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Abstract: This paper presents a new adaptive fuzzy backstepping control (AFBC) scheme for doubly-fed
induction machine (DFIM). This proposed controller guarantees speed tracking and reactive power
regulation at stator side. The DFIM stator windings are directly connected to the line grid, while the rotor
ones are controlled by means of an inverter. Using a state-all-flux model, the stator voltage vector
oriented reference frame is adopted. The control design principle is particularly based on the
decomposition of the motor model in two coupled subsystems, namely: the stator flux subsystem and the
speed-rotor flux subsystem. The stator flux subsystem is stabilized independently of the speed behaviour.
The DFIM unity power factor control and speed tracking problem is transferred to the rotor flux control
problem. The unknown load torque is estimated on-line by a suitable adaptive law, the nonlinear
functions appearing in the tracking errors dynamics and uncertainties are reasonably approximated by
adaptive fuzzy systems. The proposed control scheme guarantees the tracking error exponential
convergence to a small residual set. The performances of the proposed control system are evaluated in
comparison with a non-adaptive backstepping control (NABC) scheme by simulation tests.

Keywords: Doubly-fed induction motor, Backstepping approach, Fuzzy systems, Adaptive control, Load

torque estimator, Lyapunov stability.

INTRODUCTION

In the last decade, significantly less attention has been paid to
the control development of so called Double Fed Induction
Machine (DFIM). The DFIM is a wound rotor asynchronous
machine which can be controlled from the stator or rotor by
various possible combinations. Connecting the stator
windings of a DFIM directly to the line grid and the rotor
windings to a controlled converter constitutes a typical
connection scheme of this machine. This solution is very
attractive where small speed variations around the
synchronous velocity have to be imposed; the rotor power
handled by the converter is a small fraction of the overall
machine power. This allows the minimizing of converter size
and therefore a decreased price of the whole system (Morel et
al., 1998).

However, DFIM usually presents the features of nonlinear
and multivariable system with inevitable modeling
uncertainties and hence can be considered as a challenging
engineering problem. Different strategies were proposed in
the literature to solve the DFIM control problem. One of the
most significant developments in this area was the field-
oriented control that offers the decoupled control of the active
and reactive powers (Hopfensperger et al., 1999; Peresada et
al., 2003; Drid et al., 2005). Unfortunately, this control
approach suffers from sensitivity to the machine parameter
variations and inadequate rejection of external disturbances

and load changes (Wai, 2007). To partly overcome these
insufficiencies of the field oriented control approach for
DFIM, some advanced vector control techniques based on the
nonlinear feedback linearization and sliding mode control
principles have been addressed (Drid et al, 2005; Bekakra
and Benattous, 2010; Ardjoun et al, 2011). The resulting
controllers are not only robust to model uncertainty and to
parameter variations; but also they having good disturbance
rejection properties. Unfortunately, such performance is
obtained at price of extremely high control activity. As
consequence, the chattering phenomenon always occurs in
the sliding and steady state modes, and may excite
unmodeled high frequency dynamics. If system uncertainties
are large, the sliding mode controller would require a high
sliding gain causing higher chattering effect (Wai, 2007). So,
the concept of “Intelligent Control” has been suggested as an
alternative approach to conventional control techniques for
complex control systems. The objective is to introduce new
mechanisms permitting a more flexible control, but especially
more robust one, able to deal with model uncertainties and
parameter variations. One of these approaches is adaptive
fuzzy logic control (Li and Lau, 1989). Using fuzzy systems
for approximating of the nonlinear uncertain functions,
adaptive fuzzy controllers for inductions motors (IM) have
been developed in (Agamy ef al., 2004; Youcef and Wahba,
2009). The aim of this paper is to present a new adaptive
fuzzy controller for DFIM drives when the stator windings
are directly connected to the line grid, while the rotor ones
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al{f ct:iontroliefi by means of a converter. Our control Psa = Lslsg + Miyy, 05y = Liiyy + Miy,
oRjectives ate: Ora = Loy +Miog,0,, = Li,, + Mi,, )
e Tracking of a smooth speed reference, in the
presence of an unknown load torque. The mechanical equation is given by
e Reactive power regulation at stator side (unity d0
power factor at stator). J i [,-T,—k,Q 3)

For this, the machine model is decomposed in two coupled
subsystems, namely: the stator flux subsystem and the speed-
rotor flux subsystem. First, the stator voltage vector oriented
reference frame is adopted, and the control problem of a
stator unity power factor is converted into a stator flux
regulation problem. In fact, the time varying stator flux
vector is required to be orthogonal to line voltage, and the d-
axis component of rotor flux appears as the control input for
the stator flux subsystem. Then, with appropriate choice of
the stator flux reference and the strict control of d-axis
component of rotor flux to a suitable value, the stator flux
error dynamics becomes linear and exponentially practically
stable independently of the speed dynamics. Consequently,
the DFIM stator unity power factor control and speed
tracking problem is converted into a rotor flux control
problem. The proposed adaptive fuzzy controller (AFC) is
systematically constructed using backstepping technique.
Fuzzy systems are used to reasonably approximate the
unknown nonlinearities and uncertainties. While the adaptive
laws, which are used to estimate on-line the load torque and
the unknown fuzzy parameters, are derived in the sense of
Lyapunov stability theorem.

The main contributions of this paper lie in the following

1) A novel adaptive fuzzy controller for DFIM is proposed.
To the authors’ best knowledge, there is no result reported in
the literature on the adaptive fuzzy control design for doubly-
fed induction machine. Note that the design of the adaptive
control, for a DFIM being controlled by acting on the rotor
winding and with a stator which is directly connected to the
grid, is very challenge.

2) An adaptive estimator is designed to approximate the
unknown load torque.

3) A comparative study between our proposed adaptive
controller and a non-adaptive controller has been addressed.

2. DFIM MODELLING

By considering the classical simplifying assumptions, the
dynamic model of the DFIM, in the synchronous d-g
reference frame, can be described as (Drid et al., 2005).

doy, _ R

doy, __R N RM w0t

dt Lo T o e @b Tl 0
Lo - R, @ +——@,+0.0, +u

i Lo rd LLo sd T OpPrg T Upg

Xy __ R O+ kM Qgy — O, P,q +

dt Lo M LLoc ¢ T

Stator and rotor flux equations are

Where T, is the electromagnetic torque

pM
1—‘e = m(%q%d - wsdqu)
where
s, r Rotor and stator indices
d,q Synchronous reference frame
o, p Stationary reference frame
R L M Resistance, inductance and mutual
inductance
u,i, Q Voltage, current and flux
0,,0, Stator and rotor electrical angles
0,Q Rotor mechanical position and speed
o, =0,>0,=0, Electrical frequencies of stator, rotor and
w0=0 shaft
T, Load and electromagnetic torque
J,p Inertia, number of pole pairs

o=1-(MYLJ,)  Leakage coefficient

For all speed ranges the stator and the rotor angular
frequencies are related to the shaft mechanical speed by
0, =0, + 0.

Expressions of stator and rotor active and reactive powers are
respectively given by
{ Ps =Ugg i.rd + Usg i.rq ’ Qs Usqg Lsd —

= U 1
Pr SUpg byg T urq qu’ Qr :urq g = Uy qu

@

3. DFIM CONTROL PROBLEM

First, we suppose that the stator flux vector is aligned with d-
axis as shown in Fig.1. In the stationary frame abc, the
component n of the stator voltage equation is given by
(Hopfensperger et al., 1999).

do
=Ri, +—~ 5
sn sTsn dt ( )

By neglecting the stator resistance, (5) can be rewritten as

d
Uy = % (6)

Then, the stator voltage vector is % in advance of the stator
flux. In the chosen reference frame, we can write
Usg = 0’ usq = Uy (7)

Note that the stator electrical angle 6, is calculated only with
the grid voltage (Hopfensperger et al., 1999).
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0,=6,-2 (8)

where 6, = arctan (us 5/ Usa ) is the stator voltage vector angle

in the stationary reference frame abc as shown in Fig. 1.

' ﬂ -Rotor A ﬂ -Stator
g-axis > .
' d-axis ‘\ o,
AN Qs
\\ V\ o
U N P 4
\\ 6 0.\~ o -Rotor
z - - ‘V\ I
"« -Stator

Fig. 1. Reference frames and angles for the oriented DFIM.
The control objectives are the following

e Tracking of a smooth with
unknown load torque.
e Reactive power regulation at stator side (unity

power factor at stator).

speed reference,

It will be demonstrated that the stator-side reactive power
regulation problem can be formalized as the requirement to
guarantee that the line voltage vector and the stator flux
vector are orthogonal.

Considering the stator equations expressed in terms of stator
fluxes and currents in the line voltage reference frame.

{¢sd = _Rsisd + a)sgosq (9)

q)sq = _Rsisq — 0Py + U

From the second equation of (4), the unity power factor
objective is equivalent toi,; = 0. In steady-state condition, all
the derivatives are zero. According to the first equation of
(9), ¢, =0is necessary to ensurei,, =0. Then, the stator-
side unity power factor control is reformulated as a stator flux

orientation control objective, i.e. the stator flux vector is
required to be orthogonal to line voltage vector.

The stator flux subsystem control is designed in order to
achieve asymptotic alignment of the stator flux vector with
the d-axes of the line voltage vector reference frame,
consequently, the stator voltage and flux vectors become
orthogonal.

Let us define stator flux tracking errors as

(10)

Using (7) and (10), the stator flux dynamic equations in (1)
can be written in error form as

5sd =05q —Psq> 5sq = (psq

(11)

~ ~ * ~ ]
{qosd =010y — QW Pyq T AP, + OOsy — Psa

~ ~ ~ Ed
Psqg =~ Psy + ArPrg —OPsq — O Pgq + U

whereaq, =R, /Lo, a, =RM /L. Lo

To realize the required stator flux orientation, the d-axis
component of rotor flux ¢,, can be considered as control
input in (11), and should be

(o3 Zai(aﬂp:d +¢:d) (12)

2

with the d-axis stator flux reference computed from the
second equation of (11).

* 1

P sa :—(us +a2(prq) (13)
a)S
Using (12) and (13), (11) becomes
., =—ap,, +0p
q‘)sd 1Psd sgosq ( 1 4)

q)sq = _alq)sq —0OPsy

However, in a DFIM, The rotor flux is not available as

control input and @,; in (12) can only represent the d-axis

rotor flux reference (p:d for the real flux{,, . The rotor
voltages u,; and u,, are the only physical available control
inputs of DFIM. From (14), one concludes that the dynamics
of the stator flux are exponentially stable (i.e. tll_)rg QO = qo:d

and lim ¢, = 0) provided that lim ¢,; = qofd .
t—oo {—>®

Now, it is required to design a control law (u,,; and u,, )

limQ=Q". We

which guarantee that lim ¢,; = qofd and
[—0 t—©

consider the reduced order DFIM model represented by the
rotor flux and speed equations.

X = as(x,x; = Xsx,) —agxy —azl;

Xy ==Xy + ayX, —0,%3 +0,(X) + 1 (15)

X3 = —3X3 + a4 X5+ 0%, +0,(X) +u,

X4 = sq
s x5 = QDsd s

N uz :urd, as :Rr/l‘rc’

ith X =Q _
wi ’x2:(Prq’-)i3_(Prd’

_[ ]T Uy =Uy
X = |X),%0, X3, X4, X5 [ 5

a, =
ay=RM/LLo, as=pM/JL Lo, 6
a; =1/J.

and

where &, (x) and 8, (x) are the uncertainties and perturbations

that can be naturally generated from the parameter variations.
In the following, two nonlinear controllers are developed for
the DFIM, namely
e anon-adaptive backstepping controller (NABC) and
e an adaptive fuzzy backstepping controller (AFBC).

3.1 Non-Adaptive Backstepping Control System

The following realistic assumptions are used in the control
design and the stability analysis.

Assumption 1: We assume that the load torque satisfies the
following relations
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L|<p,, [, ~0 16 . 2
| l| Po ! - (1o 5| :_ele2_clelz _—0912_‘17F191 (26)
where p, is a known positive constant. £
. . F Y ’si li h
Assumption 2 : The functions J,(x) and 8, (x) are uncertain. rom Young's inequality, one has
However, they are bounded by known positive nonlinear pg ) )
functions as follows: —a;le, <ay Po‘el ‘ < 4_5161 +é&1a; (27)
16,(0)] < py (%) (17) Using (27), (260
sin , ecomes

62| pa () (g N

2, <—eey —c1e12 +81a$ (28)

Assumption 3. Assume that
-the reference speed profile x,=Q" is bounded and
sufficiently smooth, and
. . x 1 o w
-the reference signal of x;i.e. x5, =@,y =— (0,04 +Pyy)
a
is assumed to be derivable and bounded.

For the system (15), the backstepping design procedure
(Krstic et al., 1995) is used for the construction of the control
system which guarantees a practical exponential tracking of
rotor speed and rotor flux reference signals.

Step 1: For a continuous bounded reference signal x,, = Q"

we define the tracking error e, as follows

e =X — Xy (19)
Its time-derivative €; is given by

€ =X — Xy (20)
From (15), we can write

€ =asX, X3 —asXs Xy —dgX) —a;l; — Xy, 21

Choose asxsx, as a virtual control to stabilize e; and select

v given below as a desired reference signal for asx;x, :
2

Po
V=asx,Xx; +| ¢ +—— 22
543(148 (22)

€1~ deX1 ~Xd
1
where ¢; >0 is a free design constant and &, >0 is a small

design constant.

This leads to the following dynamics
(23)

with e, is the tracking error of the variable asx;x,, given
by

€y =as5X5Xy —V (24)
The Lyapunov function candidate for the e;-subsystem is
selected as
= _1 5
2 =—¢
1754
The time-derivative of (25) can be expressed as follows

25)

The next step consists in stabilizing the tracking error e,.

Step 2: The time-derivative of (24) is given by

éz = a5x53'62 + asxSX2 _U (29)
From (1), (15) and (22), we can write
& =hy(z))+e; +6,(x)+asxsu, (30)

with
hy(z)) =€ +asxs(-a3x; +a4x, —0,x3)+
asx, (a1 X5 +ayx; +0,X,)—
asx3(—a; x4 +a3X, —O X5 +Uy)—
A5x4 (—a3X3 +aA4X5 +0, X5 +Uy)+
(c1 +(pg /4e))ey +(cy +(pg / 481)ey) +

X1g +ag(as(x,x;3 —X5x)—agx)

8, (x)= a5xs6, (1)~ a5x,8, (1) + (e, +(pg / 4e)))as T -
agar L
where z; =[x x5 X3 X4 X5 u2]T, and ej is the tracking

error of x3.

G

€3 =X3 ~ X3
with x3; is the desired signal of x;.

Define a Lyapunov function candidate for the (e;, e;)-
subsystem as

=, =E, 41l (32)
E,=8,+—e¢
2 1754
Its time-derivative is given by
&, <—cief + ey (2)) + 8 (x) + asxsu, )+ £,a2 (33)
From Young’s inequality, one has
) ) 22
= = + +2
55k < e « BP0 xipT ) 208
4e,
5 \\2 (34)
2a52+ ¢+ Po a72+a62a72 £,
4¢,
where &, >0 is a small design constant.
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From (33), the control input u, can be chosen as

follows:
1 2 200 452 p2(x) 42 02
B RN T A A E L
asXs 4e,

(35)
where ¢, >0 isa free design constant.

Remark 1: The magnetising flux X5 must be non-zero (Due
to the remanence flux).

Using (34) and (35), (33) becomes

— 2 2 2
=) S—Clel —Cr€H +81a7 +

5 )2
2 Po 2 2 2
2a5 +| ¢, +| =—— || a7 +aga7 |&,
4¢,

The next step consists in stabilizing the tracking error e;.

(36)

Step 3: At this step, we will construct the control law u, to
stabilize the dynamics of x;. The time-derivative of (31) is
given by

€3 = X3 — X3y

=—)'C3d _a3X3 + a4 x5 +0),,X2 +82 (x) +u2 (37)

Then, let’s define a Lyapunov function candidate as follows
15

=E,+—e
3 2 3
2

(1]

(38)

Using (35) and (36), the time-derivative of Z3 can be
bounded by

33 < —clelz - 02622 + 81a72 + e3(h2 (z,)+6, (x)+ u2)+

2
Pg 2 22
2
2a5 +| ¢ +| — || a7 taga; |g,
4¢,

with h,(z,) = —a3x; + azxs + ©,x, — X3,, where

(39)

T
Zy =[x x3 x3 x5]°.

To stabilize the dynamics (37), the control input u, can be
chosen as follows

2
uy =—h, (Zz)_{% + P2 (X)j%

4e, (40)

where c; >0 is a free design constant and &; > is a small
design constant.
From Young’s inequality, one has

p3 (x)es

+& 41
e, 3 (41)

85 (x)ey < py(Ves| <

Using (40) and (41), (39) becomes

33 < —clelz —02622 —c3e32 +81a72 +é&3 + “2)
2 2 2.2, .22
(2"5 +(c +(pg /4€))) a7 +agay )52
We can rewrite (42) as follows
2, <-KZ; +¢ (43)
where ¢ = ,a7 +(2a§2 +(c, +(pg /4¢))as +a§a§)&2 +¢&; and

K= min{2c, ,2¢5,2¢4 } .

Multiplying (43) by e yields

d — Kt Kt
—\Ese™ )< ge 44
< (2se) (44)
Integrating (44) over [0,], it follows that
_ & - & | Kt
0<E;(0)—+| E;(0)——|e 45
3(0) e [ 3(0) Kj (45)

This results in ultimately uniformly bounded (UUB)
stabilization of the tracking errors (e,,e,,e;). Since & can
be chosen arbitrary and K only depends on the design
parameters (c,,c, and c;), the ultimate error bounds can be
made arbitrary small.

3.2 Adaptive Fuzzy Backstepping Control System

The control objective in this section is to design an adaptive
fuzzy backstepping controller for DFIM guaranteeing global
system stability with improved control robustness.

The basic configuration of a fuzzy logic system consists of a
fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference
engine and a defuzzifier, as shown in Fig. 2.

| Fuzzy Rule Base |

o ——P| Fuzzifier Defuzzifier |——>
A 4

.| Fuzzy Inference
Engine

Fig. 2. The basic configuration of a fuzzy logic system.

The fuzzy inference engine uses the fuzzy IF-THEN rules to
perfoorm a  mapping from an  input  vector
x" =[x, x,..x,]€ R" to an output feR. The ith fuzzy
rule is written as

R :if x,is A4 and...and x, is 4’ then [ is f° (46)
where A{,Aé,...,and A,i are fuzzy sets and f' is the fuzzy
singleton for the output in the ith rule. By using the singleton
fuzzifier, product inference, and center-average defuzzifier,
the output of the fuzzy system can be expressed as follows:
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Zin;l A (Hj’:l Hy () ))

Jo)=———
Zi:l (Hj:l My ))
=0Ty (x) (47)
where p ,(x;) is the degree of membership of x; to Aj-,
7

m is the number of fuzzy rules, 67 =[ 11, £2,..., f™] is the
adjustable parameter vector (composed of consequent
parameters), and y ! =[y' y? . y™] with

(Hj:] Hy (xj))
Zin;l (H::l R (x; ))

being the fuzzy basis function (FBF). Throughout the paper,
it is assumed that the FBFs are selected so that there is
always at least one active rule (Wang, 1994),

ie. ZZ(H;”A; (xj)) >0.

It is worth noting that the fuzzy system (47) is commonly
used in control applications. Following the universal
approximation results (Wang, 1994; Feriyonika and
Dewantoro, 2013; Husek, and Cerman, 2013; Joelianto et al.,
2013; Odior, 2013), the fuzzy system (47) is able to

approximate any nonlinear smooth function f(x) on a

v'(x)=

compact operating space to an arbitrary degree of accuracy.
Of particular importance, it is assumed that the structure of
the fuzzy system (i.e. the pertinent inputs, the number of
membership functions for each input and the number of rules)
and the membership function parameters are properly
specified beforehand. The consequent parameters 0 are then
determined by appropriate adaptation algorithms.

Assumption 4: the functions 6,(x) and J,(x) are smooth and
completely unknown.

Throughout the rest paper, we will exploit the following nice
property with regard to function Tanh(.)

(48)

and

0<|X|-Tanh (X /B;)<B;, fori=12
where 8, is a
B; =0.27858;.

small positive design constant

Now, we give the procedure of the backstepping design.

Step 1: For a continuous bounded reference signal x,,, the
tracking error e, and its derivative ¢, are defined
respectively by (19) and (21):

€ =X X

€ =dsX, X3 —asXsXy —dgX; —az1; — x4
Let I'; be the estimate of I'; and select a new virtual control
v as

U =asx X3, +Ae —agxy, — Xy —aql; (49)

where A4, >0 is a design constant and T} is the estimate of
I.
From (21) and (49), we can obtain the following dynamics:

€ =asx,e; —e, —(?tl +aq )e1 —a7f1 (50)

where I, =T, — I, is the load torque estimation error, and

e, is the tracking error of the variable asxsx,, given by

€, = asX5X, =L

(51
Consider the following Lyapunov function candidate for the
ej-subsystem

1 I?
Vi=—|a+-
2 Vi

where y, >01is a design parameter.

(52)

By assuming that the load torque is slowly time-varying
(I"l =0), the time-derivative of (52) along (50) is given by

V] =—e e, +asx,e;e —(l] +ag )e]2 —1:1 ae, +1}:—1 (53)
1

If the load torque estimator is designed as

[ =0/l —ya:¢ (54)
where o; >0 is a design parameter.
Then, (53) can be written as

Vi =—e ey +asxyese — (A +ag el — (o 17, )17 (55)
The next step consists in stabilizing the tracking error e,.
Step 2: The time-derivative of (51) is given by

by = AsXs5Xy + AsXsXy =D (56)

From the second subsystem of (1), (15) and (49), we can
write

e, = /1(z)) +e; +(asayx, —asxso, —asAixy)e; (57)
—a; (0, + ) +asxsuy
with
S1(Z)) = —e; —asazxsx,; + asayXxsxy —asxs0, X35 —
A5 X5Xy + AsO X gXy + A5 X3y Xy +
A50 X3yX5 — AsXq U, — AsX X3y + AgXyy +
Xig + A4 (92 + (/11 + ‘16)91)_‘1727191 +
a;(o;+ A + asxs6,(x)
where z, =[x, x, x, x5 0 I,]" and e, is the tracking error
of x;. Itis given by
€ =X3— Xy (58)

* * R
where X3, =@,; = (@0 + Q) ay.
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The uncertain continuous function fj(z,) can be
approximated by the fuzzy system (47) as follows
J}l(zlael)zelrll/](zl) (59)

where v, (z, ) is the FBF vector, which is fixed a priori by

the designer, and 0, is the adjustable parameter vector of the

fuzzy system. Furthermore, according to universal

approximation theorem (Wang, 1994), the functions f(z, )

can be approximated optimally as follows

[G) = /G0 +3,(E) =0y, (3) +@,(3) (60)

where 9]* is the optimal parameter vector and @, (z,) is the

unavoidable fuzzy approximation error which is generally
assumed to be bounded as follows (Wang, 1994; Rusu, 2002;
Boulkroune et al., 2008, 2009, 2010a, 2010b; Liu et al.,

2011): |w] (z, )| <@, Vz; €Qz, where @, is an unknown
constant.

. . — — T .
Since the input vector z; =[x, x,, X4, x5, 0, I;]° is not

available, it must be replaced by its estimate

fl =[x, X, X4, X5, U, fl]T in (59). Thus, the fuzzy system
(59) used to approximate f,(z,) is replaced by the following
fuzzy system

[1(z.0)=0]y,(Z)
From (59)-(61), we have
LE)= (G- FGL0)+f1(E.00) - fi(Z .00+
fiE .00
=0,"y () )+, (Z)+[0, v, (Z)-0,"y,(Z))]
=0,"w(z ) +9z, .2,)

(61)

(62)

where 9(Z,2) =o,(z)+[0, y,(2) -0y, ()] s the
fuzzy approximation error. Notice that §(z, ,51) has an
upper bound, i.e. ‘9] (z ,5, )‘ < K]* with K]* is an unknown
positive constant (Wang, 1994; Boulkroune ef al., 2010a).

To stabilise the dynamics (57), the following fuzzy adaptive
controller is proposed

(‘17(61 + /11)1&1 _91T‘//1(Z£1)— Aye; —

u1=
dsXs

K, Tanh(;—zJ )
1

where A, >0 is a design constant, k, is the estimate of the

(63)

unknown bound «, and B, >0 isa small design constant.

Replacing (63) into (57) and using (62) yield
&, = ¢ +(asa,x; — asxs0, —asxy)e; —
0 A A e (64)
0w (2)+9(21.5) — Mge, — K, Tan;{FzJ
1

where 6, =6, —6; is the parameter error vector.

Multiplying (64) by e, and using the inequality (48), we get
€26y = €€y +(asayx) — asxs0, — ashxy)ere;
~ 2 - 2 e
—e0y1(2)+ €9 ((Z.2) - e -k ezTanf{FzJ
1
<e e, +(asa,x, —asxsm, —asA;x,)e,e; —

e_zJ . (69)

20"y, (Z) - Are3 —K, ezTanh( +1, B

1

where &, =k, —k, is the parameter error and J; = 0.27850,.

Define a Lyapunov function candidate for the (e;, e;)-
subsystem as follows

1.
0,76, + s

1
V2 =V1 +—€§ +
2 Y o1 Ykl

(66)

where y,, and y,, >0 are design constants.

Taking the derivative of V, with respect to time and using
(55) and (65), one can obtain

. . ) 1 ~7. 1 .
V,=V,+e,é, +—0,"0, +—K K,
01 145!
<(asa,x, —asxso, —ashx,)e,e; +asx,ee; —

(/11 +a6)912 _ﬂflz _/12922 +
Vi

_51T[91 _7913211’1(?1 )]+ (67)
Vo1
1 ~ . ez * =
—K,| Ky — Y e Tanh| —= ||+ K, B,
Vi1 B,
If the adaptation laws are designed as
0, ==70:10010, + V€9, () (68)
. )
K| ==Y 10 1K) +7 e Tanh ﬂ_ (69)
1

where oy, and o, > 0 are small design constants.

Then, (67) can be expressed as

Vy <(asa,x, —asxso, —asA;x,)e,e; +

asx,ee; — (/11 +ag )elz —(%]1:12 - /12622 - (70)
!

~ 7 . —
6910, 0, -0 Ky K| + KB

In the next step, we try to stabilize the tracking error e;.
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Step 3: At this step, we will construct the control law #, . The
time-derivative of (58) is given by
é3 = _a3X3 + a4 XS + 0),)(?2 + 82 (x) + U2 - )'C3d

(71)
We can rewrite (71) as follows

€y = —(asayx; — asxsw, —ashxy)e, —asxue + f5(z,) +u, (72)

with

£2(z,) = (asayx,

©,%, +0,(x) = X3,

—AsX50, — AsA X, )€, + AsX€) — Az Xy + ay X5 +
here z, =[ 1
where z, =[x, x, x3 x4 X5] .

The wuncertain continuous function can be

£(23)
approximated by the adaptive fuzzy system (47) as follows

f2(5,,0,) = 01w, (Z,) (73)

According to universal approximaton theorem (Wang , 1994),

the functions f,(z,) can be optimally approximated as

follows
f2(Z5)= 12(2,,00)+@,(F,) =05y, (3,) +3,(Z,)  (74)

where 9; is the optimal parameter vector and @, (z,) is the
unavoidable fuzzy approximation error which is assumed to

be bounded as follows, i.e.

@, (2,)| <x,, VZ, €Qs, (75)

*
where «, is an unknown constant.

To stabilise the dynamics (71), the following fuzzy adaptive
controller is proposed

_ e
2 = _92T‘/’2 (zy) — Aze5 —k,Tanh (ﬂij (76)
2

where A; is a positive design constant, x, is the estimate of

the unknown bound K; and f, is a small positive design

constant.
Replacing (76) into (71) and using (75) yield
é3 =—(asa,x, —asx;m, —asix,)e, —asxse; —

T — — €3 (77)
0, v,(z,)+w,(z,)— Aye; — Kk, Tanh ﬂ_
2

where 6, =6, -0, is the parameter error vector.
Multiplying (77) by e; and using the property (48), we get

e3¢y = ~(asayXx; —asX50, —ash Xy)e,e3 —asxy e e; =

63§2TW2 (Z,)+e;0,(Z,) —Aqes — K, ey Tanh (;—3j
2

—asx50, —ashx,)e,e;

—(asa,x, —dsXsee3 —

(78)

P

€30, y5(2)) 2563 ~ K, ey Tanh (;3 j+ K2 B,
2

where K, =k, —k, and B, =0.27850,.
Define a Lyapunov function candidate as follows
1 ~r~ 1 -
;+——0,0, + K37
2762 272
where y,, and y,, >0 are design constants.

V3 = V2 + (79)

Taking the derivative of V; with respect to time and using
(78) and (70), one can obtain
~ . 1 - .
—0,)6, +—K,K,
Y02 V2

O |=2 2 2
_(/11 +dag )612 _(V_IJFI —Ae) —Aze3 —
1

Vy=V, +eze; +

5T ~T *or e
00i0; 0, —0 K| K| +K; By +K25, +

1 ~r[: _ 80
—92T [92 Y2032 (2; )]+ (80)
Yoz

L@ Ky =73 Tanh (6—3J
V2 ﬂ2

The adaptation laws are designed as

0, =—7020020, +79263¥2(Z,)

(81)

) e
Ky ==Y 20k2K> +7xze3Ta”h(ﬁ_3J (82)
2

where 0y, and o, >0 are small design constants.

One can henceforth easily check that

0-'~2 O"*z
KlKi+ KlKi’

—0,K; K S— fori=1,2

2
_‘7@1'9 0, <—JiH0 “ Jel , fori=1,2

And using the previous inequalities and the adaptive laws
(81)-(82), (80) becomes

—(waé)ef—(ﬂjﬁz—aae; o -7 fpf -

(83)
0, ~2
02 “92“ Oy1 +n
Where
0 = 01 |o*|* . Ta2 2 04 % 0o
n=xpB+,6,+—|0,|| +—= + ==K +—==kK,
2 2 2 2

One can rewrite (83) as follows
V;<=¢ V3+m (84)
where
g :rnin{2(21 ""aé)’ 20y, 229, 223, 01 Y15 02l 62> Oxciict>
02V k2 }
Multiplying (84) by e yields
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d (V3 o ,)S net! (85) As the .actual load torque T is.unknown, the first equation i.n
dt (15) will be used to compute its value. Consequently, I is

Integrating (85) over [0 1], it follows that given by

1.

0 <T4(t) s%{r@(m—%}‘“ 86) i =—;(x1 +AsX5 Xy —dsXy X3 +agx) (88)

This results in ultimately uniformly bounded (UUB) Which leadsto

stabilization of the tracking errors (e,e,,e;) and the o, . .

I, = ——(x] +a5X5Xy —AsXy X5+ AgX, )—0'11"1 -v,a;¢;  (89)

parameter estimation errors (QN],QNZ,E],EZ,IN"I) (Khalil,
2001). The boundedness of fl,Q],K],Qz and K, is
respectively established from that T;,0,,%,,0, and &, .

Remark 2: According to the definition of { and 77, it can be
seen that the size of { depends on the controller design

and A,, and that
of 1 depends on the controller design parameters f3;,o, and

parameters G, Vg, Yigs Ogi>O s Ao

o, - It is clear that if we increase o, yy, ¥,y >4, 4,,and A,
and decrease 3;,0 and o, it will help to reduce the term
n/¢ . This implies that the tracking errors can be made

arbitrary small by appropriately choosing those design
parameters.

Because ej,e; € L, and x,;,x;, €L, therefore x;,x; €L, .
From (11), one can write the dynamics of the tracking errors

of the stator fluxes as follows
Psa = —UWPsq T OP;, +Ar85
qosq = _alqosq — 0P
From those dynamics and since e; € L, we can easily prove

the boundedness of ¢,, ¢, and x,. From

(x4,x3d,e],)'c]d,x],f"1) e L, , it can be concluded that v € L,
based on (49). Since x, =(e, +0)/asx5, e,,0 €L, and
x5 >0, we can show that x, € L, . The boundedness of ¢,
and xs follows that of ¢, (or x,) and ¢, - Due to the

boundedness of and T,

0,,x,,0,,x, € L, we can conclude that the controls (u, and

X)5Xy,X5,Xy,Xs and since

u, ) are also bounded.

Now, taking a summary, under the above stator voltage
vector orientation constraint, if the DFIM system given by (1)
is directly connected to the grid by the stator winding and is
controlled acting on the rotor winding by the proposed AFBC
described by (49), (63), (68), (69), (76), (81) and (82) with
the load torque estimator given by (54), then the practical
stability of the closed-loop control system can be guaranteed.

Let us consider the load torque adaptation law (54) that can
be written in the following form

[, =00, -0, -7,a¢ (87)

az

Because of the integral structure of the adaptation law (89),
this updating law is implementable despite the presence of

X, . In fact, it is can be rewritten as

£, = 14,0)- 2L (3, (0)-x, 0))+ [ e Jax

a7 0

(90)

where

A o
h:—(all“l +v,a4€ +—1(a5x5x2 —AsX4X3y + agX) )J 91)
a;

The overall scheme of the controlled DFIM is depicted in
Fig.3 in which the stator is directly connected to the grid, and
the DIFM is controlled acting on the rotor windings.

Remark 3 : From (87), we can rewrite IN"I = —O'IIN"I +7,a.€,
this equation can be seen as a standard disturbance observer.
In fact, if ¢ converges to zero, then IN"I also converges to

zero. Consequently, fl converges to ;.

Remark 4 : Based on the universal approximation theorem
and by incorporating fuzzy logic systems into adaptive
control schemes, many adaptive controllers have been
proposed in the literature, among them (Boulkroune et al.,
2008, 2009) for single-input single-output (SISO) nonlinear
systems, and (Boulkroune et al., 2010a, 2010b) for multiple-
input multiple-output (MIMO) nonlinear systems. Generally,
these adaptive fuzzy control approaches can have nice
performance. However, they have been applied only to a
relatively simple class of nonlinear systems. The key
requirement is that the unknown nonlinearities appear on the
same equation as the control input in a state space
representation. Such restrictions on the location of the
uncertain nonlinear functions are generally referred to as
matching conditions. If practical systems are subject to some
unknown nonlinear functions which do not satisfy the
matching conditions (as in the case of the doubly-fed
induction motor considered here), these adaptive fuzzy
control approaches mentioned above cannot be implemented.
In this paper, a fuzzy adaptive backstepping controller is
developed for a DFIM. Compared to the above works
(Boulkroune et al., 2008, 2009, 2010a, 2010b), the main
contributions of this paper lie in the following

e Because a part of the DFIM model is subject to
some unknown nonlinear functions which do not
satisfy the matching conditions, the backstepping
approach has been used in the controller design.
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e An adaptive estimator has been designed to
approximate the unknown load torque.

e  The comparative study between our proposed fuzzy
adaptive backstepping controller and a non-adaptive
backstepping controller has been addressed.

o The control design of the considered configuration
(i.e. a DFIM being controlled by acting on the rotor
winding and with a stator which is directly
connected to the grid) is very challenge. To our best
knowledge, in the literature, there are little works
dealing with this control problem.

/2 Grid
uT(X
— 9 <& <
é)‘li arctan[ui) 3t02 |e U abe
+ Ysa T35
eX
> Speed and currents measurement,
Flux , 6, 6, , o, calculation. DFIM
Uy abe
v
L Uy
dq to off
AFBC 2t03 Converter
- >

| :

Reference signals

Fig. 3. The overall control scheme of the DFIM.

4. SIMULATION RESULTS

The parameters of the tested DFIM are summarized in
Table.1 (Drid et al., 2005). The controller parameters are set
to the following values:

For NABC ¢, =200, ¢, =10000, c; =50000,
& =¢,=¢g=01andp,=5.

system:

For AFBC system: y; = 0.001,05, =200, A =1, =1, =200,
Bi =B, =0.05, Vo1 =100, Vi1 =0.05, Vo2 =1000,

Yer =01, 64=09,=10", 6, =0,,=10". The initial

conditions are chosen as: x,(0)=x,(0)=0.2, and
0,;(0)=0,;(0)=0.
The fuzzy system Q]Tq/] (fl ) has the vector

[x; x5 x4 xSUfl]T as input, while the fuzzy system

07w,(Z,) has the state vector [x, x, x; x, x5]' as input.
For each variable of the entries of these fuzzy systems, as in
[19], we define three (one triangular and two trapezoidal)
membership functions uniformly distributed on the intervals

[-0.51.5] for x,,x3x,andxs, [-150,200] for x;,
[-50,50] for © , and [-5,8] for T;.

Tablel. Parameters of DFIM.

Parameter Value
Rated power P, =4 kW
voltage U=220/380 V
Current 1=15/8.6 A
Synchronous speed | o, = 2750 Hz
Stator resistance R,=120Q
Rotor resistance R.=1.8 0O
Stator inductance L,=1.1554H
Rotor inductance L.=1.1568 H
Mutual inductance | M =0.15 H
Inertia J=0.2 kg.m’
Friction coefficient | £~=0.014 Nm.s/rad
Pole pairs p=2

The simulation is carried out under the followings adverse
conditions
-Model uncertainties: 5,(x)=3x, and &,(x)=4x, +2x; and

introduced at 1 =0.8s .

-Parameter variations: At t=0.4s and t=0.5 s, the stator and
the rotor resistances are respectively increased at 50% of
theirs ratted values.

-External load torque: A load torque disturbance is applied
as follows

0 Nm t<0.3s
5 Nm 03s<t<0.7s
L= onNm 0.7s<t<ls
5 Nm ls<t<1.4s
0 Nm t>1.4s

Fig. 4, Fig. 5 and Fig. 6 show the simulation results of the
NABC system. As it can be seen, the system control
performances degrade in the presence of external
disturbances and unstructured dynamical uncertainties.

The simulation results of the proposed AFBC system are
depicted in Fig.7, Fig.8 and Fig.9. From these simulation
results, we can clearly see that a satisfactory behavior of the
mechanical speed with regard to the imposed speed profile is
achieved. Moreover, the load torque estimator gives a correct
estimation for the actual load torque. The controller copes
easily with the sudden external load disturbance, the
parametric variations and the model uncertainties, and
provides a fast tracking responses. We can observe clearly
that the flux responses respect the imposed constraints. So,
after transient, the stator and the rotor fluxes recover
respectively their imposed values. Consequently, the flux
orientation objective is guaranteed, and the stator reactive
power converges to zero in steady-state operation.

The AFBC approach is compared in similar operating
conditions to the NABC approach. Fig. 10 shows the speed
and flux tracking performances under the two control
methods. It is evident that the proposed AFBC schema yields
superior control performances than the NABC scheme. In
fact, this new control scheme can achieve high accuracy in
speed and flux tracking and shows very strong robustness to
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external load disturbance and the system uncertainty.
Moreover, the control effort of the AFBC is smaller than that
of the NABC.

Table 2. Numerical comparison between the NABC and
AFBC systems.

MSE (%)

Control

Strategy | Speed Q@ | Flux ¢ | Flux ¢y, | Flux ¢,
NABC | 40x107 | 4,1x10% [ 0,4x10” | 3,6 x 107
AFBC [93x107 | 84x10° [ 0,7x 107 | 5,4x 10*

The superiority of the AFBC over NABC is clearly shown in
these results. Based on the simulation results, numerical
comparison of the two control methods developed in this
work is shown in Table. 2.

5. CONCLUSION

A new adaptive fuzzy backstepping control scheme has been
proposed for high-performance DFIM drive. The
backstepping technique has been applied to systematically
construct our controller which guarantees uniform ultimate
boundedness of all signals in the closed-loop system.
Lyapunov approach has been adopted to derive the parameter
adaptation laws. The tracking error dynamics have been
proved to exponentially converge to a residual adjustable set.
The obtained results confirmed the effectiveness of the
proposed AFBC scheme for control of a DFIM. It has been
shown that the proposed controller allows good tracking
performances and stator reactive regulation to zero in steady
state, and can deal with the unavoidable parameters
variations, external disturbance and model uncertainties.
Comparison results against a NABC system show better
robustness to parameter variations and system uncertainty. It
is worth noting that the control methodology proposed here
can be easily extended to other electric drives. Our future
work will address the experimental implementation of this
proposed AFBC scheme and the design of a speed sensorless
controller.
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