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Abstract: The paper presents a multi-domain Controller Area Network (CAN) software gateway with 
monitoring capabilities, targeted to distributed systems with complex architectures. Besides allowing a 
large amount of data exchanged between numerous CAN units, the gateway uses the traffic monitoring in 
order to implement adaptive message routing. The messages are sent on the fastest route which is able to 
maintain adequate traffic balancing. For increased reliability in the management of the critical messages, 
the transmission is done based on the priorities deduced from message ID’s. Besides, the gateway stores 
in a local memory the optimal routes corresponding to nominal conditions and recalculates the paths only 
if the traffic load changes on the involved CAN buses or any communication error occurs. The embedded 
gateway application is based on an OSEK compliant real time operating system and allows USB 
communication with a PC, in order to visualize extensive information about CAN communication. The 
real time performances of the suggested solution are demonstrated on a distributed system involving 
multiple interconnected CAN domains. 

Keywords: embedded systems, gateway, message routing, multi-domain CAN system. 

 

1. INTRODUCTION 

The Controller Area Network (CAN) is one of the most 
employed communication technologies for handling critical 
data exchange. Its applications range from high speed 
networks to low-cost wiring of multiple devices, within 
domains like automotive, industrial automation or medical 
equipment. CAN provides event-driven communication on a 
single terminated twisted pair cable. Given its high speed, 
Ethernet is one of CAN’s competitors. However, several 
features make CAN bus the preferred option for the 
distributed industrial systems requiring high reliability 
communication, with extensive error checking: the lower 
connection costs per node compared with Ethernet based 
networks, the higher network reliability due to the passive 
structure of the network, the ease of use, the high protection 
against electromagnetic interferences and the availability of 
CAN controllers within microcontrollers (Oertel, 2012). 
Other CAN’s main competitors are the local interconnected 
network (LIN) and FlexRay (Eisele, 2012). Due to its low 
speed, LIN is mainly limited to communication with sensors 
and actuators. Usually, in contemporary cars, the operation of 
LIN sub-networks is still integrated by a CAN bus. On the 
contrary, FlexRay is recommended because of a bandwidth 
higher than the one guaranteed by CAN. However, the higher 
costs and the significant involved engineering effort 
determined a seldom utilization of FlexRay, only. Currently, 
almost all of FlexRay-based applications are reported in the 
automotive industry. 

The CAN protocol characteristics allowed distributed 
systems’ designers to integrate an increasing number of 
software functionalities, as well as a growing number of 

CAN nodes within a CAN domain. Automotive industry 
represents an illustrative example for the development of 
CAN bus applications. A large numbers of CAN devices are 
interconnected in nowadays cars - between 6 and 60 CAN 
interface instances exchanging thousands of signals (Eisele, 
2012; Navet and Perrault, 2012). The CAN domains are 
targeting specific functionalities, like power-train system, 
multimedia system, body and chassis system or safety 
system. This leads to an obvious lack of bandwidth. For 
compatibility reasons, many efforts are constantly targeted to 
increasing the bandwidth and the data bit rate for systems 
based on the popular CAN protocol, as the specifications of 
this protocol are still fulfilling the other requirements of 
engineering applications. The straightest solution for reaching 
this goal is allowing an appropriate device clustering, each 
cluster representing a CAN domain in a distributed system 
with multiple CAN domains. The interconnection between 
CAN domains would be made by means of gateway devices 
in charge with passing the data received from one CAN 
domain to the other CAN domains. 

Within this context, this paper presents a new CAN-CAN 
gateway device which allows integrating the CAN bus within 
distributed systems with a high number of devices and 
complex topologies (e.g., resulted by interconnecting CAN 
domains). The proposed gateway monitors the connected 
CAN buses and identifies the fastest message route. The 
information obtained during real-time operation about the 
traffic in each CAN domain permits assuring an appropriate 
traffic balancing between the CAN domains and allows the 
reconfiguration of the fastest route, whenever overloading 
conditions or other communication errors are detected. 
Aiming improved reliability in fulfilling the critical real time 
constraints, the CAN messages received by the gateway are 
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locally scheduled for transmission, based on the priorities 
associated over the CAN bus, instead of using the common 
First-In-First-Out (FIFO) mechanism. Besides, the embedded 
gateway application is developed in an OSEK compliant real 
time operating system which ensures increased safety and 
predictability. Please note that, although this original gateway 
solution is discussed for CAN based systems, the concept can 
be simply extended to other communication protocols, too. 

The paper is organised as follows. Sections 2 presents the 
related research work regarding the increasing of CAN’s 
bandwidth and data bit rate, the current approaches related to 
multi-domain CAN systems and the existing gateway 
solutions. The main characteristics of CAN protocol are 
discussed in Section 3, while Section 4 presents the basic 
features of the OSEK compliant real time operating system, 
namely ProOSEK. A detailed description of the proposed 
gateway algorithm is given in Section 5, with emphasis on 
gateway’s new facilities. Section 6 presents the development 
of the suggested algorithm for ProOSEK 

 real time operating system and, afterwards, Section 7 
demonstrates the capabilities of the gateway by means of 
several experimental investigations. Section 8 is devoted to 
conclusions. 

2. RELATED WORK 

The Controller Area Network is a mature technology (Bosch, 
1991) with more than 20 years of use in many application 
fields. It is utilised in places where multiplexed and high-
speed communications provided over a limited number of 
wires are needed. There are various approaches trying to 
make CAN more appropriate for nowadays distributed 
systems, where an increased number of CAN enabled devices 
and CAN messages require bigger bandwidth and data bit 
rate. 

An effort for increasing the CAN bandwidth and the bus 
speed has been conducted during the last years. The CAN+ 
protocol is based on dual speed approach that employs two 
alternate bit rates (Sheikh and Short, 2009; Ziermann et al., 
2009) and permits up to 16 times higher data rates. The 
CAN+ based devices switch the bit rate, after the arbitration 
phase, from the lower to higher value, during the time slots, 
whenever classic CAN devices do not listen. Changing the 
classic bus topology from line one to star (or tree) topology is 
the solution proposed by (Kurachi et al., 2010). This allows 
obtaining transmission speeds up to 10Mbps, by means of the 
Scalable CAN protocol. Mainly, Scalable CAN is based on a 
new ACK (“acknowledge”) information field and employs a 
new collision resolution algorithm which guarantees the 
delivery of a message within a given time period. Another 
new alternative stays in CAN with flexible data-rate, which 
offers an up to 8 times bigger data field speed and a payload 
of 32 or 64 bytes. (Hartwich, 2012; Oertel, 2012). Anyway, 
this is a young, still developing technology, so other 
approaches based on the classic CAN protocol could be 
preferred in critical real-time systems. In this attempt, the 
gateway solution presented in this paper offers increased 
flexibility in connecting the domains based on standard CAN 
for any type of topologies, as basis for supporting 

significantly improved bandwidths. It permits exchanging an 
increased number of messages between an increased number 
of devices, within and between CAN domains interconnected 
in complex architectures. 

Other approaches keep the CAN protocol and develop more 
complex distributed architectures by clustering the CAN 
enabled devices (Navet and Perrault, 2012; Braescu and 
Ferariu, 2012) and interconnecting the resulted CAN domains 
through gateways or bridges (Sommer et al., 2006). Bridges 
were used in order to connect different CAN networks (Eltze, 
1997) by sending the messages from one network to the 
other, followed by gateways, which applied more complex 
processing operations on the CAN messages. The gateways 
are used for interconnecting different protocol networks 
(CAN, FlexRay) (Schmidt et al., 2010) or same protocol 
networks (CAN-CAN gateways) (Sommer and Blind, 2007; 
Seo et al., 2008), which deal with different transfer rates and 
provide operations like message forwarding or message 
assembling. The presented gateway is designed for 
connecting CAN domains with different working speeds. 
Besides, message forwarding provides dynamic route 
selection, as well as traffic monitoring and balancing between 
CAN domains. 

The main types of gateways have been proposed, namely the 
discrete channel one and the complex channel one. The 
discrete channel gateway (the software gateway) is composed 
by a set of discrete channel CAN controllers managed by a 
software application in charge with message handling. This 
type of gateway is flexible, but it requires a powerful 
processor to deal with real time operation. It is worth 
mentioning that in support of software gateways, 
microcontrollers with many communication controllers are 
already available (Lorenz, 2008). On the other side, the 
complex channel gateway consists in a CAN controller 
specifically tailored for the application, supporting a 
hardware-oriented development with no additional processor 
load. The advantages of discrete and complex channel 
gateways could be merged in modular gateways (Taube et al., 
2005). This paper presents a discrete channel gateway 
implemented in ProOSEK. In order to reduce the required 
processing load, the gateway stores the nominal optimal paths 
in a local memory and recalculates the optimal paths only if 
the nominal working conditions are not met. 

Different algorithms have been proposed for processing the 
received messages and scheduling their transmission within 
the gateway devices. The Round Robin scheduler employed 
in (Sommer and Blind, 2007) serves the incoming messages 
within equally allocated frames, while weighted Round 
Robin or other priority-based scheduling algorithms can be 
employed in order to induce priorities between CAN domains 
or messages. In order to favor the transmission of critical 
messages, the suggested gateway algorithm uses a local 
priority based scheduling. The priorities are determined from 
the ID of the message. Besides, this scheduling is 
accompanied by the detection of faster communication paths 
and the avoidance of bus overloading. 

The common architecture in nowadays car is the star one, all 
the CAN domains being connected to the same gateway. The 
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architecture is quite rigid and cannot deal with an increasing 
number of in-vehicle CAN domains and messages. The 
traffic can be affected by gateway bottlenecks and the 
number of CAN domains is limited to the number of CAN 
modules provided by the gateway. In this context, it is of 
great interest to find appropriate solutions for the design of 
more complex architectures, able to allow advanced and 
intelligent cooperation between the embedded entities. As 
explained later, the main benefit of the proposed solution 
stays in the fact that it provides significantly increased 
flexibility in designing the topology of real-time distributed 
systems with interconnected CAN domains. The resulted 
distributed system can ensure high bandwidth, as well and 
increased robustness, via the original mechanisms embedded 
within the gateway. These mechanisms are meant to message 
scheduling, traffic balancing, detection of communication 
errors, including detection of communication overload. In 
extension to the previous gateway algorithms presented in 
(Braescu et al., 2011; Braescu and Ferariu, 2012), this 
approach implements a priority-based scheduling algorithm 
for sending the received messages and integrates an improved 
adaptive routing, which is able to balance the traffic between 
the CAN domains of the distributed system. As the suggested 
solution follows the discrete channel gateway concept, 
increased flexibility is obtained in terms of compatibility with 
applications involving different number of CAN adjacent 
modules. 

3. CAN PROTOCOL 

The proposed gateway device exploits the facilities of the 
OSEK compliant real-time operating system and CAN 
communication protocol in order to allow a better 
management of the CAN traffic with increased bandwidth, in 
distributed systems involving architectures with multiple 
interconnected CAN domains. 

CAN is a protocol that provides multi-master broadcast serial 
bus communication, each device being able to send or to 
receive messages on the bus, but not at the same time. The 
messages are broadcasted and each CAN receiver decides to 
process or to ignore a certain message. One of the main 
advantages offered by the CAN protocol is the arbitration 
mechanism performed during message sending. This 
mechanism assures that if two messages are simultaneously 
sent on the bus and a collision is detected, the arbitration is 
won by the message with the highest priority and no data 
corruption or communication error appears. After an 
arbitration phase, the winning message is sent, while the 
devices that lost the bus arbitration will hold the transmission 
and retry to send their messages later. The arbitration 
mechanism assumes the uniqueness of each CAN message 
identifier on a certain bus. This allows identifying the 
message source and interpreting the meaning of 
communicated data. All the devices besides the transmitting 
one will receive the message and will use the identifier field 
in order to detect whether the message is relevant for them or 
not. In the unlikely case of messages with the same identifier 
field being sent simultaneously by two or more CAN devices 
on the same bus, the arbitration mechanism fails, leading to 
communication errors. 

The CAN protocol provides an appropriate environment for 
an automatic detection of data transmission errors and for a 
centralized error management. The CAN protocol 
implements mechanisms of error detection, error handling 
and error limitation. The error detection one allows the 
detection of the following error types: bit error, frame error, 
acknowledge error, CRC error and bit stuffing error. The 
error handling mechanism is based on the error flag field to 
signal the error’s detection, as well as the error indication 
receiving confirmation, whilst the error delimiter field 
permits the bus nodes to restart communications after an error 
has occurred. The error limitation mechanism allows the 
CAN bus to work correctly even if there are errors-generating 
faulty nodes. Therefore, each node can be in one of the 
following three error states: error active, error passive and 
bus off (the node can neither send nor receive).  

The message transmitter sends the message again when an 
overload frame is received and the next transmission’s start is 
delayed by the overload frame. The CAN protocol specifies 
that in order to delay the start of the next message, a node can 
generate maximum two consecutive overload frames. 

The CAN protocol does not provide a deterministic response 
time for messages assigned with low priorities (Bril et al., 
2006), so, in order to assure a good utilization of the CAN 
bus, higher priorities should be assigned to the messages with 
short periods of occurrence (Davis et al., 2007). The 
proposed gateway is able to deal with CAN domains with 
different working speeds. The transfer rate for each CAN 
domain is taken into account during the dynamic selection of 
each message route, in order to provide a fast transmission 
and traffic balancing. The maximum transfer rate on CAN 
bus is 1 Mbit/s, but the typical transfer rates employed within 
automotive and industrial environments are 500 Kbit/s, 250 
Kbit/s and 125 Kbit/s. 

4. ProOSEK REAL TIME OPERATING SYSTEM 

In support of later discussion concerning the development of 
the OSEK-based gateway, a brief overview of the ProOSEK 
real time operating system characteristics is given in the 
following. ProOSEK is designed to support the development 
of safe and portable embedded applications (3SOFT, 2003). 
The ProOSEK’s portability is assured by a set of standard 
objects and API services that make the OSEK-based 
applications compliant with a large range of hardware 
architectures.  

All the ProOSEK objects are statically created and all their 
attributes must be set before running the application, the 
static configuration of all defined objects giving ProOSEK 
predictability and safety. ProOSEK offers flexibility and 
scalability as well, as a multitude of layouts results via 
different configurations of available objects. More precisely, 
all the ProOSEK objects used inside the embedded 
application have to be declared in the *.oil files. An *.oil file 
may include an implementation definition part (specifying the 
attributes supported by the current OSEK implementation and 
all their permitted values) and an application definition part 
(containing declaration statements for all objects used in the 
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C application with assignments of corresponding attributes 
and declaration of references to required connected objects). 

As a real time operating system, ProOSEK provides diverse 
capabilities for developing multitasking embedded 
applications: quick commutation between different contexts, 
predictable interrupts handling, simple resource sharing 
mechanism, events’ handling for synchronization operations, 
time management through counters and alarms, as well as 
centralized and local error management. 

The concurrent processes within an ProOSEK-based 
multitasking application are the tasks and the interrupt 
service routines (ISRs). The tasks execution is supervised by 
the RTOS scheduler and they can be preemptive or non 
preemptive. ProOSEK is an event-driven real time operating 
system, so the scheduler might be activated in one of the 
following cases: the ready tasks queue is changed, the 
processor or a shared resource are freed, or there is an 
explicit call to the scheduler. The task priorities are fixed and 
the processor is allocated to the highest priority ready task. 
The tasks having the same priority are managed according to 
FIFO algorithm.  

The ProOSEK processes (tasks or ISRs) may share passive 
resources, the ceiling priority protocol (PCP) being employed 
as a solution to prevent priority inversion and deadlock. PCP 
assures that during a critical sequence (while a resource is 
occupied), the resource owner process receives a higher 
temporary priority, equal to the highest priority of the 
task/ISR that may ask to access that resource, such that the 
process may not be preempted by another competitor entitled 
to use the same resource, until it does not release it. 

One can notice that ProOSEK, like most of the RTOSs, offers 
special debugging facilities like an easy monitoring of stack 
usage, tasks execution and even CPU utilization, by means of 
OS Tracer, Stack and Run-time Checker, correspondingly. 

5. ALGORITHM DESCRIPTION 

The proposed gateway employs an original policy for the 
dynamic selection of fastest message routes. The routing 
algorithm advantageously exploits extensive information 
extracted by means of traffic monitoring performed on each 
CAN domain. The main functional blocks of the gateway are 
illustrated in Fig. 1. As detailed below, the gateway is in 
charge with message priority based scheduling and routing. 
The sequence in which the received messages are handled is 
given by the priorities locally deduced from the message ID. 
For each transmitted message, the gateway determines the 
fastest available route, based on the information obtained via 
traffic monitoring. The optimal route ensures the traffic 
balance within the distributed system. This implicitly 
involves the avoidance of overloaded buses. 

5.1 Traffic monitoring 

Once the message routing should ensure real time traffic 
balance, monitoring the traffic on each CAN domain 
becomes essential. Traffic monitoring is employed for each 

available CAN bus connected to the gateway, and includes 
the CAN module level and the gateway level. At CAN 
module level, the monitoring is done by extracting all the 
information regarding the messages received or transmitted 
on the corresponding CAN bus, like the frame type, the 
corresponding frame length and the number of allocated 
bytes. 
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Fig. 1. The basic functionalities of the gateway algorithm. 

The CAN messages can be of standard, extended, error, 
remote or overload frame. In the case of standard or extended 
frame, the CAN message is composed of the following fields: 
start-of-frame (SOF), arbitration, control, data, cyclic 
redundancy check (CRC), acknowledge (ACK) and end-of-
frame (EOF). The arbitration field includes the message’s 
identifier (ID) and the Remote Transmission Request (RTR) 
bit. More information about the contents of the CAN 
message, such as the number of data bytes available in the 
message and the frame’s type (standard or extended) are 
encapsulated within the control field. The error frame is 
generated by any CAN node that detects a bus error. Once an 
error frame is received, all the CAN nodes drop the last 
received message and the transmitter resends the message. 
The error frame is composed by an error flag field and an 
error delimiter field. 

A CAN node requests data from another CAN node by means 
of a remote frame, also called RTR frame. As a response to a 
RTR frame, a data frame with the same identifier will be 
transmitted from the CAN node which waits that RTR 
message. The nodes receiving a RTR frame check whether 
there is the corresponding transmitter defined or not. The 
node satisfying the condition sends the RTR response data 
frame. The request and the response frames are completely 
different frames, so it is obvious that the response frame 
could be delayed because of the messages with higher 
priorities exchanged on the CAN bus. 

The monitor detects the type of data frame (standard or 
extended) and the length of data fields. The error, remote or 
overload frames are identified as well, and the error and 
overload information are recorded and used later by the 
adaptive routing with traffic balancing mechanism.  
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For a realistic estimation of the traffic on a CAN bus, the 
inter-frames spacing and the bit stuffing are considered. They 
are mechanisms offered by the CAN protocol in order to 
assure communication reliability. The first one assures that 
standard, extended and remote frames are separated by an 
inter-frame space, whilst the second mechanism ensures that 
a bit of opposite polarity is inserted after five consecutive bits 
of the same polarity. A good understanding of these 
mechanisms permits an appropriate traffic estimation to be 
made. The traffic estimation within the proposed gateway is 
done by considering both mechanisms. The length of the 
inter-frames spaces associated to standard, extended and 
remote frames are determined and recorded, yet the number 
of extra bits added by the bit stuffing mechanism is 
estimated. Exact information about the bits added by the bit 
stuffing mechanism can not be extracted, given the dynamic 
characteristic of the mechanism. One can notice that all these 
operations are done besides the normal message receiving 
operation. 

The number of communicated bytes detected at CAN module 
level is saved for each CAN module into a local message 
queue. The traffic estimation at gateway level is done 
periodically by the task in charge with traffic monitoring that 
processes the local message queues contents and calculates 
the consumed bandwidth of each CAN bus. This is used 
further by the message scheduling and routing mechanism. 

5.2 Message scheduling and routing 

The message scheduling ensures that the message scheduled 
to be transmitted is the message with the highest priority 
from the CAN messages received by the gateway. This 
priority based policy replaces the common FIFO message 
scheduling, also employed in (Braescu et al., 2011). The 
main benefit of the prioritized transmission lies in the fact 
that it can ensure the fulfilment of hard real time constraints 
by means of faster transmissions of critical messages. For the 
highest priority message, the routing mechanism decides 
afterwards which CAN module will be in charge with 
message transmission. 

The CAN messages received by the gateway are locally 
scheduled for transmission based on the priorities associated 
over the CAN bus. The priority of a message is given by the 
identifier field which is 11 bits long (standard frame) or 29 
bits long (extended frame); hence, the less is the ID’s value, 
the higher is the priority of the message. For each CAN bus 
there is a set of received CAN messages that should be 
transmitted. Therefore, the gateway stores the incoming 
messages in multiple independent queues, each queue being 
associated to a distinct receiving CAN module. However, the 
scheduling policy acts on all these queues, meaning that the 
highest priority message is locally chosen from the whole 
collection of available messages. For a faster determination 
of the highest priority message, the receiving queues are 
preserved sorted in terms of the ID field, each message being 
inserted in the appropriate location. As consequence, the 
scheduling mechanism has only to check the first element of 
each queue and to select the message with the smallest ID for  

the next transmission. If two or more messages with the same 
priority are found, the message with the maximum predefined 
route cost will be preferred. 

As presented in (Braescu et al., 2011), each gateway locally 
stores the whole distributed architecture by means of a graph. 
The node of a graph corresponds to a communication node, 
while an edge indicates the existence of a communication 
bus. The cost ic  allocated for the edge i  specifies the 
transfer rate of that CAN bus. The accepted values are 

{ }1, 2, 4,8ic ∈ , corresponding to the transfer rate 1000 Kbit/s, 
500 Kbit/s, 250 Kbit/s and 125 Kbit/s, respectively. The 
routing procedure determines the fastest route in the graph by 
means of Dijkstra’s algorithm.  

In order to provide traffic balancing, multiple traffic costs are 
accepted for the same CAN bus. These costs are allocated 
online, by taking into account the consumed bandwidth 
reported for each CAN bus via traffic monitoring. For a 
specific bus, the algorithm considers a finite number of 
intermediary bandwidth levels and, correspondingly, a finite 
number of edge costs. More precisely, the edge cost is 
modified whenever the traffic on the bus exceeds or is below 
a certain threshold. The number of accepted bandwidth 
thresholds depend on the maximum bus speed; hence for a 
bus with a maximum 1000 Kbit/s transfer rate, 3 intermediary 
levels are considered (namely 500 Kbit/s, 750 Kbit/s and 875 
Kbit/s), whilst for a bus with maximum 250 Kbit/s transfer 
rate, only one level is allocated.  

The updated edge costs are further considered in order to 
identify the shortest route within the graph associated to the 
multi-domain CAN system. Once the shortest path problem is 
solved and the CAN message route is found, the message is 
sent to the chosen CAN bus. This adaptive routing assures 
traffic balancing over the whole distributed system and 
prevents bus overload situations. The risk of traffic overloads 
is significantly reduced due to the premature reconfiguration 
of the optimal communication paths, triggered by the gradual 
detection of traffic load’s increasing. Although, given the fact 
that only a finite set of available costs is used, one can expect 
that the calls for the online reconfiguration of paths (by 
means of Dijkstra’s algorithm) will rarely occur. 
Consequently, a reduced mean processing overload is 
anticipated to be introduced by the gateway. 

A detected overloading situation is indicated by an overload 
frame generated by a CAN node either when a dominant bit 
is detected during inter-frames space or when a node is not 
yet ready to receive the next message. The last case could 
appear when the node is still reading a received message. The 
overload frame format is similar to an error frame format, but 
the overload frame can be generated only during an inter-
frame space. If an overload frame is received on a CAN bus, 
the traffic monitoring mechanism will indicate the 
overloading situation by mean of the maximum value of the 
bandwidth corresponding to that bus. Then, the allocated 
edge cost will be increased, such that the bus will be ignored 
during the adaptive message routing, until the overload 
situation disappears. 
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6. OSEK-BASED GATEWAY DEVELOPMENT 

The proposed gateway consists in a set of discrete channel 
CAN controllers offered by the microcontroller and an OSEK 
based software application in charge with message handling. 
The proposed embedded gateway application is developed in 
compliance with ProOsek implementation. For each CAN 
module, the gateway application uses an identical set of 
OSEK objects, in order to manage message reception and 
message transmission. For storing the received and the ready-
to-be-transmitted CAN messages, two different message 
queues are employed, namely RxMsgQueuei and 
TxMsgQueuei. By having separate queues for each CAN 
module, the resource sharing problems are avoided and better 
control on priority based insertion of received message could 
be easily provided. 

The message transmission and reception mechanisms are 
solved by means of ISR objects. This allows achieving 
increased responsiveness of the application, as the priorities 
of ISRs are higher than the priorities of any task. However, 
please note that ISRs priorities are not managed by the real 
time operating system and the scheduler does not control 
their execution. Also, like in other real time operating 
systems, the API service calls allowed during ISR processes 
are restricted to a limited set.  

 RX 

CANi-RX-ISR 

Task-CANi-RX 

Activate 

RxMsgQueuei 

Get message 

Put message 

CANi module 

GatewayMsgSchedRoutTask 

TrafficQueuei 

Traffic 
information 

 

Fig. 2. ProOSEK gateway message reception mechanism. 

The tasks of the application have been designed knowing that 
OSEK allows two types of tasks: basic and extended ones. A 
basic task can transit between ready, running and suspended 
states, whilst an extended task can have the waiting state as 
well (Lemieux, 2001). The extended tasks can have allocated 
their own events in order to implement synchronization 
operations, so an extended task can wait for an event to be set 
without occupying the processor. The extended tasks 
automatically switches from waiting state to ready state when 
the event is set (by another the task). It is worth mentioning 
that OSEK allows task’s multiple activations, each task 
instance being executed as an individual process. 

Fig. 2 illustrates the gateway reception mechanism. The 
CANi_RX_ISR interrupt service routine is executed when a 
CAN message has been received in the CAN channel i. It 
activates the task Task_CANi_RX, which copies the message 

from the CAN reception buffer and saves it in the queue of 
received messages. As described in a previous section, the 
message is inserted in the RxMsgQueuei queue such that the 
messages are kept sorted subject to the ID field value, the 
first message in the queue being the one with the highest 
priority. 

The Task_CANi_RX task determines the received message 
frame type, estimates the number of received bytes and saves 
the computed value in a queue named TrafficQueue. This 
queue is locally managed, at CAN module level. The 
Task_CANi_RX task is set as a basic, aperiodic, non 
preemptive task. It allows multiple activations, so each CAN 
message will be processed immediately after its reception, 
without disturbing the previous receptions, even the new 
reception overlays on the precedent ones. 

The messages stored in the local queues associated to the 
gateway’s CAN modules are examined by means of the 
GatewayMsgSchedRoutTask task. This task finds the 
message with the highest priority by checking the first 
elements from RxMsgQueuei queues, identifies its destination 
CAN domain, selects the appropriate route and saves the 
message in the ready-to-be-transmitted queue corresponding 
to the CAN module which will be in charge with its 
transmission.  

The GatewayMsgSchedRoutTask task is basic, periodic, 
preemptive and it allows a single activation. The period of 
GatewayMsgSchedRoutTask is accurately managed by means 
of an alarm installed on the system counter object. Counter 
objects can be defined within OSEK application for 
providing high-level access to the existing hardware counters. 
Generally, the alarms associated to the counters can support a 
simple time management, by triggering the activation of 
specific tasks, the setting of certain events or the execution of 
associated callback functions. In this case, a periodic alarm is 
in charge with the activation of GatewayMsgSchedRoutTask. 

The period of GatewayMsgSchedRoutTask task was set to be 
very small, such that the received messages are quickly 
processed. Besides, in order to avoid the loss of received 
messages, the priority of GatewayMsgSchedRoutTask is 
lower than the priority of Task_CANi_RX task. This means 
that Task_CANi_RX is allowed to preempt 
GatewayMsgSchedRoutTask. As explained before, if two 
messages arrive at the same CAN module, at approximately 
the same moment, both messages will be processed promptly, 
because the Task_CANi_RX task has multiple activations. 
However, please note that due to data consistency reasons, 
once GatewayMsgSchedRoutTask has chosen the highest 
priority message for transmission, the route selection 
continues with this message. All the newest incoming 
messages are treated at the next activations of 
GatewayMsgSchedRoutTask, even they have higher priorities 
than the message which has been already selected. 

The gateway’s message transmission mechanism is illustrated 
in Fig. 3. All the messages that need to be transmitted by a 
CANi module are saved in the corresponding TxMsgQueuei 
queue by the GatewayMsgSchedRoutTask task. The messages 
are read by the Task_CANi_TX task, which is responsible 



CONTROL ENGINEERING AND APPLIED INFORMATICS     55 

     

 
 
with finding an empty transmission buffer and storing the 
CAN message into it. Once a CAN message was sent on the 
bus, the end of the transmission is signalled by the 
corresponding transmission buffer by means of an interrupt 
serviced by CANi_TX_ISR, so that Task_CANi_TX can load 
another message ready to be transmitted. It is worth 
mentioning that setting appropriate dimensions of the queues 
involved within the gateway mechanism represents a key 
issue for preventing CAN message loss and for avoiding 
“bottleneck” effect. The Task_CANi_TX task is a basic, 
aperiodic, non preemptive task and accepts multiple 
activations. 
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TxMsgQueuei 
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CANi module 
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Traffic 
information 

 

Fig. 3. ProOSEK gateway message transmission mechanism. 

The ProOSEK-based solution proposed for traffic 
monitoring, message scheduling and routing is presented in 
Fig. 4. As mentioned before, the extracted traffic information 
regarding the received messages at each CAN module level is 
saved in the local TrafficQueuei queue by the Task_CANi_RX 
task. It is further processed by the task in charge at gateway 
level with traffic monitoring, named TrafficMonitorTask. 
This task is a basic, periodic, non preemptive task, with a 
single allowed activation. It calculates the consumed 
bandwidth for each CAN bus and updates the edge costs 
within the system’s graph representation, if situations of bus 
overloading or if the detected bandwidth is changed 
comparing to the thresholds.  

Each edge cost change is broadcasted by the gateway to the 
other gateways by means of additional CAN messages 
assigned with the highest possible priority. These messages 
have the destination parameter set to each gateway domain 
existent within the distributed system and the data field 
specifies the CAN bus label and the updated edge cost. 
According to the common requirements of software 
gateways, the number of domains connected to a gateway 
should be kept reasonable low, hence the communication 
overload produced by these messages results acceptable. The 
GatewayMsgSchedRoutTask task recalculates the shortest 
route for a message only if a change occurred within the 
graph representation, otherwise it uses the already available 
information from the cache memory. 
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Fig. 4. ProOSEK gateway traffic monitoring and balancing 
mechanism. 

7. EXPERIMENTAL RESULTS 

The performance of the gateway mechanisms were 
experimentally verified on a laboratory setup that simulates a 
distributed system architecture with multiple CAN domains, 
as presented in Fig. 5. The system is composed of 8 CAN 
domains and 3 gateway domains. It can be treated as a 
distributed system from automotive industry, where its CAN 
domains are specifically allocated to systems like power-train 
system, multimedia system, body and chassis system, safety 
system or even to subsystems of them. The label attached on 
each edge indicates the cost (deduced from the bus transfer 
rate) and the corresponding CAN bus identifier. 
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Fig. 5. Multiple CAN domain system architecture 
implemented during experiments. 

The gateway development was tailored to the available 
hardware limitations. The hardware architecture considers a 
Freescale S12X microcontroller with 5 independent CAN 
modules. Each CAN module allows 1Mbps maximum 
transfer rate and offers 5 receiving buffers with FIFO storage 
scheme and 3 transmission buffers with internal 
prioritization. Given these specifications, the gateway can use  
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maximum 5 CAN connections. From software application 
development standpoint, an important feature of the S12X 
microcontroller is that the CAN modules have distinct 
interrupt vectors, which allows separate and customized CAN 
interrupt servicing by means of CANi_RX_ISR and 
CANi_TX_ISR ISRs. 

Given the complex architecture of the multi-domain CAN 
system presented in Fig. 5, a large number of CAN devices 
clustered into 8 CAN domains were necessary in order to 
implement it. The experiments were done by using 4 gateway 
devices and 7 CAN monitor devices. The last ones are able to 
send different types of CAN messages and to monitor the 
CAN bus as well. Therefore, four of them (CAN Monitor 4, 
5, 6 and 7) were used to simulate an entire CAN domain each 
( 1D , 3D , 5D  and 7D , correspondingly), by sending various 
messages at different periods. The experimental setup also 
considers the monitoring of the messages received by the 
simulated CAN bus. The other three CAN monitors (CAN 
Monitor 1, 2 and 3) were connected to the three gateways 
domains, in order to monitor the traffic on them. The 
embedded gateway application allows USB communication 
with a PC, in order to visualize extensive information about 
the CAN communication. The experimental setup structure is 
illustrated in Fig. 6.  
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Fig. 6. Experimental setup for simulating a multi domain 
CAN system. 

During the experiments, 1D  domain, as well as the 9n  and 

11n  buses are connected at the CAN1, CAN2 and CAN3 
modules of 1G  gateway, 3D  domain and 11n  bus are 
connected at the CAN1 and CAN2 modules of the 2G  
gateway, correspondingly, and so on. Within each gateway 
algorithm, the GatewayMsgSchedTask task extracts the 
destination CAN domain identifier from the message data 
field and checks if the destination is connected at one of its 
CAN modules. If this condition is not satisfied, the task 
applies the Dijkstra’s algorithm, in order to find the shortest 
path in the graph, which corresponds to the fastest route. 
Obviously, this path indicates towards which CAN module 
the received message CAN has to be forwarded.  

For instance, a message sent from the 1D  domain to a device 
belonging to 7D  encrypts the identifier 7n  as its first byte of 

data, in order to indicate the final CAN destination. It was 
received by the 1G  gateway, which does not have the 
destination domain connected at one of its CAN modules and 
finally had to find the shortest (fastest) path in the graph. It 
determines the fastest route 1 3 4G G G− −  (of cost 3), instead 
of 1 4G G− (which has a cost of 4). During normal execution 
(without overloading), the message was sent on the bus 
corresponding to the 1 3G G−  edge and 3G  sent it further to 

4G . 4G  sent it further into 7D  domain, after identifying the 
CAN bus on which 7D  is connected. 4G  did not need to call 
the optimal routing algorithm, as the destination domain was 
directly connected to it. It is worth mentioning that the CAN 
message was not received by CAN Monitor 2, 5 or 6, 
confirming that the message was sent on the optimal route 
only. 

A bus loading was implemented by increasing the number of 
messages sent by the CAN monitor connected to that bus. In 
order to test the proposed gateway monitoring capabilities, 
CAN Monitor 3 was used to send CAN messages within the 
same CAN domain until the occupied bandwidth value 
reached the 250kbps threshold value. When the traffic on 10n  
bus exceeded the threshold value, messages were sent by 3G  
and 4G  in order to broadcast the updated edge cost. The 
messages were recorded by CAN Monitor 1 and 2. The 
messages sent from the 1D  domain to a device belonging to 

7D  were received by 1G  that determined the fastest route at 
that moment, namely 1 4G G−  (of cost 4), instead of 

1 3 4G G G− −  (which has a cost of 5). When the traffic value 
on 9n  exceeded the 125kbps threshold value, another 
messages were sent by 1G  and 4G  with the bus label ( 9n ) 
and updated edge cost (8) encapsulated within the data frame. 
The same messages sent from the 1D  domain to a device 
belonging to 7D  and received by 1G  were transmitted on the 
fastest route at that moment, namely 1 3 4G G G− −  (of cost 
5), instead of  1 4G G−  (which has a cost of 8). 

During the experimental tests, the communication overload 
produced by the transmission of the CAN messages 
announcing the graph updates was insignificant. These 
messages were sent by a gateway whenever its traffic 
monitoring module detected the need of changing the edge 
costs for any of the CAN buses connected to it.  

8. CONCLUSIONS 

The paper presents an improved OSEK-based gateway with 
new features and monitoring capabilities for multi-domain 
CAN distributed systems. It addresses the nowadays 
necessity for larger bandwidth and higher bit rate on the CAN 
bus by permitting distributed systems architectures with 
multiple CAN domains based on flexible topologies. The 
proposed solution makes use of traffic information on each 
CAN domain in order to assure adaptive routing of CAN 
messages, traffic balancing between CAN buses, as well as 



CONTROL ENGINEERING AND APPLIED INFORMATICS     57 

     

 
 
local message prioritization. Message scheduling for 
transmission is employed at gateway level by using CAN 
messages ID field instead of using the common FIFO 
mechanism. The fastest routes are determined by using 
updated information about the bandwidth consumed on the 
connected CAN buses. 

The embedded gateway application was developed in 
ProOSEK real time operating system, so it has increased 
predictability and safety. However the solution can be simply 
ported to other real time operating systems with event-driven 
scheduler. It also worth mentioning that even if the gateway 
algorithm and the related experiments are presented for 
distributed systems with multiple CAN domains, the 
algorithm itself is not limited to CAN protocol and it can be 
tailored for other communication protocols as well. 
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