
CEAI, Vol.16, No.2 pp. 49-57, 2014 Printed in Romania

Multi-Domain CAN Gateway with Monitoring Capabilities

Florin Cătălin Brăescu, Lavinia Ferariu, Corneliu Lazăr

Department of Automatic Control and Applied Informatics
”Gheorghe Asachi” Technical University of Iaşi, România

E-mail: cbraescu@ac.tuiasi.ro, lferaru@ac.tuaisi.ro, clazar@ac.tuiasi.ro

Abstract: The paper presents a multi-domain Controller Area Network (CAN) software gateway with
monitoring capabilities, targeted to distributed systems with complex architectures. Besides allowing a
large amount of data exchanged between numerous CAN units, the gateway uses the traffic monitoring in
order to implement adaptive message routing. The messages are sent on the fastest route which is able to
maintain adequate traffic balancing. For increased reliability in the management of the critical messages,
the transmission is done based on the priorities deduced from message ID’s. Besides, the gateway stores
in a local memory the optimal routes corresponding to nominal conditions and recalculates the paths only
if the traffic load changes on the involved CAN buses or any communication error occurs. The embedded
gateway application is based on an OSEK compliant real time operating system and allows USB
communication with a PC, in order to visualize extensive information about CAN communication. The
real time performances of the suggested solution are demonstrated on a distributed system involving
multiple interconnected CAN domains.

Keywords: embedded systems, gateway, message routing, multi-domain CAN system.

1. INTRODUCTION

The Controller Area Network (CAN) is one of the most
employed communication technologies for handling critical
data exchange. Its applications range from high speed
networks to low-cost wiring of multiple devices, within
domains like automotive, industrial automation or medical
equipment. CAN provides event-driven communication on a
single terminated twisted pair cable. Given its high speed,
Ethernet is one of CAN’s competitors. However, several
features make CAN bus the preferred option for the
distributed industrial systems requiring high reliability
communication, with extensive error checking: the lower
connection costs per node compared with Ethernet based
networks, the higher network reliability due to the passive
structure of the network, the ease of use, the high protection
against electromagnetic interferences and the availability of
CAN controllers within microcontrollers (Oertel, 2012).
Other CAN’s main competitors are the local interconnected
network (LIN) and FlexRay (Eisele, 2012). Due to its low
speed, LIN is mainly limited to communication with sensors
and actuators. Usually, in contemporary cars, the operation of
LIN sub-networks is still integrated by a CAN bus. On the
contrary, FlexRay is recommended because of a bandwidth
higher than the one guaranteed by CAN. However, the higher
costs and the significant involved engineering effort
determined a seldom utilization of FlexRay, only. Currently,
almost all of FlexRay-based applications are reported in the
automotive industry.

The CAN protocol characteristics allowed distributed
systems’ designers to integrate an increasing number of
software functionalities, as well as a growing number of

CAN nodes within a CAN domain. Automotive industry
represents an illustrative example for the development of
CAN bus applications. A large numbers of CAN devices are
interconnected in nowadays cars - between 6 and 60 CAN
interface instances exchanging thousands of signals (Eisele,
2012; Navet and Perrault, 2012). The CAN domains are
targeting specific functionalities, like power-train system,
multimedia system, body and chassis system or safety
system. This leads to an obvious lack of bandwidth. For
compatibility reasons, many efforts are constantly targeted to
increasing the bandwidth and the data bit rate for systems
based on the popular CAN protocol, as the specifications of
this protocol are still fulfilling the other requirements of
engineering applications. The straightest solution for reaching
this goal is allowing an appropriate device clustering, each
cluster representing a CAN domain in a distributed system
with multiple CAN domains. The interconnection between
CAN domains would be made by means of gateway devices
in charge with passing the data received from one CAN
domain to the other CAN domains.

Within this context, this paper presents a new CAN-CAN
gateway device which allows integrating the CAN bus within
distributed systems with a high number of devices and
complex topologies (e.g., resulted by interconnecting CAN
domains). The proposed gateway monitors the connected
CAN buses and identifies the fastest message route. The
information obtained during real-time operation about the
traffic in each CAN domain permits assuring an appropriate
traffic balancing between the CAN domains and allows the
reconfiguration of the fastest route, whenever overloading
conditions or other communication errors are detected.
Aiming improved reliability in fulfilling the critical real time
constraints, the CAN messages received by the gateway are

mailto:cbraescu@ac.tuiasi.ro
mailto:lferaru@ac.tuaisi.ro
mailto:clazar@ac.tuiasi.ro

50 CONTROL ENGINEERING AND APPLIED INFORMATICS

locally scheduled for transmission, based on the priorities
associated over the CAN bus, instead of using the common
First-In-First-Out (FIFO) mechanism. Besides, the embedded
gateway application is developed in an OSEK compliant real
time operating system which ensures increased safety and
predictability. Please note that, although this original gateway
solution is discussed for CAN based systems, the concept can
be simply extended to other communication protocols, too.

The paper is organised as follows. Sections 2 presents the
related research work regarding the increasing of CAN’s
bandwidth and data bit rate, the current approaches related to
multi-domain CAN systems and the existing gateway
solutions. The main characteristics of CAN protocol are
discussed in Section 3, while Section 4 presents the basic
features of the OSEK compliant real time operating system,
namely ProOSEK. A detailed description of the proposed
gateway algorithm is given in Section 5, with emphasis on
gateway’s new facilities. Section 6 presents the development
of the suggested algorithm for ProOSEK

 real time operating system and, afterwards, Section 7
demonstrates the capabilities of the gateway by means of
several experimental investigations. Section 8 is devoted to
conclusions.

2. RELATED WORK

The Controller Area Network is a mature technology (Bosch,
1991) with more than 20 years of use in many application
fields. It is utilised in places where multiplexed and high-
speed communications provided over a limited number of
wires are needed. There are various approaches trying to
make CAN more appropriate for nowadays distributed
systems, where an increased number of CAN enabled devices
and CAN messages require bigger bandwidth and data bit
rate.

An effort for increasing the CAN bandwidth and the bus
speed has been conducted during the last years. The CAN+
protocol is based on dual speed approach that employs two
alternate bit rates (Sheikh and Short, 2009; Ziermann et al.,
2009) and permits up to 16 times higher data rates. The
CAN+ based devices switch the bit rate, after the arbitration
phase, from the lower to higher value, during the time slots,
whenever classic CAN devices do not listen. Changing the
classic bus topology from line one to star (or tree) topology is
the solution proposed by (Kurachi et al., 2010). This allows
obtaining transmission speeds up to 10Mbps, by means of the
Scalable CAN protocol. Mainly, Scalable CAN is based on a
new ACK (“acknowledge”) information field and employs a
new collision resolution algorithm which guarantees the
delivery of a message within a given time period. Another
new alternative stays in CAN with flexible data-rate, which
offers an up to 8 times bigger data field speed and a payload
of 32 or 64 bytes. (Hartwich, 2012; Oertel, 2012). Anyway,
this is a young, still developing technology, so other
approaches based on the classic CAN protocol could be
preferred in critical real-time systems. In this attempt, the
gateway solution presented in this paper offers increased
flexibility in connecting the domains based on standard CAN
for any type of topologies, as basis for supporting

significantly improved bandwidths. It permits exchanging an
increased number of messages between an increased number
of devices, within and between CAN domains interconnected
in complex architectures.

Other approaches keep the CAN protocol and develop more
complex distributed architectures by clustering the CAN
enabled devices (Navet and Perrault, 2012; Braescu and
Ferariu, 2012) and interconnecting the resulted CAN domains
through gateways or bridges (Sommer et al., 2006). Bridges
were used in order to connect different CAN networks (Eltze,
1997) by sending the messages from one network to the
other, followed by gateways, which applied more complex
processing operations on the CAN messages. The gateways
are used for interconnecting different protocol networks
(CAN, FlexRay) (Schmidt et al., 2010) or same protocol
networks (CAN-CAN gateways) (Sommer and Blind, 2007;
Seo et al., 2008), which deal with different transfer rates and
provide operations like message forwarding or message
assembling. The presented gateway is designed for
connecting CAN domains with different working speeds.
Besides, message forwarding provides dynamic route
selection, as well as traffic monitoring and balancing between
CAN domains.

The main types of gateways have been proposed, namely the
discrete channel one and the complex channel one. The
discrete channel gateway (the software gateway) is composed
by a set of discrete channel CAN controllers managed by a
software application in charge with message handling. This
type of gateway is flexible, but it requires a powerful
processor to deal with real time operation. It is worth
mentioning that in support of software gateways,
microcontrollers with many communication controllers are
already available (Lorenz, 2008). On the other side, the
complex channel gateway consists in a CAN controller
specifically tailored for the application, supporting a
hardware-oriented development with no additional processor
load. The advantages of discrete and complex channel
gateways could be merged in modular gateways (Taube et al.,
2005). This paper presents a discrete channel gateway
implemented in ProOSEK. In order to reduce the required
processing load, the gateway stores the nominal optimal paths
in a local memory and recalculates the optimal paths only if
the nominal working conditions are not met.

Different algorithms have been proposed for processing the
received messages and scheduling their transmission within
the gateway devices. The Round Robin scheduler employed
in (Sommer and Blind, 2007) serves the incoming messages
within equally allocated frames, while weighted Round
Robin or other priority-based scheduling algorithms can be
employed in order to induce priorities between CAN domains
or messages. In order to favor the transmission of critical
messages, the suggested gateway algorithm uses a local
priority based scheduling. The priorities are determined from
the ID of the message. Besides, this scheduling is
accompanied by the detection of faster communication paths
and the avoidance of bus overloading.

The common architecture in nowadays car is the star one, all
the CAN domains being connected to the same gateway. The

CONTROL ENGINEERING AND APPLIED INFORMATICS 51

architecture is quite rigid and cannot deal with an increasing
number of in-vehicle CAN domains and messages. The
traffic can be affected by gateway bottlenecks and the
number of CAN domains is limited to the number of CAN
modules provided by the gateway. In this context, it is of
great interest to find appropriate solutions for the design of
more complex architectures, able to allow advanced and
intelligent cooperation between the embedded entities. As
explained later, the main benefit of the proposed solution
stays in the fact that it provides significantly increased
flexibility in designing the topology of real-time distributed
systems with interconnected CAN domains. The resulted
distributed system can ensure high bandwidth, as well and
increased robustness, via the original mechanisms embedded
within the gateway. These mechanisms are meant to message
scheduling, traffic balancing, detection of communication
errors, including detection of communication overload. In
extension to the previous gateway algorithms presented in
(Braescu et al., 2011; Braescu and Ferariu, 2012), this
approach implements a priority-based scheduling algorithm
for sending the received messages and integrates an improved
adaptive routing, which is able to balance the traffic between
the CAN domains of the distributed system. As the suggested
solution follows the discrete channel gateway concept,
increased flexibility is obtained in terms of compatibility with
applications involving different number of CAN adjacent
modules.

3. CAN PROTOCOL

The proposed gateway device exploits the facilities of the
OSEK compliant real-time operating system and CAN
communication protocol in order to allow a better
management of the CAN traffic with increased bandwidth, in
distributed systems involving architectures with multiple
interconnected CAN domains.

CAN is a protocol that provides multi-master broadcast serial
bus communication, each device being able to send or to
receive messages on the bus, but not at the same time. The
messages are broadcasted and each CAN receiver decides to
process or to ignore a certain message. One of the main
advantages offered by the CAN protocol is the arbitration
mechanism performed during message sending. This
mechanism assures that if two messages are simultaneously
sent on the bus and a collision is detected, the arbitration is
won by the message with the highest priority and no data
corruption or communication error appears. After an
arbitration phase, the winning message is sent, while the
devices that lost the bus arbitration will hold the transmission
and retry to send their messages later. The arbitration
mechanism assumes the uniqueness of each CAN message
identifier on a certain bus. This allows identifying the
message source and interpreting the meaning of
communicated data. All the devices besides the transmitting
one will receive the message and will use the identifier field
in order to detect whether the message is relevant for them or
not. In the unlikely case of messages with the same identifier
field being sent simultaneously by two or more CAN devices
on the same bus, the arbitration mechanism fails, leading to
communication errors.

The CAN protocol provides an appropriate environment for
an automatic detection of data transmission errors and for a
centralized error management. The CAN protocol
implements mechanisms of error detection, error handling
and error limitation. The error detection one allows the
detection of the following error types: bit error, frame error,
acknowledge error, CRC error and bit stuffing error. The
error handling mechanism is based on the error flag field to
signal the error’s detection, as well as the error indication
receiving confirmation, whilst the error delimiter field
permits the bus nodes to restart communications after an error
has occurred. The error limitation mechanism allows the
CAN bus to work correctly even if there are errors-generating
faulty nodes. Therefore, each node can be in one of the
following three error states: error active, error passive and
bus off (the node can neither send nor receive).

The message transmitter sends the message again when an
overload frame is received and the next transmission’s start is
delayed by the overload frame. The CAN protocol specifies
that in order to delay the start of the next message, a node can
generate maximum two consecutive overload frames.

The CAN protocol does not provide a deterministic response
time for messages assigned with low priorities (Bril et al.,
2006), so, in order to assure a good utilization of the CAN
bus, higher priorities should be assigned to the messages with
short periods of occurrence (Davis et al., 2007). The
proposed gateway is able to deal with CAN domains with
different working speeds. The transfer rate for each CAN
domain is taken into account during the dynamic selection of
each message route, in order to provide a fast transmission
and traffic balancing. The maximum transfer rate on CAN
bus is 1 Mbit/s, but the typical transfer rates employed within
automotive and industrial environments are 500 Kbit/s, 250
Kbit/s and 125 Kbit/s.

4. ProOSEK REAL TIME OPERATING SYSTEM

In support of later discussion concerning the development of
the OSEK-based gateway, a brief overview of the ProOSEK
real time operating system characteristics is given in the
following. ProOSEK is designed to support the development
of safe and portable embedded applications (3SOFT, 2003).
The ProOSEK’s portability is assured by a set of standard
objects and API services that make the OSEK-based
applications compliant with a large range of hardware
architectures.

All the ProOSEK objects are statically created and all their
attributes must be set before running the application, the
static configuration of all defined objects giving ProOSEK
predictability and safety. ProOSEK offers flexibility and
scalability as well, as a multitude of layouts results via
different configurations of available objects. More precisely,
all the ProOSEK objects used inside the embedded
application have to be declared in the *.oil files. An *.oil file
may include an implementation definition part (specifying the
attributes supported by the current OSEK implementation and
all their permitted values) and an application definition part
(containing declaration statements for all objects used in the

52 CONTROL ENGINEERING AND APPLIED INFORMATICS

C application with assignments of corresponding attributes
and declaration of references to required connected objects).

As a real time operating system, ProOSEK provides diverse
capabilities for developing multitasking embedded
applications: quick commutation between different contexts,
predictable interrupts handling, simple resource sharing
mechanism, events’ handling for synchronization operations,
time management through counters and alarms, as well as
centralized and local error management.

The concurrent processes within an ProOSEK-based
multitasking application are the tasks and the interrupt
service routines (ISRs). The tasks execution is supervised by
the RTOS scheduler and they can be preemptive or non
preemptive. ProOSEK is an event-driven real time operating
system, so the scheduler might be activated in one of the
following cases: the ready tasks queue is changed, the
processor or a shared resource are freed, or there is an
explicit call to the scheduler. The task priorities are fixed and
the processor is allocated to the highest priority ready task.
The tasks having the same priority are managed according to
FIFO algorithm.

The ProOSEK processes (tasks or ISRs) may share passive
resources, the ceiling priority protocol (PCP) being employed
as a solution to prevent priority inversion and deadlock. PCP
assures that during a critical sequence (while a resource is
occupied), the resource owner process receives a higher
temporary priority, equal to the highest priority of the
task/ISR that may ask to access that resource, such that the
process may not be preempted by another competitor entitled
to use the same resource, until it does not release it.

One can notice that ProOSEK, like most of the RTOSs, offers
special debugging facilities like an easy monitoring of stack
usage, tasks execution and even CPU utilization, by means of
OS Tracer, Stack and Run-time Checker, correspondingly.

5. ALGORITHM DESCRIPTION

The proposed gateway employs an original policy for the
dynamic selection of fastest message routes. The routing
algorithm advantageously exploits extensive information
extracted by means of traffic monitoring performed on each
CAN domain. The main functional blocks of the gateway are
illustrated in Fig. 1. As detailed below, the gateway is in
charge with message priority based scheduling and routing.
The sequence in which the received messages are handled is
given by the priorities locally deduced from the message ID.
For each transmitted message, the gateway determines the
fastest available route, based on the information obtained via
traffic monitoring. The optimal route ensures the traffic
balance within the distributed system. This implicitly
involves the avoidance of overloaded buses.

5.1 Traffic monitoring

Once the message routing should ensure real time traffic
balance, monitoring the traffic on each CAN domain
becomes essential. Traffic monitoring is employed for each

available CAN bus connected to the gateway, and includes
the CAN module level and the gateway level. At CAN
module level, the monitoring is done by extracting all the
information regarding the messages received or transmitted
on the corresponding CAN bus, like the frame type, the
corresponding frame length and the number of allocated
bytes.

Traffic
monitoring

Adaptive
routing with

traffic balancing

Message
scheduling Gateway

algorithm

Traffic
information

about received
and transmitted
CAN messages

Queues with received
CAN messages

The fastest path for
the CAN message

The CAN
message with the
highest priority Updated

edge costs

Fig. 1. The basic functionalities of the gateway algorithm.

The CAN messages can be of standard, extended, error,
remote or overload frame. In the case of standard or extended
frame, the CAN message is composed of the following fields:
start-of-frame (SOF), arbitration, control, data, cyclic
redundancy check (CRC), acknowledge (ACK) and end-of-
frame (EOF). The arbitration field includes the message’s
identifier (ID) and the Remote Transmission Request (RTR)
bit. More information about the contents of the CAN
message, such as the number of data bytes available in the
message and the frame’s type (standard or extended) are
encapsulated within the control field. The error frame is
generated by any CAN node that detects a bus error. Once an
error frame is received, all the CAN nodes drop the last
received message and the transmitter resends the message.
The error frame is composed by an error flag field and an
error delimiter field.

A CAN node requests data from another CAN node by means
of a remote frame, also called RTR frame. As a response to a
RTR frame, a data frame with the same identifier will be
transmitted from the CAN node which waits that RTR
message. The nodes receiving a RTR frame check whether
there is the corresponding transmitter defined or not. The
node satisfying the condition sends the RTR response data
frame. The request and the response frames are completely
different frames, so it is obvious that the response frame
could be delayed because of the messages with higher
priorities exchanged on the CAN bus.

The monitor detects the type of data frame (standard or
extended) and the length of data fields. The error, remote or
overload frames are identified as well, and the error and
overload information are recorded and used later by the
adaptive routing with traffic balancing mechanism.

CONTROL ENGINEERING AND APPLIED INFORMATICS 53

For a realistic estimation of the traffic on a CAN bus, the
inter-frames spacing and the bit stuffing are considered. They
are mechanisms offered by the CAN protocol in order to
assure communication reliability. The first one assures that
standard, extended and remote frames are separated by an
inter-frame space, whilst the second mechanism ensures that
a bit of opposite polarity is inserted after five consecutive bits
of the same polarity. A good understanding of these
mechanisms permits an appropriate traffic estimation to be
made. The traffic estimation within the proposed gateway is
done by considering both mechanisms. The length of the
inter-frames spaces associated to standard, extended and
remote frames are determined and recorded, yet the number
of extra bits added by the bit stuffing mechanism is
estimated. Exact information about the bits added by the bit
stuffing mechanism can not be extracted, given the dynamic
characteristic of the mechanism. One can notice that all these
operations are done besides the normal message receiving
operation.

The number of communicated bytes detected at CAN module
level is saved for each CAN module into a local message
queue. The traffic estimation at gateway level is done
periodically by the task in charge with traffic monitoring that
processes the local message queues contents and calculates
the consumed bandwidth of each CAN bus. This is used
further by the message scheduling and routing mechanism.

5.2 Message scheduling and routing

The message scheduling ensures that the message scheduled
to be transmitted is the message with the highest priority
from the CAN messages received by the gateway. This
priority based policy replaces the common FIFO message
scheduling, also employed in (Braescu et al., 2011). The
main benefit of the prioritized transmission lies in the fact
that it can ensure the fulfilment of hard real time constraints
by means of faster transmissions of critical messages. For the
highest priority message, the routing mechanism decides
afterwards which CAN module will be in charge with
message transmission.

The CAN messages received by the gateway are locally
scheduled for transmission based on the priorities associated
over the CAN bus. The priority of a message is given by the
identifier field which is 11 bits long (standard frame) or 29
bits long (extended frame); hence, the less is the ID’s value,
the higher is the priority of the message. For each CAN bus
there is a set of received CAN messages that should be
transmitted. Therefore, the gateway stores the incoming
messages in multiple independent queues, each queue being
associated to a distinct receiving CAN module. However, the
scheduling policy acts on all these queues, meaning that the
highest priority message is locally chosen from the whole
collection of available messages. For a faster determination
of the highest priority message, the receiving queues are
preserved sorted in terms of the ID field, each message being
inserted in the appropriate location. As consequence, the
scheduling mechanism has only to check the first element of
each queue and to select the message with the smallest ID for

the next transmission. If two or more messages with the same
priority are found, the message with the maximum predefined
route cost will be preferred.

As presented in (Braescu et al., 2011), each gateway locally
stores the whole distributed architecture by means of a graph.
The node of a graph corresponds to a communication node,
while an edge indicates the existence of a communication
bus. The cost ic allocated for the edge i specifies the
transfer rate of that CAN bus. The accepted values are

{ }1, 2, 4,8ic ∈ , corresponding to the transfer rate 1000 Kbit/s,
500 Kbit/s, 250 Kbit/s and 125 Kbit/s, respectively. The
routing procedure determines the fastest route in the graph by
means of Dijkstra’s algorithm.

In order to provide traffic balancing, multiple traffic costs are
accepted for the same CAN bus. These costs are allocated
online, by taking into account the consumed bandwidth
reported for each CAN bus via traffic monitoring. For a
specific bus, the algorithm considers a finite number of
intermediary bandwidth levels and, correspondingly, a finite
number of edge costs. More precisely, the edge cost is
modified whenever the traffic on the bus exceeds or is below
a certain threshold. The number of accepted bandwidth
thresholds depend on the maximum bus speed; hence for a
bus with a maximum 1000 Kbit/s transfer rate, 3 intermediary
levels are considered (namely 500 Kbit/s, 750 Kbit/s and 875
Kbit/s), whilst for a bus with maximum 250 Kbit/s transfer
rate, only one level is allocated.

The updated edge costs are further considered in order to
identify the shortest route within the graph associated to the
multi-domain CAN system. Once the shortest path problem is
solved and the CAN message route is found, the message is
sent to the chosen CAN bus. This adaptive routing assures
traffic balancing over the whole distributed system and
prevents bus overload situations. The risk of traffic overloads
is significantly reduced due to the premature reconfiguration
of the optimal communication paths, triggered by the gradual
detection of traffic load’s increasing. Although, given the fact
that only a finite set of available costs is used, one can expect
that the calls for the online reconfiguration of paths (by
means of Dijkstra’s algorithm) will rarely occur.
Consequently, a reduced mean processing overload is
anticipated to be introduced by the gateway.

A detected overloading situation is indicated by an overload
frame generated by a CAN node either when a dominant bit
is detected during inter-frames space or when a node is not
yet ready to receive the next message. The last case could
appear when the node is still reading a received message. The
overload frame format is similar to an error frame format, but
the overload frame can be generated only during an inter-
frame space. If an overload frame is received on a CAN bus,
the traffic monitoring mechanism will indicate the
overloading situation by mean of the maximum value of the
bandwidth corresponding to that bus. Then, the allocated
edge cost will be increased, such that the bus will be ignored
during the adaptive message routing, until the overload
situation disappears.

54 CONTROL ENGINEERING AND APPLIED INFORMATICS

6. OSEK-BASED GATEWAY DEVELOPMENT

The proposed gateway consists in a set of discrete channel
CAN controllers offered by the microcontroller and an OSEK
based software application in charge with message handling.
The proposed embedded gateway application is developed in
compliance with ProOsek implementation. For each CAN
module, the gateway application uses an identical set of
OSEK objects, in order to manage message reception and
message transmission. For storing the received and the ready-
to-be-transmitted CAN messages, two different message
queues are employed, namely RxMsgQueuei and
TxMsgQueuei. By having separate queues for each CAN
module, the resource sharing problems are avoided and better
control on priority based insertion of received message could
be easily provided.

The message transmission and reception mechanisms are
solved by means of ISR objects. This allows achieving
increased responsiveness of the application, as the priorities
of ISRs are higher than the priorities of any task. However,
please note that ISRs priorities are not managed by the real
time operating system and the scheduler does not control
their execution. Also, like in other real time operating
systems, the API service calls allowed during ISR processes
are restricted to a limited set.

 RX

CANi-RX-ISR

Task-CANi-RX

Activate

RxMsgQueuei

Get message

Put message

CANi module

GatewayMsgSchedRoutTask

TrafficQueuei

Traffic
information

Fig. 2. ProOSEK gateway message reception mechanism.

The tasks of the application have been designed knowing that
OSEK allows two types of tasks: basic and extended ones. A
basic task can transit between ready, running and suspended
states, whilst an extended task can have the waiting state as
well (Lemieux, 2001). The extended tasks can have allocated
their own events in order to implement synchronization
operations, so an extended task can wait for an event to be set
without occupying the processor. The extended tasks
automatically switches from waiting state to ready state when
the event is set (by another the task). It is worth mentioning
that OSEK allows task’s multiple activations, each task
instance being executed as an individual process.

Fig. 2 illustrates the gateway reception mechanism. The
CANi_RX_ISR interrupt service routine is executed when a
CAN message has been received in the CAN channel i. It
activates the task Task_CANi_RX, which copies the message

from the CAN reception buffer and saves it in the queue of
received messages. As described in a previous section, the
message is inserted in the RxMsgQueuei queue such that the
messages are kept sorted subject to the ID field value, the
first message in the queue being the one with the highest
priority.

The Task_CANi_RX task determines the received message
frame type, estimates the number of received bytes and saves
the computed value in a queue named TrafficQueue. This
queue is locally managed, at CAN module level. The
Task_CANi_RX task is set as a basic, aperiodic, non
preemptive task. It allows multiple activations, so each CAN
message will be processed immediately after its reception,
without disturbing the previous receptions, even the new
reception overlays on the precedent ones.

The messages stored in the local queues associated to the
gateway’s CAN modules are examined by means of the
GatewayMsgSchedRoutTask task. This task finds the
message with the highest priority by checking the first
elements from RxMsgQueuei queues, identifies its destination
CAN domain, selects the appropriate route and saves the
message in the ready-to-be-transmitted queue corresponding
to the CAN module which will be in charge with its
transmission.

The GatewayMsgSchedRoutTask task is basic, periodic,
preemptive and it allows a single activation. The period of
GatewayMsgSchedRoutTask is accurately managed by means
of an alarm installed on the system counter object. Counter
objects can be defined within OSEK application for
providing high-level access to the existing hardware counters.
Generally, the alarms associated to the counters can support a
simple time management, by triggering the activation of
specific tasks, the setting of certain events or the execution of
associated callback functions. In this case, a periodic alarm is
in charge with the activation of GatewayMsgSchedRoutTask.

The period of GatewayMsgSchedRoutTask task was set to be
very small, such that the received messages are quickly
processed. Besides, in order to avoid the loss of received
messages, the priority of GatewayMsgSchedRoutTask is
lower than the priority of Task_CANi_RX task. This means
that Task_CANi_RX is allowed to preempt
GatewayMsgSchedRoutTask. As explained before, if two
messages arrive at the same CAN module, at approximately
the same moment, both messages will be processed promptly,
because the Task_CANi_RX task has multiple activations.
However, please note that due to data consistency reasons,
once GatewayMsgSchedRoutTask has chosen the highest
priority message for transmission, the route selection
continues with this message. All the newest incoming
messages are treated at the next activations of
GatewayMsgSchedRoutTask, even they have higher priorities
than the message which has been already selected.

The gateway’s message transmission mechanism is illustrated
in Fig. 3. All the messages that need to be transmitted by a
CANi module are saved in the corresponding TxMsgQueuei
queue by the GatewayMsgSchedRoutTask task. The messages
are read by the Task_CANi_TX task, which is responsible

CONTROL ENGINEERING AND APPLIED INFORMATICS 55

with finding an empty transmission buffer and storing the
CAN message into it. Once a CAN message was sent on the
bus, the end of the transmission is signalled by the
corresponding transmission buffer by means of an interrupt
serviced by CANi_TX_ISR, so that Task_CANi_TX can load
another message ready to be transmitted. It is worth
mentioning that setting appropriate dimensions of the queues
involved within the gateway mechanism represents a key
issue for preventing CAN message loss and for avoiding
“bottleneck” effect. The Task_CANi_TX task is a basic,
aperiodic, non preemptive task and accepts multiple
activations.

Put
message

TX

CANi-TX-ISR Task-CANi-TX

Activate
TxMsgQueuei

Get message

CANi module

GatewayMsgSchedRoutTask

TrafficQueuei

Traffic
information

Fig. 3. ProOSEK gateway message transmission mechanism.

The ProOSEK-based solution proposed for traffic
monitoring, message scheduling and routing is presented in
Fig. 4. As mentioned before, the extracted traffic information
regarding the received messages at each CAN module level is
saved in the local TrafficQueuei queue by the Task_CANi_RX
task. It is further processed by the task in charge at gateway
level with traffic monitoring, named TrafficMonitorTask.
This task is a basic, periodic, non preemptive task, with a
single allowed activation. It calculates the consumed
bandwidth for each CAN bus and updates the edge costs
within the system’s graph representation, if situations of bus
overloading or if the detected bandwidth is changed
comparing to the thresholds.

Each edge cost change is broadcasted by the gateway to the
other gateways by means of additional CAN messages
assigned with the highest possible priority. These messages
have the destination parameter set to each gateway domain
existent within the distributed system and the data field
specifies the CAN bus label and the updated edge cost.
According to the common requirements of software
gateways, the number of domains connected to a gateway
should be kept reasonable low, hence the communication
overload produced by these messages results acceptable. The
GatewayMsgSchedRoutTask task recalculates the shortest
route for a message only if a change occurred within the
graph representation, otherwise it uses the already available
information from the cache memory.

CAN1 bus

GatewayMsgSchedRoutTask

…… CAN1 module

CANn bus CAN2 bus

Multi - domain CAN gateway

Updated Graph

Update edge costs

TrafficMonitorTask

CAN1 module CAN1 module

Fig. 4. ProOSEK gateway traffic monitoring and balancing
mechanism.

7. EXPERIMENTAL RESULTS

The performance of the gateway mechanisms were
experimentally verified on a laboratory setup that simulates a
distributed system architecture with multiple CAN domains,
as presented in Fig. 5. The system is composed of 8 CAN
domains and 3 gateway domains. It can be treated as a
distributed system from automotive industry, where its CAN
domains are specifically allocated to systems like power-train
system, multimedia system, body and chassis system, safety
system or even to subsystems of them. The label attached on
each edge indicates the cost (deduced from the bus transfer
rate) and the corresponding CAN bus identifier.

1,n11

1,n7

2,n10

1,n11 1,n11

4,n9

1,n8

1,n6
1,n5 2,n4

1,n3 1,n2

4,n1 G1 G2 G3

G4

D1

D2 D5 D3

D6

D4

D7 D8

Fig. 5. Multiple CAN domain system architecture
implemented during experiments.

The gateway development was tailored to the available
hardware limitations. The hardware architecture considers a
Freescale S12X microcontroller with 5 independent CAN
modules. Each CAN module allows 1Mbps maximum
transfer rate and offers 5 receiving buffers with FIFO storage
scheme and 3 transmission buffers with internal
prioritization. Given these specifications, the gateway can use

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

maximum 5 CAN connections. From software application
development standpoint, an important feature of the S12X
microcontroller is that the CAN modules have distinct
interrupt vectors, which allows separate and customized CAN
interrupt servicing by means of CANi_RX_ISR and
CANi_TX_ISR ISRs.

Given the complex architecture of the multi-domain CAN
system presented in Fig. 5, a large number of CAN devices
clustered into 8 CAN domains were necessary in order to
implement it. The experiments were done by using 4 gateway
devices and 7 CAN monitor devices. The last ones are able to
send different types of CAN messages and to monitor the
CAN bus as well. Therefore, four of them (CAN Monitor 4,
5, 6 and 7) were used to simulate an entire CAN domain each
(1D , 3D , 5D and 7D , correspondingly), by sending various
messages at different periods. The experimental setup also
considers the monitoring of the messages received by the
simulated CAN bus. The other three CAN monitors (CAN
Monitor 1, 2 and 3) were connected to the three gateways
domains, in order to monitor the traffic on them. The
embedded gateway application allows USB communication
with a PC, in order to visualize extensive information about
the CAN communication. The experimental setup structure is
illustrated in Fig. 6.

1Mbps

G1 G2 G3

1Mbps

500kbps

1Mbps

250kbps

CAN Monitor 1 CAN Monitor 2

CAN Monitor 4

CAN Monitor 3

CAN Monitor 5

CAN Monitor 6

G4
250kbps

CAN Monitor 7

1Mbps

Fig. 6. Experimental setup for simulating a multi domain
CAN system.

During the experiments, 1D domain, as well as the 9n and

11n buses are connected at the CAN1, CAN2 and CAN3
modules of 1G gateway, 3D domain and 11n bus are
connected at the CAN1 and CAN2 modules of the 2G
gateway, correspondingly, and so on. Within each gateway
algorithm, the GatewayMsgSchedTask task extracts the
destination CAN domain identifier from the message data
field and checks if the destination is connected at one of its
CAN modules. If this condition is not satisfied, the task
applies the Dijkstra’s algorithm, in order to find the shortest
path in the graph, which corresponds to the fastest route.
Obviously, this path indicates towards which CAN module
the received message CAN has to be forwarded.

For instance, a message sent from the 1D domain to a device
belonging to 7D encrypts the identifier 7n as its first byte of

data, in order to indicate the final CAN destination. It was
received by the 1G gateway, which does not have the
destination domain connected at one of its CAN modules and
finally had to find the shortest (fastest) path in the graph. It
determines the fastest route 1 3 4G G G− − (of cost 3), instead
of 1 4G G− (which has a cost of 4). During normal execution
(without overloading), the message was sent on the bus
corresponding to the 1 3G G− edge and 3G sent it further to

4G . 4G sent it further into 7D domain, after identifying the
CAN bus on which 7D is connected. 4G did not need to call
the optimal routing algorithm, as the destination domain was
directly connected to it. It is worth mentioning that the CAN
message was not received by CAN Monitor 2, 5 or 6,
confirming that the message was sent on the optimal route
only.

A bus loading was implemented by increasing the number of
messages sent by the CAN monitor connected to that bus. In
order to test the proposed gateway monitoring capabilities,
CAN Monitor 3 was used to send CAN messages within the
same CAN domain until the occupied bandwidth value
reached the 250kbps threshold value. When the traffic on 10n
bus exceeded the threshold value, messages were sent by 3G
and 4G in order to broadcast the updated edge cost. The
messages were recorded by CAN Monitor 1 and 2. The
messages sent from the 1D domain to a device belonging to

7D were received by 1G that determined the fastest route at
that moment, namely 1 4G G− (of cost 4), instead of

1 3 4G G G− − (which has a cost of 5). When the traffic value
on 9n exceeded the 125kbps threshold value, another
messages were sent by 1G and 4G with the bus label (9n)
and updated edge cost (8) encapsulated within the data frame.
The same messages sent from the 1D domain to a device
belonging to 7D and received by 1G were transmitted on the
fastest route at that moment, namely 1 3 4G G G− − (of cost
5), instead of 1 4G G− (which has a cost of 8).

During the experimental tests, the communication overload
produced by the transmission of the CAN messages
announcing the graph updates was insignificant. These
messages were sent by a gateway whenever its traffic
monitoring module detected the need of changing the edge
costs for any of the CAN buses connected to it.

8. CONCLUSIONS

The paper presents an improved OSEK-based gateway with
new features and monitoring capabilities for multi-domain
CAN distributed systems. It addresses the nowadays
necessity for larger bandwidth and higher bit rate on the CAN
bus by permitting distributed systems architectures with
multiple CAN domains based on flexible topologies. The
proposed solution makes use of traffic information on each
CAN domain in order to assure adaptive routing of CAN
messages, traffic balancing between CAN buses, as well as

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

local message prioritization. Message scheduling for
transmission is employed at gateway level by using CAN
messages ID field instead of using the common FIFO
mechanism. The fastest routes are determined by using
updated information about the bandwidth consumed on the
connected CAN buses.

The embedded gateway application was developed in
ProOSEK real time operating system, so it has increased
predictability and safety. However the solution can be simply
ported to other real time operating systems with event-driven
scheduler. It also worth mentioning that even if the gateway
algorithm and the related experiments are presented for
distributed systems with multiple CAN domains, the
algorithm itself is not limited to CAN protocol and it can be
tailored for other communication protocols as well.

REFERENCES

Bosch, R., (1991). CAN Specification Version 2.0.
Braescu, C., Ferariu, L., Nacu, A. (2011). OSEK-based

gateway algorithm for multi-domain CAN systems.
IEEE International Conference on Intelligent Computer
Communication and Processing, Cluj.

Braescu, C., and Ferariu, L. (2012). Multi-domain CAN
gateway for complex manufacturing environments.
ModTech International Conference (Modern
Technologies, Quality and Innovation - New face of
TMCR), Sinaia.

Bril, R.J., Lukkien, J.J., Davis, R.I., Burns, A. (2006).
Message response time analysis for ideal controller area
network (CAN) refuted. In Proceedings 5th
International Workshop on Real-Time Networks
(RTN’06).

Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J. (2007).
Controller area network (CAN) schedulability analysis:
refuted, revisited and revised. Real-Time Systems, Vol.
35, No. 3, pp. 239-272.

Eisele, H. (2012). CAN benefits in in-vehicle networking. In
Proceedings of the 13th international CAN Conference
(iCC2012), Germany.

Eltze, J. (1997). Double-CAN controller as bridge for
different CAN Networks. In Proceedings of the 4th
International CAN Conference, Erlangen, Germany.

Hartwich, F. (2012). CAN with flexible data-rate. In
Proceedings of the 13th international CAN Conference
(iCC2012), Germany.

Kurachi, R., Nishimura, M., Takada, H., Teshima, S.,
Mizashita, Y., Horihata, S., Yamamoto, H., and
Natsume, A. (2010). Development of scalable CAN
protocol. SEI Technical Review No 71, pp. 31-36.

Lemieux, J. (2001). Programming in the OSEK/VDX
environment, CMP Books, Lawrence, USA.

Lorenz, T. (2008). Advanced gateways in automotive
applications. Dissertation thesis, Germany.

Navet, N., and Perrault, H. (2012). CAN in automotive
applications: a look forward. In Proceedings of the 13th
international CAN Conference (iCC2012), Germany.

Oertel, H.J. (2012). Using CAN with flexible data-rate in
CANopen systems. In Proceedings of the 13th
international CAN Conference (iCC2012), Germany.

Schmidt, E., Alkan, M., Schmidt, K., Yuruklu, E., and
Karakaya, U. (2010). Performance evaluation of
FlexRay/CAN networks interconnected by a gateway. In
International Symposium on Industrial Embedded
Systems (SIES), pp. 209-212.

Seo, S.H., Moon, T.Y., Kim, J.H., Kwon, K.H., Jeon, J.W.,
and Hwang, S.H. (2008). A fault-tolerant gateway for in-
vehicle networks. In IEEE Conference on Industrial
Informatics, pp. 1144–1148.

Sheikh, I., and Short, M. (2009). Improving information
throughput in CAN networks: Implementing the dual-
speed approach. In 8th International Workshop on Real-
Time Networks (RTN’09), Dublin, Ireland.

Sommer, J., and Blind, R. (2007). Optimized resource
dimensioning in an embedded CAN-CAN gateway. In
Proceedings of the IEEE Second International
Symposium on Industrial Embedded Systems (SIES),
Portugal.

Sommer, J., Burgstahler, L., and Feil, V. (2006). An analysis
of automotive multi-domain CAN systems. In
Proceedings of the 12th EUNICE Open European
Summer School.

Taube, J., Hartwich, F., and Beikirch, H. (2005). Comparison
of CAN gateway modules for automotive and industrial
control applications. In Proceedings of the 10th
international CAN Conference (iCC2005), Italy.

Ziermann, S., Wildermann, T., and Teich, J. (2009). CAN+:
A new backward compatible Controller Area Network
(CAN) protocol with up to 16x higher data rates. In
Proceedings of DATE 2009, IEEE Computer Society,
Nice, France, pp. 1088-1093.

3SOFT (2003). ProOSEK users guide.

