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Abstract: The present study uses a combination of a state-dependent Riccati equation (SDRE) controller 
and SDRE observer to control a class of nonlinear non-affine control systems. This type of nonlinear 
system features control nonlinearities that change the formulation of the SDRE and its solution 
techniques. Control law is obtained using the exact solution method for low-order and uncomplicated 
systems; numerical approaches are available for complex and high order systems. Both solution methods 
must use integral control formulation or solve the system equation using control law simultaneously to 
treat control nonlinearities. The closed loop feedback of the system is partially available, providing an 
observer for estimation of full-state feedback. The efficacy, advantages and compatibility of the 
controller with the observer guides the choices to the SDRE observer. The stability proof of the SDRE 
controller in the non-affine structure is presented and four case studies are simulated and discussed. Two 
were selected from previous studies to verify the proposed algorithm. The third, more complicated 
model, shows the ability of the controller to solve complex and high order systems. A brief discussion of 
the suboptimal cheap control problem and an example are also presented. 

Keywords: SDRE controller; SDRE observer; non-affine system; nonlinear control; optimal control. 

 

1. INTRODUCTION 

Non-affine systems are used in two major areas. In the first 
category, nonlinear systems are considered with uncertainties 
in states or control inputs (Lee et al., 2009; Bartolini & 
Punta, 2012; Huang & Wu, 2011; Huang et al., 2012; Gang 
et al., 2012). Different methods have been applied in this 
category, including (Lee et al., 2009) introduced direct 
adaptive backstepping and a recurrent wavelet neural network 
method to control a class of non-affine systems. They 
simulated a double pendulum as a non-affine system and the 
results expressed the good performance of the algorithm. 
(Bartolini & Punta, 2012) presented a variable structure 
method for controlling a non-affine system with 
uncertainties. The state vector was not completely available, 
so an observer was combined in the structure of the 
controller. (Huang & Wu, 2011) used robust decentralized 
adaptive output feedback fuzzy control for a class of large-
scale non-affine systems. The model was two inverted 
pendulums on carts connected to each other (Huang & Wu, 
2011) and a string of vehicles (Huang et al., 2012). Gang et 
al., 2012) introduced a fuzzy approach for robust control of a 
class of stochastic non-affine systems. Non-affine problems 
for these approaches have been examined for mathematical 
models and experimental systems. Such models are more 
common in reality, but models with nonlinearities in control 
(non-affine in control) are less approachable. 

In the second category, nonlinear systems were considered as 
control nonlinearities or as non-affine-in-control systems. 
This category has been less studied. Such a model is rare in 
the real world and most research has been based on 

theoretical concepts and mathematical models; however, 
some real models have been introduced in aerospace. 
(Lavretsky & Hovakimyan, 2005) proposed an adaptive 
dynamic inversion for non-affine systems using time scale 
separation. Details of the algorithm and stability analysis 
were explained and simulated for a mathematical model by 
(Lavretsky & Hovakimyan, 2005) and for a double inverted 
pendulum by (Young et al., 2006). (Young et al., 2006) also 
considered control nonlinearities due to actuator limits. (Tsai, 
2013) reported an improved fuzzy modelling method for a 
class of multi-input non-affine nonlinear systems. (Arefi & 
Motlagh, 2011) presented an observer-based adaptive neural 
control for a class of nonlinear non-affine systems with 
unknown gain signs. The first example of this article is 
selected from (Arefi & Motlagh, 2011). (Tamimi, 2012) and 
Wang et al., 2012) used optimal control to solve discrete non-
affine-in-control systems. 

In the present study, the state-dependent Riccati equation 
method is employed to control non-affine systems in the 
second category. An SDRE controller was proposed for non-
affine-in-control systems by (Wernli & Cook, 1975). A 
power-series approximation method was also developed for 
complicated models as an approximate numerical solution to 
SDRE. (Cimen & Banks, 2004) introduced a general 
formulation for non-affine systems and applied it to 
modelling an aircraft with control nonlinearities. The 
algorithm provided an approximating sequence for Riccati 
equations to construct non-linear time-varying optimal state-
feedback controllers. (Beeler, 2004) introduced an online 
control update (OCU) formulation for an SDRE with control 
nonlinearities. Although valuable research has been done on 
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SDRE in the non-affine area, this controller has not been 
sufficiently examined for these types of systems, especially 
with a connection to an observer. 

(Mracek et al., 1996) used the SDRE technique for nonlinear 
estimation and applied it to a simple pendulum problem. 
(Friedland, 1998) expressed the state-dependent differential 
Riccati equation method for estimation. (Beikzadeh & 
Taghirad, 2012; Iratni et al., 2012) and other studies have 
examined other aspects of the SDRE estimators, such as 
robustness. (Hassan, 2012) proposed an observer-based 
controller for discrete time systems using the SDRE 
approach. A recursive regularized least-square state estimator 
was also used.  

A stability proof of a SDRE controller for non-affine systems 
was presented by (Wernli & Cook, 1975) for power series 
approximation as a numerical solution technique. Solving the 
system and control laws simultaneously was termed a tedious 
task by (Wernli & Cook, 1975).  

In the present study, the main contribution is a formulation 
for solving this type of system and its control law 
simultaneously with a stability proof. A combination of 
SDRE controller and SDRE observer is presented to control 
non-affine systems with partial feedback available. 

Notations: Throughout this work, nℜ  denotes the n-
dimensional Euclidean space and nm×ℜ  is a set of m×n real 
matrices. When a matrix or vector is Ck, that matrix or vector 
is k times continuously differentiable. Ω  is a bounded 
Euclidean space that contains the origin. Bold letters in 
formulas are dedicated to matrices and vectors. 

The structure of the SDRE controller and its stability analysis 
are developed in Section 2. The formulation of the SDRE 
observer is expressed in Section 3. The tuning of the observer 
based controller is presented in Section 4. Section 5 is a 
discussion of the suboptimal cheap control problem. The 
simulation results are provided in Section 6 and conclusions 
in Section 7. 

2. THE SDRE CONTROLLER 

The formulation of the SDRE controller for non-affine 
systems is presented in this section. Consider the nonlinear 
time-invariant non-affine in the control system as: 

),,()( uxgxfx +=&   (1) 

where equilibrium point of the system is 00f =)( , nℜ∈x  is 
the state vector; and mℜ∈u  is the input vector of the system. 

Assumption 1. The vector-valued functions )(xf  and 
),( uxg  are continuous smooth nonlinear vectors with respect 

to their arguments in Ck, 1≥k  and at least one time 
differentiable functions exist for all x and u in region Ω . 

Assumption 2. The vector-valued functions )(xf  and 
),( uxg  are uniformly bounded by ∞→t  and the derivative 

of the vector ),( uxg  with respect to u  is nonzero 

0
u

uxg
≠

∂
∂ ),(  for all Ωx∈ . 

An optimal control scheme is applied by minimizing the 
following performance index: 

( ) ,
2
1

0
∫
∞

+= dtJ TT RuuQxx   (2) 

in which Q is weighting matrix for states and symmetric 
positive semi definite, and R is weighting matrix for control 
inputs and symmetric positive definite.  

The next step for implementing the method is state-dependent 
coefficient (SDC) parameterization to form the equation of 
the system in Eq. (1) as: 

uuxBxxAx ),()( +=&   (3) 

where nn×ℜ→ΩxA :)(  and mn×ℜ→ΩuxB :),( . 

Preposition 1 (Cimen, 2012). For the vector )(xf  and 1>n  
with equilibrium point 00f =)( , there exists a non-unique 
SDC parameterization in the form of xxA )( .  

(Cloutier et al., 1999) proposed the following definition for 
non-linear-affine-in-control systems. Definition 1 is the 
extended form of the definition introduced by (Cloutier et al., 
1999). 

Definition 1. The SDC representation in Eq. (3) is a 
stabilizable parameterization of nonlinear system in Eq. (1) in 
the region of Ω , if the pair of { }),(),( uxBxA  is pointwise 
stabilizable in the linear sense for all u  and Ωx∈ . 

By shaping the Hamiltonian as: 

( ) ( ),),()(
2
1 uxgxxAλRuuQxxΗ +++= TTT   (4) 

and applying the optimality conditions as: 

,;; 0
u
Ηλ

x
Ηx

λ
Η

=
∂
∂

=
∂
∂

−=
∂
∂ &&   (5) 

and by rearrangement and use of mathematical operations, 
the control law is obtained in the form of: 

,),(),(1 xuxkuxBRu T−−=   (6) 

where ),( uxk  is the symmetric positive solution of the state-
dependent Riccati equation as: 

.),(),(),(),(
),()()(),(

1 0QuxkuxBRuxBuxk
uxkxAxAuxk

=+

−+
− T

T

  (7) 

Two steps are necessary for stability analysis of the proposed 
non-affine structure. The continuity of ),( uxk  must be 
proven for its arguments and the stability of the control 
algorithm must be proven. (Wernli & Cook, 1975) proved 
both of these and provided theorems with extraordinarily 
beautiful proofs for the power series approximation method. 
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In the present study, another approach is used to show the 
continuity of ),( uxk  and the stability of the algorithm. 

Lemma 1 (Mean value theorem). Assume that 
ℜ→ℜ×ℜnyxf :),(  has a derivative at each point of an 

open set ),( ban ×ℜ , and assume that it is continuous at end 
points ay =  and by = . There is a point ),( ba∈π  such that 
(Arefi & Motlagh, 2011) 

).)(,(),(),( abxfaxfbxf −′=− π   (8) 

Based on Assumption 1, and the mean value theorem in the 
Lemma 1, it can be defined: 

,),(),( *uuxBuxg =   (9) 

where u  is a point between zero and *u . Applying Eq. (9), 
the control law is rewritten as: 

.),(),(1* xuxkuxBRu T−−=   (10) 

In (Arefi & Motlagh, 2011), vector )(xf  and matrix ),( uxB  
were unknown and the controller was an adaptive neural 
network. In the present work, )(xf  and ),( uxB  are known. 

Theorem 1. The nonlinear time-invariant non-affine system 
(1) with its performance criteria (2) and conditions based on 
Assumptions 1 and 2 can be stabilized using control law (10), 
for which ),( uxk  is the positive definite solution of the 
SDRE (7). 

Proof. Consider the Lyapunov function as: 

,),( xuxkxV T=   (11) 

and the time derivative of that as: 

.
),(),(),(),(
),(),(),(),(

)(),(),()(

1

1 x
uxkuxBRuxBuxk
uxkuxBRuxBuxk

xAuxkuxkxA
xV

















−

−+

=
−

−

T

T

T

T&   (12) 

This must be negative to guarantee stability. Using Eq. (7) 
and substituting, the following equation: 

( ) ,),(),(),(),( 1 xuxkuxBRuxBuxkQxV TT −+−=&   (13) 

obtains a negative value, since R is positive definite, Q is 
positive semi-definite, ),( uxk  is positive definite, and 

),(),( uxBuxBT  is positive whether or not ),( uxB  is 
positive, which guarantees the stability of the system.           ■ 

There are three methods to obtaining the solution of the 
SDRE; exact solution, power series approximation, and 
online control update. The exact solution can provide the 
answer by adding the integral of control structure (Cloutier & 
Stansbery, 2004)  

,~),()(
u

I
0

u
x

00
uxBxA

u
x









+
















=








&
&

  (14) 

or solving the control law and the system equations 
simultaneously.  

The details of power series approximation method are 
referred to (Wernli & Cook, 1975). The OCU formulation, a 
solution method for a non-affine SDRE, calculates most 
equations online during control implementation (Beeler, 
2004). The correspondence SDRE and the control law, Eqs. 
(15) and (16) can be solved repeatedly for updating the 
optimal gain. The SDRE becomes the algebraic Riccati 
equation at each step as: 

,),(),(

)()(

1
1

1

11

0QkuxBRuxBk
kxAxAk

=+

−+

+
−

+

++

nnn
T

nnn

nn
T

nn   (15) 

and the control law in the form of: 

.),( 1
1

1 nnnn
T

n xkuxBRu +
−

+ −=   (16) 

In present study, the control law and the SDRE are solved 
simultaneously to gain a suboptimal solution. This 
formulation is capable of controlling the systems in the form 
of Eq. (1); however, to apply this method, full-state feedback 
is required. The system in this scheme is shown in Fig. 1. 

 

 

 

Fig. 1. Control system in full state feedback mode. 

If full-state feedback is not available, an observer is required 
to provide an estimation of all unavailable states. 

3. SDRE OBSERVER 

Consider the following system: 

,),()( *uuxBxxAx +=&   (17) 
,)( xxCy =   (18) 

where rℜ∈y  is the vector of measured states and 
nr×ℜ→ΩxC :)( . 

Definition 2 (Mracek & Cloutier, 1998). The pair 
{ })(),( xAxC  are an observable (detectable) parameterization 
of the nonlinear system Eqs. (17) and (18) in the region of 
Ω , if that pair is pointwise observable (detectable) in the 
linear sense for all Ωx ∈ . 

The SDRE observer has been presented for affine-in-control 
systems by (Mracek et al., 1996). Since ),ˆ( uxB  and *u  are 
not directly effective in the design, the formulation can 
extend to this type of system. The observer framework is 
defined as: 

( ),ˆ)ˆ()ˆ(),ˆ(ˆ)ˆ(ˆ * xxCyxΓuuxBxxAx −++=&   (19) 

and the observer gain is: 

,)ˆ()ˆ()ˆ( 1−= WxCxpxΓ T   (20) 

SDRE 
Controller 

Plant or 
Process 

Full State 
Feedback 

Set Point or 
Trajectory 

Output 
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in which rn×ℜ→ΩxΓ :)ˆ( , x̂  is the estimated state vector, 
rr×ℜ→ΩW : is the weighting matrix for output, and 

nn×ℜ→Ωxp :)ˆ(  is the dual SDRE gain as: 

,0)ˆ()ˆ()ˆ()ˆ(
)ˆ()ˆ()ˆ()ˆ(

1 =+

−+
− ExpxCWxCxp

xAxpxpxA
T

T
  (21) 

and nn×ℜ→ΩE :  is the weighting matrix for estimated 
states.  

),ˆ( uxB  and *u  do not interfere in the solution of the observer 
design and the details of the observer, theorems, lemmas and 
more aspects, such as robustness design, can be found in 
(Mracek et al., 1996; Friedland, 1998; Beikzadeh & 
Taghirad, 2012; Iratni et al., 2012). The combined SDRE 
controller with observer is shown in Fig. 2. 

 

 

 

Fig. 2. The combined SDRE controller with observer. 

The system presented in Fig. 2 is more general than the 
system in Fig. 1, where full state-feedback is available. 

4. TUNING THE OBSERVER BASED CONTROLLER: R, 
Q, W AND E SELECTION 

One advantages of the SDRE method is the systematic steps 
used to complete the design of the controller. The R and Q 
matrices are the tuning parameters for obtaining the desired 
performance. The Q matrix is related to the states and the R 
matrix to the inputs. The values for elements of Q must be 
increased to decrease the errors for regulation or tracking. 
One approach to determining the R matrix is to define the 
elements of that, equal to the inverse of the maximum power 
of the relevant actuator. Since some models are 
mathematical, it should be defined by iteration. The 
combination of the SDRE controller and observer makes 
selection more complicated. The following steps for tuning 
the controller and observer are suggested:  

• Choose and tune Q and R assuming availability of full-
state feedback (without using the estimator for tuning). 

• Increase Q until the error of regulation or tracking is 
satisfied; then change R based on the control signal that is 
generatable. 

• Apply the observer in the control loop, increase the E 
matrix, and change W until the error of estimation is 
satisfying. 

It should be noted that error in estimation increases the 
control input and has an undesirable effect on the results. The 
gain of the observer should be tuned so that the estimation 
error is within allowable bounds. 

5. SUBOPTIMAL CHEAP CONTROL PROBLEM 

High gain linear systems are those in which the norm of the 
feedback control matrix has a high magnitude that is usually 
one or more orders of magnitude greater than that of the norm 
of the system matrix (Gajic & Lim, 2001). A cheap control 
problem is characterized by a small penalty factor applied to 
the control term for the quadratic performance criterion, 
usually one or more orders of magnitude smaller that the state 
penalty term (Gajic & Lim, 2001). In this case, the usual 
hypotheses, even for linear case, are no longer appropriate 
(Jameson & O'Malley, 1975). 

To show the high gain properties of a system, the feedback 
control matrix is considered as: 

 ),,(),(),()( 1 uxkuxBRuxBxAA T
cl

−−=   (22) 

and the Frobenius norm is selected to show the magnitude of 
the system as: 

.)( cl
T
clFcl trace AAA =   (23) 

This system can be interpreted as having a singular R matrix 
or positive semi-definite R, because it fails to deliver a proper 
solution. To avoid this problem in real-life cases, the states of 
system must be chosen carefully; however, sometimes the 
plant or process leaves no choice except a system with both 
fast and slow variables. In this case, the suboptimal cheap 
control problem can be used as a remedy.   

For high gain systems, the quadratic performance criteria is 
rewritten as (Gajic & Lim, 2001): 

( ) ,
2
1

0

2∫
∞

+= dtJ TT RuuQxx ε   (24) 

where ε  is a small positive value. The correspondent control 
law is: 

.),(),(1 1
2

* xuxkuxBRu T−−=
ε

  (25) 

Using this approach, all the input signals are enhanced to 
compensate for the regulation speed of the slow variables of 
the system. When a part of a system varies slowly, some 
relevant inputs must be enhanced. In that case, imposing ε  
onto relevant rows of R  is suggested to avoid an unnecessary 
increase in the magnitude of the other input signals. 

This topic presented in details for linear systems in (Gajic & 
Lim, 2001); however, the supporting theorems and aspects of 
the problem have yet to be investigated for the nonlinear 
case.   

6. ILLUSTRATIVE EXAMPLES 

6.1. Mathematical model with B(u) 

The first case study for this part was chosen from (Arefi & 
Motlagh, 2011) and is as in the following form: 

SDRE 
Controller 

Plant or 
Process 

Partial State 
Feedback 

Set Point or 
Trajectory 

Output 

SDRE 
Observer 
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du
uxx 








+















+
+








−−

=
1
0

1.0
1
0

221
10

21

xx&   (26) 

[ ]x01=y   (27) 

in which )2sin(5.0 td =  is the external disturbance. The 
output of the system is 1xy =  and an observer-based 
controller is needed to provide full-state feedback for the 
controller. The control problem is to track desired trajectory 

)sin(5.0 tydes = . It is assumed that n derivatives of desy  are 
available (Arefi & Motlagh, 2011). The following parameters 
were chosen based on proposed method of selecting 
weighting matrices:   

,1.0=R   (28) 
,100 22××= IQ   (29) 

,1=W   (30) 

,
1000000

00








=E   (31) 

and the initial conditions are selected as 
[ ]T4.02.0)( −=0x  and [ ]T1.01.0)(ˆ =0x . The 

simulation in Fig. 3 and 4 show the responses of states. Fig. 5 
shows the error of trajectory tracking and Fig. 6 shows the 
control input. Fig. 7 shows a better presentation of control 
input at commencement. 

0 5 10 15 20 25 30-0.5

0

0.5

1

t (sec)

X 1

 

 

Exact Solution Estimated State Desired

 

Fig. 3. First state, example 1: Actual state, estimated state and 
desired trajectory. 

0 5 10 15 20 25 30-2

0

2

4

t (sec)

X 2

 

 
Exact Solution Estimated State Desired

 

Fig. 4. Second state, example 1: Actual state, estimated state 
and desired trajectory. 

0 5 10 15 20 25 30-2

0

2

4

t (sec)

Er
ro

r

 

 
X1 X2

 

Fig. 5. Error of states in tracking, example 1. 

0 5 10 15 20 25 30-20

0

20

40

t (sec)
U

 

Fig. 6. Control input, example 1. 

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

t (sec)

U

 

Fig. 7. The starting of control input, example 1. 

The results of (Arefi & Motlagh, 2011) using an observer-
based adaptive neural network control confirm the results of 
the proposed method. Both control inputs have chatter-like 
motion at the beginning of the simulation caused by the 
observer; however, the magnitude of the control signal of 
SDRE was lower than the control effort in (Arefi & Motlagh, 
2011). (Arefi & Motlagh, 2011) proposed an adaptive neural 
network algorithm that does not need the priori knowledge of 
control gain direction. The neural network controller was 
employed for approximation of the unknown nonlinear 
functions. The SDRE controlled the system with acceptable 
results. The error can be decreased, although it may cause a 
large jump at the beginning of the control signal. Generally, 
perfect tracking (initial condition and beginning of trajectory 
are the same) is suggested for this controller. The term 1−R  in 
the control law Eq. (10) multiplied in the error, causing an 
initial error that could cause big jump or chatter-like motion 
in the control signal. 
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6.2. Mathematical model with B(x,u) 

The case study here was chosen form (Essounbouli & 
Hamzaoui, 2006) and uses ),( uxB  as: 

( ) d
uuxux 








+








+++

+







=

1
0

)1.0sin(11.01.0
0

0
10

2
2

3
1

xx&   (32) 

[ ]x01=y   (33) 

where ( ))2sin()sin(2.0 ttd +=  is the external disturbance 
and the desired trajectory is )sin(tydes = . The same condition 
availability of n derivatives of desy  is considered.  

There is a difference between this model and the previous 
one. Vector ),( uxg  in this example has term )1.0sin( u  that 
has no additional u to be factored for forming uu),(xB . 
There are two approaches for dealing with this kind of 
situation: the first one is to divide and multiply the term by 

the u that forms u
u

u)1.0sin( . This operation may lead to 

singularity problems. The second approach is to use the 
Taylor series expansion that forms 

uuu 







++= …

600010
1)1.0sin(

2
. In this example, the second 

approach is applied. (Essounbouli & Hamzaoui, 2006) solved 
this based on the availability of all-state feedback; however, 
in the present study, simulation is done using the knowledge 
of only 1xy =  to show use of an observer. The weighting 
matrices are tuned and selected as: 

,1=R   (34) 
,100 22××= IQ   (35) 

,1.0=W   (36) 

,
1000

00








=E   (37) 

The initial conditions are [ ]T5.05.0)( =0x  and for 

estimation are [ ]T6.04.0)(ˆ =0x . The following results 
were attained in 20 s. Figs 8 and 9 show the states and Fig. 10 
shows the error from the desired trajectory. The control 
signal is shown in Fig. 11. 
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-0.5
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1

1.5

t (sec)

X 1

 

 Numerical Solution Estimated State Desired

 

Fig. 8. First state, example 2: Actual state, estimated state and 
desired trajectory. 
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Fig. 9. Second state, example 2: Actual state, estimated state 
and desired trajectory. 
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Fig. 10. Error of states in tracking, example 2. 
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Fig. 11. Control input, example 2. 

The error of states can be decreased by increasing the Q 
matrix. The jump at the start of control input is cause by 
initial error, which can be greatly decreased with perfect 
tracking. The value of external disturbance in this example is 
also notable. The magnitude of the control signal decreased 
after 3 s in comparison with that for (Essounbouli & 
Hamzaoui, 2006). 

6.3. Mathematical high order example: A 5D model 

Consider the following system: 

,),()( uuxBxxAx +=&   (38) 
,)( xxCy =   (39) 

where 
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=xC   (42) 

This case study was chosen from (Banks, Lewis & Tran, 
2003) and was modified to a non-affine system. The initial 
conditions for states are 

[ ]T5.01.01.02.04.0)( −−=0x  and for estimation 

are [ ]T4.0001.03.0)(ˆ −=0x . The parameters of 
the controller are tuned to: 

,1.0 22××= IR   (43) 
,10 55××= IQ   (44) 

,1.0 22××= IW   (45) 
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×=E
  (46) 

and the  results were obtained in 10 s of simulation. Figs. 12-
16 show the variations of states. The control signals are also 
shown in Fig. 17. 
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Fig. 12. The variation of first state. 
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Fig. 13. The variation of second state. 
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Fig. 14. The variation of third state. 
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Fig. 15. The variation of fourth state. 
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Fig. 16. The variation of fifth state. 
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Fig. 17. Control input signals. 

The Q and R matrices must be changed to improve 
performance, which affects the magnitude of the control 
signals. 

6.4. Suboptimal Cheap Control Example 

The 5D example in Section 6.3 is changed to a high gain 
system for this example. All system and weighting matrices 
remain the same, except ),( uxB : 
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 where 01.0=ε . The high gain properties of the system 
from Eqs. (22) and (23) are shown in Fig. 18. 
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Fig. 18. High gain properties of the system. 

The cheap control algorithm results an enormous input signal 
in comparison with the signal for the unperturbed system. To 
observe the system, the second input signal only requires the 
cheap control scheme. Instead of using Eqs. (24) and (25),  
the proposed approach is used by consideration R as: 

.
0

01
1.0 2 








×=

ε
R   (48) 

The norm of states errors gained is the same at the cost of 
increasing the second input signal Figs. 19 and 20. 
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Fig. 19. Norm of the states error. 
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Fig. 20. Control inputs for high gain example. 

Generally, this approach generates a large signal at the 
beginning of the control signals. To remedy this, a fixed 
constraint is proposed to limit the signal 50minmax, ±=u ; this 
definitely increases the norm of the error  Figs. 21 and 22. 
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Fig. 21. Norm of the states error. 
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Fig. 22. Control inputs for high gain example. 

7. CONCLUSIONS 

The present study formulated the state-dependent Riccati 
equation as a nonlinear closed loop optimal controller for a 
class of non-affine systems based on a SDRE observer. The 
SDRE observer provided the unavailable states for full-state 
feedback. A brief discussion of sub-optimal cheap control 
problem was provided. Four illustrative examples, each 
focusing on a specific point, were solved to show the 
adaptability and capability of the SDRE controller. The first 
case study was compared with the results of previous 
research on an observer-based adaptive neural controller and 
the proposed SDRE method was shown to be well-confirmed 
with less control effort. The second example used a robust 
adaptive fuzzy controller and similar results were obtained. 
The overall results demonstrate that the good performance of 
the controller and the simple and systematic steps for 
completing the design procedure are the advantages of this 
technique. 
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