAMICAL SYSTEMS

Hyperstability is a general theory issued from
absolute stability theory or, to be closer to the
basic idea [1], from the study of the stability
considered as a property not only of isolated
systems but also of families of systems.

We have already seen that absolute stability of
the trivial solution for the system

x=Ax—bp(c x) (1)

from Fig.1 is in fact global asymptotic stability
of that solution for the family of systems defined
by the family of nonlinear functions satisfying
the sector condition

@(o)
o

¢< <Q. )
It has been also seen that if the control function
u(t)=—@(c(t)) with o=c x is introduced,
then (2) can be replaced by the following
quadratic type restrictions on u and x
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(u+@c" )+ x) <0
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= W(c" x(0) =P (c"x(1))
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¥(0) = [(p©6)-g0)a6),

¥(0)= [ (go-p(6)d0.
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Fig.1 Feedback structure associated to the
problem of absolute stability

Moreover, the application of the frequency

domain method of Popov lead to the
construction of the integral index

n0.0=0,[ (1) + " x(0) (o) + " x(o) e
o (4(0) + 9" x(@) )" (Ax(2) + bu(z))d
—a, jot (u(2) + g x(0) k" (Ax(2) + bu())d 7

which, after an integration by parts, leads to the
form

1 N
U(Oat) 25(0!12—0!2¢))x cc XO
+a, JZ (u(z') + Qc*x(r)Xu(r) + @c*x(r))dz- 3)
+(ey - ay) j(: u(r)e” (Ax(z) + bu(t))dr.

This integral index was used together with the
state differential equation

X=Ax+bu(t). 4)
The first natural generalization of the above

index structure was to consider a general
quadratic form under the integral

U(O,t)zx*Jx‘; +j0’W(x(¢),u(r))dr. (5)

Along the solutions of system (1) the integral (3)
satisfies the inequality

7(0,1) < &, W(c x,) + 0, P(c'x,)

—a, V(" x(1)) — o, P (" x(0)).
Even for the case of integral blocks we still have
(u+ go)(u + o) <0
(@ + po@)6()dT =V (G(0) - (01)
- [ @@ + po@)o@dr =T (o0) - ¥(0(1)
hence

7(0,1) < 0, ¥((0)) + at, ¥(5(0))

~ o, ¥ (0 (1)~ &, ¥(o(1)).

Such inequalities are considered to define a
generalized feedback. The generalized feedback
thus introduced, as well as the way of
considering the frequency domain method of
Popov justifies the introduction of a new
mathematical object: equation (differential,
difference, integral) plus a “cummulative”
(integral, sum) index. It is for such systems
(sometimes called Popov-type systems) that the
notion of hyperstability is introduced.

4.1 Hyperstability - definition and basic
elements

Our main object will be in the following the
Popov system defined by

x= f(x,u,t) (6)

Ntgo1) = plxnt)) + [ (o )
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where ue P™ is the control vector and xe P"
is the state vector. We assume that f is such that
satisfies the conditions of existence of a solution

on any interval [¢,,f,] and @, ¥ are continuous

with respect to all variables. The integral index
has to be considered as defined along the
solutions of (6); by solution we understand any
pair (x(t),u(t)) that satisfies (6).

As in the Liapunov theory we shall need in the
following the so-called Kamke-Massera
functions: a function «: P, = P, is a Kamke-

Massera function if @(0) =0, it is continuous,
strictly increasing for all positive arguments and
limp_m a(p)=o.

Definition 4.1 By a solution of a system having
the form (6)-(7), on the interval [t,,T,], T, > 1,
we mean any Sset consisting of: a) a pair
u(t),x(t)of functions defined on that interval
and satisfying (6); b) a function t, > 1(t,,t,)
defined on the interval [t,,T,] connected with

u(t), x(r) by (7).

We are now in position to state the main
definition

Definition 4.2 (definition of hyperstability)
System (6)-(7) is said to be hyperstable (in the
sense of V. M. Popov) if there exist four Kamke-
Massera functions & B, % O such that the
following two properties hold

(Hy) For every interval [t,,T,], T, >t, and any
solution on that interval, the fulfilment of the
inequality

nt,.1)< By, Vtelty,Ty), By =0 (8)
implies the fulfillment of

a( x(t) ) < By + B x(t,) ), Vielty,. T,] (9)

(H,) For every interval [t,,T,]1, T, >t, and

every solution on that interval the following

holds
n(ty.t) = —[y( x(t,) D

—8(1x(ty) 1) sup el x(7) 1)

<r<t

(10)

Ty

The property seems somehow aside the
mainstream of the stability theory but the
connection with stability will appear later.
Consider first the following result - a direct
consequence of the hyperstability

Proposition 4.1 If (H,) holds then for every pair
of constants 31 >0, 32 2> 0 satisfying

U(IOJ)SBE +,Bz sup a(l x(7) 1) (11)

1<t

one has also
o1xO)<2B + B, + BUx)D), 1€ty T,] (12)

Remark that if [5;, = ﬁz =0 then (12) means
such a boundedness of x(#) that can give at
once Liapunov stability (because of the
invertibility of the Kamke-Massera functions).
Another remark is that if (H,) holds for
y=0=0 we have 77(0,1) > 0. This inequality,
called by Popov hyperstability “in the large”, is
nothing more but passivity as it is defined in
Circuit Theory.

Sometimes it appears useful to replace
properties (H,) and (H,) by a single one that may
be viewed as a sufficient condition of
hyperstability.

Proposition 4.2 Assume the existence of Kamke-
Massera functions «, ﬁ,?such that for any
solution of system (6)-(7) the following
inequality holds

[ x() )] <neeg.0)+ w(l x(t, |)]2
+ 7 x(t, 1) sup a(l x(7) 1)

<t<t

(13)

Then system (6)-(7) is hyperstable in the sense
of Definition 4.2.

The proofs of Propositions 4.1 and 4.2 which
are straightforward may be found in [1].

4.2 The “sum” of two hyperstable systems

Consider two systems of the form (6)-(7)

x; = fi(x;,u;,1) (14)



CONTROL ENGINEERING AND APPLIED INFORMATICS

59

7;(tg,1,) = @, (x5, (0).1)!
(15)

+Jtll//i (xi (t)’ul(t),t)dt, l :1,2

By definition the “sum” of these two systems is
also a system (6)-(7) obtained as follows:
equation (6) is obtained as the Cartesian product
of the two equations (14) and the index (7) is
defined as the sum of the two indices

X, ~ Ji(x,uy,t)
X, Jr(xy,uy,1) (16)
n(ty.t) =1,(t,1) +1,(t0,1)) . (17)

To the above relations one may add, possibly,
some restrictions of the form

h(x,,xy,uy,uy,t) =0 (18)

where A is a continuous vector-valued function.
It is clear that the introduction of (18) means
that one considers a subset of the sum system
defined above.

The main property of the sum system is
contained in the following result

Proposition 4.3 The sum of two hyperstable
systems is a hyperstable system.

The proof may be found in [1] and we shall omit
it because of its very special but enough
straightforward character. All one has to do is to
use the estimates (inequalities) for the two
systems and, starting from the 8 Kamke-Massera
functions, to associate the 4 Kamke-Massera
functions for the sum.

4.3 Hyperstable blocks and their connections

A block is, as previously, a couple of input-

state-output relations: a state differential
equation

x = f(xut) (19)
and a readout mapping

y = g(x,u,t) (20)

In the following we shall assume that the block

is “square” i.e. the number of the output
variables equals the number of the input
variables. For any block (19)-(20) one can
associate a Popov system described by

x= f(x,u,t)

Nt = [’ Oy e
- jr w0 g (x(t),u (), 1 )dr.

After associating the above Popov system to the
block all the definitions and results of the
previous sections are immediately extended to
the blocks. For instance, we have

Definition 4.3 We shall call block (19)-(20) a
hyperstable block if the associated system (21) is
hyperstable in the sense of Definition 4.2.

Remark that a block is defined whenever the set
of all its solutions is known, what allows a
considerable generalization of the concept of
block. An important system-like feature of the
blocks is that they may be combined together in
various ways thus obtaining from two or more
distinct blocks new and more complicated ones.
Some of these combinations are well known but
they are also of particular interest since they
have the property that if the component blocks
are hyperstable then the resulting block is also
hyperstable.

Consider for instance two blocks B;, i = 1, 2
described by relations of the form (19)-(20)

)‘Ci :fi(xi’ui’t)
B;): (22)
yi:gi(-xi’ui’t)’ l:1’2

and assume that all vectors u;,,y; have the same
number of components.

One may define a new block with the input u
and the output y by introducing, according to the
chosen interconnection rule (Fig. 2) these new
vector valued functions.

1231 Y1

—>» B, |——
Up Y2
——>» B, |——»

a)
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Fig. 2. Block interconnections

For instance, if

Uy =uy, =u, y=y +ty (23)

this corresponds to the parallel connection (Fig.
2b) and yields the block

xizfi(xi7ui9t)7 l=1’2
B,): (24)
y:gl(x]’ust)+g2(x27u7t)

We have

u y:ulgl(xl,ul’t)+uzg2(x2,u2’t)
=u;y +uy ¥,

and if the associated Popov systems of the
blocks (B,), (B,), (B ,) are introduced we

have

Nty ) =1,(ty,1) +1,(19,1;)
It can be also seen that any solution of the
system associated to (B o) is also a solution of

the sum associated to (B,) and (B,). To be
more formal, the set of solutions defined by
u, =u, =u is a subset of the solutions of the
Cartesian product of the systems associated to
(B,). Therefore we have

Proposition 4.4 Any block resulting from the
parallel connection of two hyperstable blocks is
hyperstable.

A similar property holds for the negative
feedback connection (Fig. 2c¢). In this case we
have

Uy =U=y,, Up=DY5 Y=~ (25)

Assume also that the nonlinear equations
Vi =81 (X, U= y5,1)
yz =g2(x2ay1at)

have a solution of the form
Yo = 8o (X, Xy, u,1)

where g, is piecewise continuous for all the
values of the variables involved. We define

further the block (B ;) as follows
X, Zfl(xl’”_go(xl’xz,u,l‘),f)
(Bf)x2 :fZ(xZ’gl(xl’u_gO(x]’XZauat)at)’t)

y=g1(x1,u—go(xl,xz,u,t),t)
(26)

Introducing again the associated

(X)), (Z,), (£ ;) we have

systems

Ny (ty.1) =1,(ty,1)) +17,(ty.1)

since

”*y = (u, + Y2)*y1 :”1*)’1 +y;”2

From (25) and (26) it follows once again that the
solutions of (26) are a subset of the Cartesian
product of (B,) and (B, ). This subset is in fact

determined by the feedback equations (25). We
have thus proved

Proposition 4.5 Any block resulting from the
negative feedback connection of two hyperstable
blocks is hyperstable.

Remark that negative is crucial: it is not possible
to change sign of the feedback including the
sign in the equations of the block because this
would imply that the block is no longer
hyperstable (hyperstability is defined by
input/output inequalities).
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Remark also that the parallel and negative
feedback connections are not the only ones with
the property that the resulting block is
hyperstable whenever the component blocks are
hyperstable. This property holds whenever one
replaces (23) or (24) by any other relation which
leads to the sum of the integral indices.

4.4 Inherent stability of hyperstable blocks
Proposition 4.6 Assume (19)-(20) be
hyperstable. Then the equation

x=f(x,0,1)

obtained from (19) by letting u =0 has the zero
solution x(t) =0 and this solution is uniformly

stable (in the sense of Liapunov). Moreover, all
solutions of this equations are bounded.

Indeed if u=0 then 7(t,,t,) =0 for 7(z,.t,)
defined by (21). The block being hyperstable
(H,) holds for B, =0 hence

| x(1) 1< &~ (B3 x(0) 1))

and all the solutions are bounded. If we consider
the solution that corresponds to x(z,)=0 it

follows from the above inequality that x(z) =0

hence the equation admits the zero solution. But
in this case the above inequality combined with
the properties of the functions & and /S signifies
uniform Liapunov stability with

5(e) = (a(e)).

Combining Proposition 4.6 with Proposition
4.5 we see, for instance, that the block with
negative feedback has a uniformly stable zero
solution for the input u =0 if the blocks (B,)

and (B, ) are hyperstable.

4.5 Some hyperstable blocks

It becomes quite clear from the previous
development that the problem is finally to
recognize hyperstable blocks. The book of
Popov [1] contains necessary and sufficient
conditions for hyperstability and even a list of
hyperstable blocks, both linear and nonlinear.
Without giving details on theorems and proofs,
we give below some hyperstable blocks.

1. Linear time invariant blocks with lumped
parameters described by:

x=Ax+ Bu(r)
(27)
y=Cx+ Du(t)
where dimx=n, dimu=dimy=m and
matrices A, B, C, D have appropriate

dimensions. This block is hyperstable if and
only if its matrix transfer function

H(s)=D+C(sI-A)"'B (28)

is real positive i.e. H(s)=0 (in the sense of the
quadratic forms) for all se X with Re (s)>0.

2. Nonlinear blocks containing sector restricted
nonlinear functions:

ﬂ%§+ [f—éﬂf)J =u®), o=¢(&) (29)
t 7

where >0 and 0<@(E)E<PE? . Indeed we
have:

7(0,1) = Ltd(r)u(r)df

= ¢(§(r>)Kf(r> . ¢<§(r>)) gL (r)}dr
0 7 dt

and taking into account the sector inequalities
we obtain

E(t
n0.02 B[, p6)d6

which reads as

By (&) <n(0,1) + By (£(0)),
. (30)
v(0)= | p(6)as

and we have to apply Proposition 4.2 with

a(p)=p(p)=py(p), r(p)=0.
3. Nonlinear blocks containing monotone
functions @(0)=0 and @(,)—@(v,)>0 for all

v, >V,

d—§=_p2§+u(t)a o‘:q)(plf+u(t))
dt (31)

p; >0, i=12
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Indeed
n0.0=[o@u@dr=[ plp,£@) +u@ u(0)dz

= [u)(plp,é@) +u®) - plp @)z +
+ [u@plp &t
= [u@lplp &)+ u@) - plo &)+

N (%fu)wzf(njgo(p@m)m

r d
> fo¢(p1§(f))7f(f)df

The last inequality is due to the property of
monotonicity that ¢(o) has. Next

1 1
p—l/f(plf(t))SU(O,t)+p—w(p1§(0>), (31)

1 1

where (o) is the same as previously and we

have to apply again Proposition 4.2 with the
same choices of the Kamke-Massera functions
as above.

4.6 Conclusions and perspectives (in 2007)

As mentioned from the beginning, these lectures
are from 1991-1992 and they display somehow
the state of the art and the scientific/engineering
philosophy of the time (the reader may consult
e.g. the author's monographs of 1987 or 1993
[2], [3]. With respect to this we are entitled to
ask the evergreen philosophical question: “was
bleibt?” (“what stands”, in German); this is, let
us say, always urgent, but in Control Theory we
have in mind a remark made by R.E. Kalman to
A. Halanay: “Technology chose other ways than
those prescribed by us” [4].

However the new dynamics models that arose
from the technology of the last two-three
decades e.g. hybrid systems, networked and
embedded systems etc. still contain the
requirement of inherent or feedback stability.
This speaks for the fact that the “stability
postulate” coined by one of the classics of the
stability theory, namely N.G. Cetaev [5] still
remains. And this confers some actuality to
these lectures.
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