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Abstract: In this research, a class of output feedback linearizable MIMO nonlinear systems is
considered to be affected by both matched and unmatched uncertainties. The design of output
feedback control law relies on an integral manifold, which permits subdivision of the control
design architecture into two steps. In the first step, pole placement based continuous control
component is designed, which regulates the system output when sliding mode is established. In
the next step, a discontinuous control component is designed to cope with the uncertainties. In
the proposed approach, the control input is applied to the actual system after passing through a
chain of integrators. Consequently, the well-known chattering phenomenon, being caused by high
frequency oscillations against the sliding manifold, is reduced and thus a continuous control input
is fed into the system. This is a clear benefit in many applications, such as those of mechanical
nature where a discontinuous control action could be inappropriate. The proposed control law
is theoretically analysed and its performance in term of output regulation to zero is witnessed
by the simulation results of two illustrative examples.
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1. INTRODUCTION

Sliding Mode Control (SMC) is a robust control technique
capable of stabilizing nonlinear systems operating under
matched uncertainties (Utkin (1992); Edwards and Spur-
geon (1998)). However, there are many systems affected by
uncertainties which do not satisfy the matching condition.
These uncertainties are often called unmatched uncer-
tainties. Different sliding mode approaches were proposed
(Scarrat et al. (2000); Swaroop et al. (2000); Ferrara and
Giacomini (2001); Capisani et al. (2010); Estrada and
Fridman (2010); Guermouche et al. (2014))to cope with
unmatched uncertainties. The main purpose of the above
cited papers was to relax the matching conditions.

A wide class of dynamic system do not remain robust
against uncertainties even of matched nature in the so-
called reaching phase. Therefore, efforts were directed to
eliminate the reaching phase so as to provide robustness
against the uncertainties. In other words, sliding mode
was established from the very start in the presence of
the matched uncertainties Utkin et al. (1999) which is
called Integral Sliding Mode Control (ISMC). ISMC has
attracted many researchers to deal with the unmatched
uncertain system (see for instance, Cao and Xin (2004);
Castanos and Fridman (2006); Rubagotti et al. (2011);
Bejarano et al. (2007, 2009); Basin et al. (2007); Basin and
Ramirez (2013)). In these research works, it is assumed
that all the states of the system are available since they
are explicitly used to construct the control law.

In real applications, often we deal with systems where it
is only the output that can be measured and its derivative
can be estimated accurately. In such cases, output feed-
back SMC becomes a good candidate for the control of the
systems. The control of systems with measurable output
using SMC approach are studied in Edwards and Spurgeon
(1998), Zak and Hui (1993) and Yallapragada et al. (1996).
However, these researchers dealt with matched uncertain-
ties and disturbances. An output feedback controller with
a static output dependent integral manifold was designed
for system operating under both matched and unmatched
uncertainties in Choi (2002) using a Linear Matrix In-
equalities (LMI) approach. This procedure was extended in
Park et al. (2007) using dynamic output feedback variable
structure control. Xiang et al. proposed an iterative LMI
based approach Xiang et al. (2006) to solve the high gain
problem associated with Choi (2002); Park et al. (2007). In
this context, an LMI based output feedback SMC approach
was proposed in Da Silva et al. (2009) to remove the
limitations of the previously LMI based SMC approaches.
Higher order SMC Bartolini et al. (1997, 1998); Levant
(2003); Boiko et al. (2004); Levant (2005); Dinuzzo and
Ferrara (2009) in combination with an integral manifold
was studied in Levant and Alelishvili (2007) to improve
the robustness and to alleviate chattering caused by high
frequency oscillations. Dynamic output feedback ISMC
was proposed in Chang (2009) for linear systems with both
matched and unmatched uncertainties.

In contrast with most of the above cited research which
either deal with matched uncertainties or consider linear
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systems, the present work deals with unmatched uncer-
tainties in nonlinear MIMO systems. The goal of this paper
is to extend the work presented in Khan et al. (2011a);
Khan (2011b) to a MIMO nonlinear system operating
under a class of matched and unmatched uncertainties.
The sliding mode control, in the presence of uncertainties,
is enforced along an integral manifold from the very begin-
ning with enhanced robustness and the system outputs are
asymptotically regulated to their respective equilibrium
points.

In this work, we argue that the contribution is nontrivial
in two major aspects. First, the system is considered
under the effect of a class of matched and unmatched
uncertainties which is different from Khan et al. (2011a);
Khan (2011b) where either the system considered was
SISO in nature operated under states dependent matched
and unmatched uncertainties or the system was MIMO
subjected to only matched uncertainties. Second, sliding
mode is enforced, in finite time, along an integral manifold
and a comprehensive stability analysis is presented in the
presence of matched and unmatched uncertainties.

The rest of the paper is organized as follows: In Section
2, the problem formulation is presented while Section 3
outlines the design of the proposed control law. Section 4
discusses the stability analysis in the presence of matched
and unmatched uncertainties. A couple of illustrative
examples, one related to SISO and MIMO cases, affected
by matched and unmatched uncertainties are reported in
Section 5. Finally, Section 6 comments on conclusion and
elaborates significance of this research.

2. PROBLEM FORMULATION

Consider a nonlinear MIMO system represented by the
state space equation analogous to that considered in Cao
and Xin (2004)

ẋ = f(x) + g(x)[(I + δm)u+∆gm(x, t)] + fu(x, t) (1)

y = h(x) (2)

where x ∈ Rn is a measurable states vector, u ∈ Rq

is controlled inputs vector, f : Rn → Rn, h : Rn →
Rq are sufficiently smooth vector fields, g(x) ∈ Rn×q

is a full ranked state dependent matrix, δm, ∆gm(x, t)
represent matched uncertainties such that δm is a q × q
diagonal matrix and ∆gm(x, t) is a q × 1 column vector
and fu(x, t) = [fu1(x, t), fu2(x, t), ..., fun(x, t)] points to
unmatched uncertainties. The close loop system ẋ =
f∗(x, t) is Lipschitz in x which ensures the existence
and uniqueness of the solution Capisani et al. (2010). In
the present form, assume that the time is not appearing
explicitly but it is just to show that the states are function
of time. The following assumption is introduced:

Assumption 1. The uncertainties are assumed to be con-
tinuous, norm bounded with corresponding norm bounded
derivatives for all (x, t) ∈ Rn×R+ i.e, |∆gmi(x, t)| ≤ ρmi ,
|δmi | ≤ (1 − ϵmi) and |fui(x, t)| ≤ ρui , where ρmi , ϵmi

and ρui are some positive constants. In addition, each
0 ≤ δmi < 1.

The problem we want to solve (Problem-1) is that of
steering the vector of outputs to zero asymptotically i.e.,

an output regulation problem is considered here in the
presence of a class of states dependent matched and
unmatched uncertainties.

In order to design the control law, system 1 needs to be
suitably transformed. Therefore, we consider an example
of SISO system related to system 1 with a defined relative
degree r = 2, and system order n = 3. Let

ẏ = ∇h[f + gu+ δmgu+∆gmg + fu]

ẏ = Lfh+ uLgh+ δmuLgh+∆gmLgh+ Lfuh

Assuming Lgh = 0, one has

ẏ = Lfh+ Lfuh

ÿ = ∇(Lfh)[f + gu+ δmgu+∆gmg + fu]

+∇(Lfuh)[f + gu+ δmgu+∆gmg + fu]

ÿ = L2
fh+ uLgLfh+ δmuLgLfh+∆gmLgLfh+ LfuLfh

+LfLfuh+ uLgLfuh+ δmuLgLfuh+∆gmLgLfuh+ L2
fuh

Now, once again it is needed that the unmatched uncer-
tainty must appear in such a way that the definition of
defined relative degree should not be disturbed. Therefore,
by assuming LgLfuh = 0 and LgLfh ̸= 0, the above
expression reduces to

ÿ = L2
fh+ uLgLfh+ δmuLgLfh+∆gmLgLfh

+LfuLfh+ LfLfuh+ L2
fuh

Furthermore, assuming that LfuLgLfh = 0, LgLfuLfh =
0, LgL

2
fu
h = 0, and LgLfLfuh = 0 we have

y3 = L3
fh+ [u(1 + δm) + ∆gm ]LgL

2
fh+ LfuL

2
fh

+u̇(1 + δm)LgLfh+ (u(1 + δm) + ∆gm)[LfLgLfh

+[u(1 + δm) + ∆gm ]L2
gLfh] + LfLfuLfh

+L2
fuLfh+ L2

fLfuh+ LfuLfLfuh+ LfL
2
fuh+ L3

fuh

Now, the system with r = 2 and n = 3 can be put in the
following form by first defining y(i−1) = ξi while keeping
in view for a moment, that the system is independent of
uncertainties

ξ̇1 = ξ2 + Lfuh

ξ̇2 = ξ3 + (u(1 + δm) + ∆gm)LgLfh+ LfuLfh

+LfLfuh+ L2
fuh

ξ̇3 = Λ(ξ1, ξ2, ξ3, u) + u̇(1 + δn)LgLfh+ Λ∗(•, u)

where Λ∗(•, u) is an uncertainty composed of the matched
and unmatched terms. It must be noted that the un-
matched terms are independent of the control input as
given by Assumption-1.

In the similar fashion, we assume that (1) has defined vec-
tor relative degree β1, β2, · · · , βq. So (1) can be transformed
into the following alternate form:

ξ̇i1 = ξi2 + ζi1(ξ̂, t)

ξ̇i2 = ξi3 + ζi2(ξ̂, t)

... (3)

ξ̇ini = φi(ξ̂, û) + γi(ξ̂)[(1 + δmi)ui
(βi) +∆Gmi(ξ̂, û, t)]
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+Fui(ξ̂, t)

where

ξ̂ = [ξ̂1, ξ̂2, ..., ξ̂n], ξ̂i = [ξ̇i, ..., ξ
(ni−1)
i ] = [ξi1, ξi2, ..., ξin],

û = [û1, û2, ..., ûq], ûi = (u̇i, ..., u
(βi−1)
i ), for i = 1, 2, ..., q.

The subscript ni represents the derivative of each output

such that
∑q

i ni = n. The term φi(ξ̂, û) represents the

nominal part of the system where as ζij(ξ̂, t) and Fui(ξ̂, t)
refer to the unmatched uncertainties. The representation
in (3) is analogous to the so-called Local Generalized Con-
trollable Canonical (LGCC) form Fliess (1990) in the sense
that it differs from the basic LGCC form since it is affected
by matched and unmatched uncertainties. With reference
to system (3), the forthcoming assumption (which is an
alternative form of Assumption 1) is introduced:

Assumption 2. There exists βi−1 times continuous
derivative of û . So û can be taken as bounded term
by some constants. Therefore, it can be assumed that

|φi(ξ̂, û)| ≤ Ci, |γi(ξ̂)| ≤ KMi
, |∆Gmi

(ξ̂, û, t)| ≤ Bi,

|Fui(ξ̂, t)| ≤ λi, |ζij(ξ̂, t)| ≤ µi for j = 1, 2, ..., ni−1, where
Ci, KMi , Bi, λi and µi are positive constants. Further-

more, it is assumed that
∑(ni−1)

j=1 ζij(ξ̂, t) + Fui(ξ̂, t) ≡
Θi(ξ̂, t) and is bounded by the positive constants τi i.e.,

|Θi(ξ̂, t)| ≤ τi.

The following nominal system corresponding to (3) can be

obtained when ζij(ξ̂, t) = 0 and Θi(ξ̂, t) = 0.

ξ̇i1 = ξi2

ξ̇i2 = ξi3

... (4)

ξ̇ini = φi(ξ̂, û) + γi(ξ̂)ui
(βi) = Ψi

(
ξ̂, û, u(βi)

)
Definition 1. The aforementioned system is termed as
proper Lu and Spurgeon (1999), if

• The number of inputs equal number of outputs

• Ψi

(
ξ̂, û, u(βi)

)
∈ C1

• The regularity condition
(

∂Ψi

∂ui
(βi)

)
̸= 0, holds in the

neighbourhood of the equilibrium points.

Definition 2. The zero dynamics of the system in (4) are
defined in (5) Lu and Spurgeon (1999)

Ψi

(
0, û, u

(βi)
i

)
= 0; 1 ≤ k ≤ q (5)

The system in (4) is called strongly minimum phase if the
zero dynamics are asymptotically stable.

Assumption 3. The nominal system (4) is proper and
minimum phase as per mentioned definitions.

Now, Problem-1 can be reformulated with reference to
system (3) under Assumption 2, and to the nominal system
in (4). Therefore, the new control problem (Problem-2)

is to regulate the vector of outputs [ξ̂1, ξ̂2, ..., ξ̂n] to zero

asymptotically in the presence of matched and unmatched
uncertainties. In other words, a regulation problem is
considered here. The solution to Problem-2 is a clear
solution to Problem-1.

Note that the architecture of problem formulation pre-
sented in this section can be easily understood via the
illustrative examples in Section 5.

3. CONTROL LAW DESIGN

The control law design proposed in this research is anal-
ogous to the control law designed in Khan (2011b), the
only difference is that the system under study in the
present article is considered to operate under a class of
matched and unmatched uncertainties. In addition, the
sliding mode is established asymptotically using strong
reachability condition Lu and Spurgeon (1999). However,
the control law proposed here establishes sliding mode,
in finite time, along the respective integral manifolds in
the presence of uncertainties. The control law, dynamic in
nature, is composed of the following two components

u
(βi)
i = u

(βi)
0i + u

(βi)
1i (6)

The first component
(
u
(βi)
0i

)
refers to continuous control

and is designed by pole placement. On the other hand, the

second component
(
u
(βi)
1i

)
is designed via sliding mode

approach with an integral manifold. In the forthcoming
subsection, the design of both the control components is
presented.

3.1 Design of u
(βi)
0i

The nominal system (4) can be written in alternate form
as (7)

ξ̇i1 = ξi2

ξ̇i2 = ξi3
... (7)

ξ̇ini = χi(ξ̂, û, ui
(βi)) + ui

(βi)

where χi(ξ̂, û, ui
(βi)) = φi(ξ̂, û) + (γi(ξ̂) − 1)ui

(βi). To

peruse for the design of u
(βi)
0i , consider that the system

(7) is independent of nonlinearities i.e., χi(ξ̂, û, ui
(βi)) = 0

and the system is supposed to be under the action of the

u
(βi)
0i only. Consequently, (7) becomes

˙̂
ξi = Aiξ̂i +Biu0i

(βi)
(8)

where

Ai =


0 1 . . . 0
0 0 1 . . . 0
... . . .

... 1
0 0 . . . 0

 and Bi =


0
0
...
1


This system is governed by the linear control law u

(βi)
0i

which may be designed by simple pole placement with the
following expression.

u
(βi)
0i = −KT

i ξ̂i (9)
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3.2 Design of u
(βi)
1i

Now in order to achieve the desired performance, robust
compensation of the uncertainties is needed. To this end
we select the following sliding manifold of integral type
Utkin et al. (1999)

σi =

ni∑
l=1

rilξil + zi (10)

The first term on the right hand side of (10) represent
the conventional sliding surface with ril as the design
parameters and the second term zi indicates the integral
term. These parameters are chosen in such a way that
σi remains minimum phase. The time derivatives of (10)
along (3) yields

σ̇i =

ni−1∑
l=1

rilξil+1 + φi(ξ̂, û) + γi(ξ̂)
(
(1 + δmi)u

(βi)
i

+∆Gmi(ξ̂, û, t)
)
+Θi(ξ̂, t) + żi (11)

Now, choosing żi as (12)

żi = −

(
ni−1∑
l=1

rilξil+1 + u
(βi)
0i

)
, (12)

z(0) = −σ0(ξ(0))

Then, (11) becomes

σ̇i = φi(ξ̂, û) + (γi(ξ̂)− 1)u
(βi)
0i + γi(ξ̂)u

(βi)
1i

+γi(ξ̂)
(
(1 + δmi)u

(βi)
i +∆Gmi(ξ̂, û, t)

)
+Θi(ξ̂, t) (13)

The initial conditions of the integral term dynamics are
adjusted in such a way to meet the requirement σi(0) ≡ 0.
For the sake of simplicity, it is assumed that there is no
uncertainties and disturbances. The expression in (13) thus
reduces to

σ̇i = φi(ξ̂, û) + (γi(ξ̂)− 1)u
(βi)
0i + γi(ξ̂)u

(βi)
1i (14)

Taking into account the famous reachability condition
Utkin (1992)

σ̇i = −Kisign(σi) (15)

Comparing (14) with (15), the expression of the discontin-

uous control component u
(βi)
1i becomes

u
(βi)
1i = − 1

γi(ξ̂)

(
φi(ξ̂, û) + (γi(ξ̂)− 1)u

(βi)
0i

+Kisign(σi)
)

(16)

This control law enforces sliding mode along the sliding
manifold defined in (10). The constants Ki can be selected
according to the subsequent stability analysis. Thus, the
final control law becomes

u
(βi)
i = −KT

i ξ̂i −
1

γi(ξ̂)

(
φi(ξ̂, û)

+(γi(ξ̂)− 1)u
(βi)
0i +Kisign(σi)

)
(17)

Note that this control law can be implemented by integrat-

ing the derivative of the control
(
u
(βi)
i

)
βi times (which

is referred in the following system (18) so that the actual
control input applied to the system is continuous. This can
be a benefit for various class of systems such as those of
mechanical type, for which a discontinuous control action
could be disruptive.

The components of the control input u for system in
(1) can be obtained by solving the following differential
equation

u̇i1 = ui2

u̇i2 = ui3

... (18)

u̇iβi = Ψ
′

i

(
ξ̂, û
)
, 1 ≤ i ≤ q

The function Ψ
′

i(ξ̂, û) is discontinuous in nature and refers
to the final expression of the dynamic controller (17) for
system referred in (3).

4. STABILITY ANALYSIS

The proposed control law when applied to the uncertain
nonlinear system in question has been theoretically ana-
lyzed. The first case considers only matched uncertainties
while the more general case of matched and unmatched
uncertainties follows afterwards.

4.1 The System Operating Under Matched Uncertainties

For this case of matched uncertainties, system (3) becomes

ξ̇i1 = ξi2

ξ̇i2 = ξi3
... (19)

ξ̇ini = φi(ξ̂, û) + γi(ξ̂)
(
(1 + δmi)ui

(βi) +∆Gmi(ξ̂, û, t)
)

To show that this system is stabilized, in finite time, in the
presence of matched uncertainties, the following theorem
can be stated.

Theorem 1. Consider that Assumptions 2 and 3 are satis-

fied. The sliding surface is chosen as σi(ξ̂) = 0, where σi is
defined in (10), and the control law is selected according
to (17). If the gain is chosen according (20), then the

finite time enforcement of a sliding mode on σi(ξ̂) = 0
is guaranteed in the presence of matched uncertainties.

Ki ≥
( 1

(2− ϵmi)

)(
(1− ϵmi)|u

(βi)
0i |

+(1− ϵmi)Ci +KMiBi + η1i

)
(20)

where η1i are positive constants.

Proof. To prove that the sliding mode can be enforced in
finite time, differentiating (10) along the dynamics of (19),
and then substituting (12) and (17), (21) is obtained.

σ̇i = −Kisign(σi) + δmi

(
(u

(βi)
0i − φi(ξ̂, û)−Kisign(σi))

)
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+γi(ξ̂)∆Gmi(ξ̂, û, t) (21)

Considering a Lyapunov candidate function vi = (1/2)(σi)
2,

the time derivative of this function along (21) becomes

v̇i ≤ |σi|
(
− (1 + |δmi

|)Ki + |δmi
||u(βi)

0i |+ |φi(ξ̂, û)|

+|γi(ξ̂)∆Gmi(ξ̂, û, t)|
)

(22)

In view of Assumption 2, the above expression in (22) can
be rewritten as

v̇i ≤ |σi|
(
−Ki(2− ϵmi) + (1− ϵmi)|u

(βi)
0i |

+(1− ϵmi)Ci +KMiBi

)
or

v̇i ≤ −η1i|σi| (23)

Provided that

Ki ≥
( 1

(2− ϵmi)

)(
(1− ϵmi)|u

(βi)
0i |

+(1− ϵmi)Ci +KMiBi + η1i

)
(24)

as in (20). Note that (23) can also be written as

v̇i +
√
2η1i

√
vi < 0 (25)

This implies that σi(ξ̂) = 0 is reached in finite time tsi
(see Edwards and Spurgeon (1998)), such that

tsi ≤
√
2η−1

1i

√
vi(σi(0)) (26)

which completes the proof

Corollary 2. The dynamics of the system (19) in the
absence of unmatched uncertainties, with control law (17)
and integral manifold (10), in sliding mode is governed by
the linear control law (9).

Proof. Considering (13) with only matched uncertainties,
we can write
σ̇i = φi(ξ̂, û) + (γi(ξ̂)− 1)u

(βi)
0i + γi(ξ̂)u

(βi)
1i

+γi(ξ̂)
(
(1 + δmi)u

(βi)
i +∆Gmi(ξ̂, û, t)

)
(27)

or

σ̇i = φi(ξ̂, û) + γi(ξ̂)(1 + δmi)ui
(βi) − u0i

(βi)

+γi(ξ̂)∆Gmi(ξ̂, û, t) (28)

Now, posing σ̇i = 0, and solving with respect to the control

variable u
(βi)
i , the so-called equivalent control Edwards

and Spurgeon (1998) can be given by (29)

u(βi)
eq =

( 1

γi(ξ̂)(1 + δmi)

)(
− φi(ξ̂, û) + u

(βi)
0i

+γi(ξ̂)∆Gmi(ξ̂, û, t)
)

(29)

Now, using (29) in (19), one has

˙̂
ξi,s = Aiξ̂i,s +Biu0i

(βi)
(30)

where Ai and Bi have the form discussed in Section 3
and ξ̂i,s is the state vector of the system (19). Thus, it is

proved that the system in sliding mode operates under
the continuous control law and the eigenvalues of the
controlled transformed system in sliding mode are those
of Ai −BiK

T
i .

4.2 The System Operating Under Both Matched and
Unmatched Uncertainties

Now, the control objective is to regulate the output of
the system in the presence of both of these uncertainties.
To prove that the proposed control law is capable of
compensating for these uncertain terms, the following
theorem can be stated.

Theorem 3. Consider that Assumptions 2 and 3 are satis-

fied. The sliding surface is chosen as σi(ξ̂) = 0, where σi

is defined in (10) and the control law is selected according
to (17). If the gain is chosen according to the condition
specified in (31), then the finite time enforcement of a

sliding mode on σi(ξ̂) = 0 is guaranteed in the presence of
both matched and unmatched uncertainties.

Ki ≥
( 1

(2− ϵmi)

)(
(1− ϵmi)|u

(βi)
0i |

+(1− ϵmi)Ci +KMiBi + η2i + τi

)
(31)

where η2i are positive constants.

Proof. To prove that the sliding mode can be enforced in
finite time, the time derivative of the Lyapunov candidate
function vi = (1/2)(σi)

2, along (13) becomes as

vi ≤ |σi|
(
− (1 + |δmi|)Ki + |δmi ||u

(βi)
0i |+ |φi(ξ̂, û)|

+|γi(ξ̂)∆Gmi(ξ̂, û, t)|+ |Θi(ξ̂, t)|
)

(32)

In view of Assumption 2, the above expression can be
rewritten as

v̇i ≤ |σi|
(
−Ki(2− ϵmi) + (1− ϵmi)|u

(βi)
0i |+ (1− ϵmi)Ci

+KMiBi + τi

)
or

v̇i ≤ −η2i|σi| (33)

Provided that

Ki ≥
( 1

(2− ϵmi)

)(
(1− ϵmi)|u

(βi)
0i |+ (1− ϵmi)Ci +KMiBi

+η2i + τi

)
(34)

The expression in (34) can be placed in the same format
like that of (25). Note that the finite time tsi in the
present case is given by (26) with η2i instead of η1i. Thus
it is confirmed that, when the gain of the discontinuous
component of the control law (17) is selected according
to (31), the finite time enforcement of the sliding mode
is guaranteed in the presence of matched and unmatched
uncertainties, which proves the theorem.

Corollary 4. The dynamics of the system (3), with control

law (17) and integral sliding manifold σi = 0, with σi(ξ̂)
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Fig. 1. Solid line: Output regulation, control effort, slid-
ing variable convergence and [ξ1, ξ2, ξ3]

T regulation in
the presence of matched uncertainty via the proposed
control law, Doted line: Output regulation, control
effort, sliding variable convergence adopted from Lu
and Spurgeon (1998).

defined in (10), in sliding mode is governed by the linear
control law (9).

Proof. The proof can be performed in a similar fashion as
Corollary 1 proof. The only difference is that in this case
the equivalent control carry the form:

u(βi)
eq =

( 1

γi(ξ̂)(1 + δmi)

)(
− φi(ξ̂, û) + u

(βi)
0i

+γi(ξ̂)∆Gim(x, t) + Θi(ξ̂, t)
)

(35)

5. APPLICATIONS

To verify the aforementioned claims and to validate the
proposed control approach, two illustrative examples have
been considered. In the first case, a SISO uncertain nonlin-
ear system is studied while in the next case an application
example of a three link robotic manipulator(MIMO) sys-
tem is considered.

5.1 Academic Example

Consider the following SISO nonlinear system, whose
nominal case is similar to that of Lu and Spurgeon (1998),
operating under matched and unmatched uncertainties

ẋ1 = x2 + f1(x, t)

ẋ2 = x2
1 + (x2

2 + 1)((1 + δm)u+∆gm(x, t))

+x3 + f2(x, t) (36)

ẋ3 = −x3 + x2x
2
3 + f3(x, t)

The terms δm and ∆gm are matched uncertainties and
fi(x, t), for i = 1, 2, 3 are components of the unmatched
uncertainty which satisfy Assumptions 1 and 2 and con-
tribute to the system uncertainty with the following math-
ematical expressions.

f1(x, t) = −x3 + x2x
2
3 + (−x3 + x2x

2
3)

2
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Fig. 2. Output regulation, control effort, sliding variable
convergence and [ξ1, ξ2]

T regulation in the presence
of matched uncertainty via 2-QCSMC.

+0.25sin(t)cos(3x2) + 0.26

f2(x, t) = 0.25sin(t)cos(3x2) + 0.1

f3(x, t) = −x3 + x2x
2
3 + 3(−x3 + x2x

2
3)

2

+0.25sin(t)cos(3x2) + 0.1

∆gm(x, t) = 3(−x3 + x2x
2
3)

δm = 0.3cos(πtx2)

Furthermore, [x1, x2, x3] is the state vector and y = x1 is
the measurable output of the plant. The LGCCF of this
system (for the nominal case) can be obtained by three
time differentiation of the output along the dynamics of
(36) for this nonlinear plant. The third derivative of the
output takes the form of (37)

y(3) = 2x1x2 + u̇(x2
2 + 1) + 2x2u(x

2
1 + (x2

2 + 1)u+ x3)

−x3 + x2x
2
3 (37)

The Definition 1 is satisfied and the zero dynamic men-
tioned in Definition 2, for the aforementioned system be-
comes Lu and Spurgeon (1998)

u̇+ 2u = 0

These exponentially stable dynamics shows that the sys-
tem is minimum phase. The system in (37) can be written
in the following LGCCF form

ξ̇i = ξi+1, i = 1, 2

ξ̇3 = φ(ξ̂, û) + γ(ξ̂)u̇

where y = ξ1, γ(ξ̂) = (x2
2 + 1) and

φ(ξ̂, û) = 2x1x2 + 2x2u(x
2
1 + (x2

2 + 1)u+ x3)− x3 + x2x
2
3

The transformation being used here are ξ̂ = [ξ1, ξ2, ξ3]
T
=

[y, ẏ, ÿ]
T
.

The sliding surface can be defined by

σ = c1ξ1 + c2ξ2 + ξ3 + z
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The compensator dynamics are given by the following
expression

ż = −u̇0 +
(
−c1x2 − c2

(
x2
1 + x2

2u+ x3

))
; (38)

The expression of the dynamic integral controller can then
be written as

u̇ = −k1ξ1 − k2ξ2 − k3ξ3 −
1

γ(ξ̂)

(
φ(ξ̂, û) + (γ(ξ̂)− 1)u

(k)
0

+K1(σ +Wsign(σ))
)

Note that the uncertain terms are omitted for the sake of
simplicity here.

In this study, we compare the results of the proposed
control law with that of quasi continuous high order sliding
mode controller proposed by Levant in Levant (2005)
and with the Dynamic Sliding Mode Controller (DSMC)
proposed by Lu et al. in Lu and Spurgeon (1998). To apply
the approach of Levant, we denote as

s = x1

ṡ = x2

so that the expression of the Quasi Continuous Sliding
Mode Controller in case of relative degree (2-QCSMC)
takes the following form

u = −

(
αṡ+ |s|1/2sign(s)

|ṡ|+ |s|1/2

)
(39)

where α is the controller gain which can be selected
according to Bartolini et al. (2003). As proved in Levant
(2005), the control law (39) provides a finite time sliding
mode of the system with a control law which is continuous
everywhere except on the second order sliding manifold
s = ṡ = 0.

System Operated with Matched Uncertainty In this
study, the system with matched uncertainties (i.e., with
fi(x, t) = 0 for i = 1, 2, 3) is simulated to confirm the afore-
mentioned claim of the compensation of uncertain terms.
This test with matched uncertainty is also performed
with 2-QCSMC while the standard results of DSMC are
adopted from Lu and Spurgeon (1998). In Figure 1, the
standard results of DSMC reported in Lu and Spurgeon
(1998) are compared with the proposed control law (with
K1 = 230). It can be seen that the output of the system via
the proposed controller is regulated to zero in small time as
compared to the regulation via DSMC. On the other hand,
the sliding manifold convergence for DSMC is oscillatory
while the sliding manifold convergence in our case is sharp
and indicates no oscillation. Therefore, it justified that the
proposed controller is performing better than the reported
DSMC. Note that the results of DSMC Lu and Spurgeon
(1998) were only for a nominal case with no uncertainties
appearing in the system. The state vector [ξ1, ξ2, ξ3]

T is
regulated in the presence of uncertainties.

In comparison with the results of the 2-QCSMC (with gain
α = 4) as depicted in Figure 2, it is noticeable that the
proposed methodology provides a satisfactory regulation
of the system output via a continuous control law. The
2-QCSMC also provides excellent performance yet with a
control law which becomes discontinuous when the output

Fig. 3. Output regulation, control efforts, sliding variable
convergence and [ξ1, ξ2, ξ3]

T regulation in the pres-
ence of matched and unmatched uncertainty via the
proposed control law.

Table 1. Gains of the controllers in example 1

Constants k1 k2 k3 c1 c2
2-QCSMC − − − − −

Proposed C. law r = 2 490.2 180.7 5.9 6 5

regulation objective is attained. Apart from that, both
the controllers need to use a differentiator (Castanos and
Fridman (2006) and Lu and Spurgeon (1998)) to construct
the derivatives of the output variable necessary in the
control laws.

The System Operated under Matched and Unmatched Un-
certainties In this section, the test with both matched
and unmatched uncertainty is performed. In view of the
nature of the uncertainty here, we cannot compare our
results with those of the 2-QCSMC algorithm and DSMC,
since these algorithm were designed under the assumption
of having only matched uncertainty Levant (2005) and Lu
and Spurgeon (1998), respectively. The Output regulation,
control efforts, sliding variable convergence and [ξ1, ξ2, ξ3]

T

regulation in the presence of matched and unmatched
uncertainty via the proposed control law is shown in Figure
3. It is clear from the results that the proposed control law
is capable to regulate the system output to zero even in
the presence of reported uncertainties. Note that, the gains
of the proposed controller in this example are reported in
Table-1.

5.2 Application to Serial Robotic Manipulator (MIMO
System)

Consider the dynamic model of an n link robotic manipu-
lator

u = B(q)q̈ + C(q, q̇)q̇ + g(q) (40)

where q ∈ Rn is the measurable position vector such that
qT = [q1, q2, · · · , qn], u ∈ Rn are the controlled torques,
B(q) is the inertia matrix, C(q, q̇)q̇ represents the Coriolis
and centrifugal forces and g(q) is the gravitational torques
vector. The control objective, in this example, is tracking
a predefined trajectory by the joints positions. To design
a control law, the above system can be transformed to the
following alternate form which is the LGCC form

ξ̇i1 = ξi2 i = 1, 2, 3 j = 1, 2

ξ̇i2 = fi(ξij , ū) + γ̄iui (41)
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where ξij points to different joint positions and velocities,
ū represents the components of the control input other
than ui. The states ξi1 refers to the joint i position
angle while ξi2 refers to the velocity. When i = 1, this
means that the dynamics of the link-1 are considered
and so on. The nonlinear components forces fi((ξij , ū))
are obtained by [f1, f2, f3]

T = B−1(q)[−C(q, q̇)q̇ − g(q)]
and are assumed to be known based on the following
mathematical expressions.

f1 =
1

b11

(
(L1ξ12 + L2ξ22 + L3ξ32 + L4 − L5u2 + L6u3)

)
f2 =

1

b22

(
(P1ξ12 + P2ξ22 + P3ξ32 + P5 − P4u3)

)
f3 = − 1

b33

(
C31ξ12 + C32ξ22 + (C33 + γ11)ξ32 + g3

)
γ̄1 =

1

b11
γ̄2 =

1

b22
γ̄3 =

1

b33

where

b11 = γ3 + 2γ5l1cos(ξ21) + 2γ6l2cos(ξ31)

+2γ6l1cos(ξ31 + ξ31)

b12 = γ2 + γ5l1cos(ξ21) + 2γ6l2cos(ξ31)

+γ6l1cos(ξ31 + ξ21)

b13 = γ1 + γ6l2cos(ξ31) + γ6l1cos(ξ31 + ξ21)

b22 = γ2 + 2γ6l2cos(ξ31)

b23 = γ1 + γ6l2cos(ξ31)

b31 = 0 b32 = 0 b33 = γ1

c11 = −ξ22γ5l1sin(ξ21)− (ξ22 + ξ32)γ6l1sin(ξ21)

+ξ31)− ξ32γ6l2sin(ξ31)

c12 = −(ξ12 + ξ22)γ5l1sin(ξ3)

−(ξ12 + ξ22 + ξ32)γ6l1sin(ξ21 + ξ31)− ξ32γ6l2sin(ξ31)

c13 = −(ξ12 + ξ22 + ξ32)γ6(l1sin(ξ21 + ξ31) + l2sin(ξ31))

c21 = ξ12γ5l1sin(ξ21) + ξ12γ6l1sin(ξ21 + ξ31)

−ξ32γ6l2sin(ξ31)

c22 = −ξ32γ6l2sin(ξ31)

c23 = −(ξ12 + ξ22 + ξ32)γ6l2sin(ξ31)

c31 = γ6(ξ12l1sin(ξ21 + ξ31) + ξ12l2sin(ξ31)

+ξ22l2sin(ξ31))

c32 = (ξ12 + ξ22)γ6l2sin(ξ31) c33 = 0

g1 = γ4sin(ξ11) + γ5gsin(ξ11 + ξ21)

+γ6gsin(ξ11 + ξ21 + ξ31)

g2 = γ5gsin(ξ11 + ξ21) + γ6gsin(ξ11 + ξ21 + ξ31)

g3 = γ6gsin(ξ11 + ξ21 + ξ31)

p1 = b23
1

b33
c31 − c21, p2 = b23

1

b33
c32 − c22 − γ9

p3 = b23
1

b33
(c33 + γ11)− c23, p4 = b23

1

b33

p5 = b23
1

b33
g3 − g2

L1 = b13
1

b33
c31 − b12

1

b22
p1 − c11 − γ7

L2 = b13
1

b33
c32 − b12

1

b22
p2 − c12

L3 = b13
1

b33
c32 − b12

1

b22
p3 − c13

L4 = b13
1

b33
g3 − g1 − b12

1

b22
p5

L5 = b12
1

b22
, L6 = b12

1

b22
p4 − b13

1

b33

Note that, bij , cij and gi are the components of the inertia
matrix, Coriolis matrix and gravitational torque vector,
respectively. In order to simplify the presentation of the
dynamic model of the robotic manipulator, pi and Li are
introduced.

Now, the over all system is divided into three subsystems

with the following state vectors. ξ̂1 = [ξ11, ξ12]
T , ξ̂2 =

[ξ21, ξ22]
T , ξ̂3 = [ξ31, ξ32]

T and ξ̂ = [ξ̂1, ξ̂2, ξ̂3]
T .

Adapting the design procedure of this research, the corre-
sponding linear systems becomes

˙̂
ξi = Aiξ̂i +Biu0i, i = 1, 2, 3 (42)

where each ξ̂i = [ξi1, ξi2]
T is the state vector of the outputs

and its derivatives.

Ai =

[
0 1
0 0

]
and Bi =

[
0
1

]
for i = 1, 2, 3. The continuous

components of the control law becomes

u0i = ki1ξi1 + ki2ξi2

Note that, the continuous components are designed via
pole placement. The design of the discontinuous compo-
nents is carried out by first designing the sliding surfaces
as follows

σ1 = r11ξ11 + ξ12 + z1

σ2 = r21ξ21 + ξ22 + z2

σ3 = r31ξ31 + ξ32 + z3

The dynamics of the integral terms become

ż1 = −u01

ż2 = −u02

ż3 = −u03

The discontinuous control components are calculated with
the forthcoming mathematical expressions

u11 = −b11

(
r11ξ12 +

1

b11

(
L1ξ12 + L2ξ22 + L3ξ32 + L4

−L5u2 + L6u3

)
+

(
1

b11
− 1

)
u01 +K1sign(σ1)

)
u12 = −b22

(
r21ξ22 +

1

b22

(
p1ξ12 + p2ξ22 + p3ξ32 + p5

−p4u3

)
+
( 1

b22
− 1
)
u02 +K2sign(σ2)

)
u13 = −b33

(
r13ξ32 −

1

b33

(
c31ξ12 + c32ξ22 + (c33 + γ11)ξ32

+g3

)
+
( 1

b33
− 1
)
u03 +K3sign(σ3)

)
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Table 2. Controller’s gains for 3DOF robotic
manipulator

k11 k12 k21 k22 k21 k22 r11 r21 r31
-6 -4 -2.5 -2.7 -4.2 -3.3 .2 .3 .2

Table 3. Measured parameters of the robotic
manipulator Capisani et al. (2010)

γ1 γ2 γ3 γ4 γ5 γ6
0.297 10.07 87.91 57.03 9.21 0.316

γ7 γ8 γ9 l1 l2 l3
190.5 66.343 21.0 0.65 0.6576 0.13

The final expression of the control input to link i can be
calculated via the following formula

ui = u0i + u1i i = 1, 2, 3

In realistic sense, the uncertainties in case of this manipu-
lator may be because of unmodeled dynamics, parametric
variations and external loads. As far as the parametric
variations and unmodeled dynamics are concerned, they
are usually treated as unmatched uncertainties. Therefore,
in this study the system is considered simultaneously un-
der the parametric variations, unmodeled dynamics and
time varying matched perturbations. All the parameters
of the robotic system are kept under 200 percent change
when the process starts. In addition, the last three terms
in dynamics of link-1, the last two terms in the dynam-
ics of link-2 and the last one term in the dynamics of
link-3 were ignored. Furthermore, 0.5cos(t) was added as
matched uncertainty in each control channel. The results
are quite fruitful even in the presence of aforementioned
perturbations.

The tracking performance of each link is displayed in
Figure 4. The results confirm that the proposed control
law is a good candidate for the fully actuated robotic ma-
nipulators. The ISMC manifolds shown in Figure 5 ensure
that the sliding mode is enforced from the very beginning
even in the presence of uncertainties. This once again
guarantee the elimination of the reaching phase which
resulting in the robustness enhancement. The control ef-
forts applied to each link are displayed in Figure 6. This
demonstrates that the proposed control technique is well
suited for electro mechanical systems where inputs with
reduced chattering(in case of SMC) is required. The two
illustrative examples discussed here impressively justify
the claim that the proposed methodology outshines the
existing dynamics sliding mode and 2-QCSMC techniques.
The gains of continuous components, coefficients of the
integral manifolds are listed in Table 2 whereas the gains
of the discontinuous components are set equal to seven i.e.,
K1 = K2 = K3 = 7.

6. CONCLUSION

In this note, an output feedback SMC control law is pre-
sented for a class of MIMO nonlinear systems operating
under a class of matched and unmatched uncertainties.
The robustness analysis of the designed control control law
is presented in term of two theorems. In addition, corol-
laries are presented which ensure that the system operates
only under the action of a continuous control component
in sliding mode. The effectiveness of the control law is
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test in two examples. The control input is applied to the
actual system after passing thorough a chain of integrators.
The integration performs like low pass filtering resulting
in a continuous control input. This continuous nature is
beneficial in term of chattering alleviation and therefore,
offers as a good candidate for systems of mechanical type
where a discontinuous control may cause damage to the
system.
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