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Abstract: This paper presents a new stable hybrid visual servo controller to complete the task of robot
arm positioning. Our method is generic hybrid method and superior to the state of the art. The objective
function is designed to include the full but weighted 2D and 3D available information. The positioning
task has been formulated as a minimization problem. Here, each of the 2D and 3D error functions is used
to control the six degrees of freedom. The importance weights are computed to satisfy a set of constraints
defined by the visual servoing process. Stability analysis is also presented for the proposed control law.
The experimental evaluation is done in order to show the enhanced performance of the visual servoing
process. Simulation results show that this method provides an efficient solution to the camera retreat and
features visibility problems. Performance of the visual servoing system is evaluated by its ability to keep
features visible in the image and the Cartesian trajectory within the robot workspace during the process.
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1. INTRODUCTION

Visual servoing has become an attractive area of research, and
has recently received considerable amount of attention Corck
and Hutchinson (2001), Malis et al. (1999), Chaumette and
Hutchinson (2006), and Chaumette and Hutchinson (2007).
Visual servoing schemes use one or more cameras along with
computer vision algorithms to control the position of a robot
arm or mobile robot with respect to an object or a set of features
of the object to be manipulated Unger et al. (2009), Kragic
(2001), and Cai et al. (2013). It is used in a wide range of
applications such as robot navigation Cherubini and Chaumette
(2012), and Li et al. (2013), lane tracking by vehicles Cherubini
et al. (2011), and Benhimane and Malis (2007), and industrial
manipulation Benhimane et al. (2008).

The essence of visual servoing is to move the concerned object
from the current pose to a desired pose given by current and
desired images. This is essentially obtained by nullifying a
task function Samson et al. (1991) or minimization of a cost
function Malis (2004). Visual features are extracted from the
two images and used to formulate a function of the error
between the current pose and the desired one Dani et al. (2013),
Kragic (2001), and Samson et al. (1991). The role of the
minimization process is to regulate this error function to zero.
Image features can be used directly in the definition of the error
function. This leads to a formulation of the 2D error function
that is minimized in the image space. These image features may
also be used to formulate an error function in the pose space.

In image-based visual servoing, the input is computed in the
2-D image space. This method is robust to robot and camera
calibration errors Dani et al. (2013) and Chaumette (1998).
However, image-based visual servoing is known to be locally
stable with a stability region that is difficult to determine. This

is in addition to the need of the depth estimates of the image
features Luca et al. (2007). The main drawback of 3D visual
servoing is the lack of control in the image space. This implies
that the object may get out of the camera field of view Ker-
morgant (2013) and Chaumette (1998). In contrast, 2D visual
servoing does not have any control in the Cartesian space and
the camera trajectory is not predictable. A satisfactory control
scheme that avoids these drawbacks Cai et al. (2013), Malis
et al. (1999), and Malis and Chaumette (2002) is to use both
kinds of information i.e., 2D and 3D. For this reason, this con-
trol scheme is called 2 1/2D visual servoing Malis et al. (1999).
A hybrid (2D-3D) cost function that contains information from
the 2D image space and the 3D pose space was proposed in Ab-
dul Hafez and Jawahar (2006a), and Abdul Hafez and Jawahar
(2007). In Abdul Hafez and Jawahar (2007), minimization of
this objective function is applied to the visual servoing pro-
cess. In such a minimization method, the minimization process
searches for a least squares solution that minimizes the 2D
error from the image space and the 3D error from the pose
space simultaneously. In this paper, the previous works Ab-
dul Hafez and Jawahar (2006a) and Abdul Hafez and Jawahar
(2007) are extend to the case of varying weighting factors. This
allows these factors to be included in the pseudo-inverse of
the Jacobean matrix that improve the performance. Stability
analysis and weight computation strategy is also presented.
This work is continuation to the hybrid visual servo control
works presented in the literature. It is started by Malis et al.
(1999); Malis and Chaumette (2002) and then Abdul Hafez
and Jawahar (2006a), Abdul Hafez and Jawahar (2007), and
Abdul Hafez et al. (2013). Later, Kermorgant and Chaumette
proposed in Kermorgant and Chaumette (2011) a similar work
to this with small difference in the computation method of
weights. The difference from the current work is they assign
an individual unbounded weight to each feature. However, this
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Fig. 1. The initial and desired camera poses of a positioning
task given as images. Initial image in (a) and desired image
in (b).

Fig. 2. Dynamic look-and-move visual servoing system. The
output of the visual controller is the Cartesian velocity,
which is fed as an input to internal (joint controller).

may bring stability issues due to accumulated high gain resulted
from weights of more than one active features. The proposed
work, presented a stable hybrid control law with time varying
weights. It satisfies a few constraints like feature visibility and
straight line constraints.

The experimental evaluation is done in order to show the en-
hanced performance of the visual servoing process. Since the
visual servoing process is presented within the optimization
framework, it is preferable to analyze the analogous properties
of visual servoing as well as the optimization process. Two
main properties are considered here, the time of convergence
and the trajectory of the working point during the optimization
process. Our hybrid function is defined over both image and
Cartesian spaces. It is enough to evaluate the time of conver-
gence over the Cartesian space due to the duality between the
two mentioned spaces. The trajectory of the working point is
evaluated by projecting it on the Cartesian space to get the
camera trajectory, and on the image space to get the image
feature trajectory. The performance of visual servoing system
is evaluated by its ability to keep features visible in the image
and the Cartesian trajectory within the robot workspace during
the process.

2. VISUAL SERVOING AS MINIMIZATION PROBLEM

The positioning task is to move the robot end-effector from
an initial pose P ∈ R3 × SO(3) to reach a desired pose
P ∗. These two poses are almost given, in the general case,
by initial and desired images, (see Figure 1 for example). In
other words, the problem is to minimize an error vector e(s) of
visual features s(P ) extracted from the initial/current image by
finding a change in the pose vector ∆P or the velocity vector

V = [ν, ω]T that incrementally minimizes a cost function
E(s(P )). Viewing the problem as a nonlinear least squares
minimization allows us to formulate the following cost function

E(s(P )) =
1

2
(s(P )− s(P ∗))T (s(P )− s(P ∗)). (1)

Formulating the positioning task as a minimization problem
is equivalent to the formulation as a control problem. The
control problem is that of finding a feedback control signal
V = ∆P

∆t = [ν, ω]T such that the output s(P ) reaches
a desired output s(P ∗). Most of the visual servoing schemes
follow the indirect visual servoing control method by producing
the Cartesian velocity output. A block diagram of the general
look-and-move (indirect) visual servoing has been shown in
Figure 2.

Most of the familiar minimization methods that provides ef-
ficient solutions to wide range of optimization problems are
based on the Taylor series approximation of the cost function.
The cost function given in Equation (1) can be written as

E(s(P ∗)) ≈ E(s(P )) +
∂E(s(P ))

∂P
∆P +

1

2
∆PT ∂2E(s(P ))

∂P 2
∆P. (2)

Considering that the gradient of the cost function ∂E(s(P ))
∂P is

given as
∂E(s(P ))

∂P
= (s(P )− s(P ∗))T

∂s(P )

∂P
= e(s)TJ(P ). (3)

The matrix J(P ) = ∂s(P )
∂P is the feature space Jacobean or the

first order derivative of the feature vector s(P ) with respect to
the pose vector P . In Gauss-Newton minimization, the second
order derivative is approximated by

∂2E(s(P ))

∂P 2
= JT (P )J(P ), (4)

and substituting (3) and (4) in (2), the required change in the
pose is thereby

V =
∆P

∆t
= −λJ+(P )e(s), (5)

where λ is a positive constant parameter that defines the
step size of the minimization process. The matrix J+(P ) =(
JT (P )J(P )

)−1

JT (P ) is the pseudo-inverse of the matrix J .
This method is known as the Jacobian Pseudo-inverse method
and widely used in the robot control and visual servoing Es-
piau et al. (1992); Malis (2004). It is enough to solve for the
first order approximation to perform the minimization process.
Particularly, it requires the only computation of the Jacobean
matrix which is done through the computations of gradient
vector. Indeed, Gauss-Newton minimization method is fast and
more efficient near to minimum point.

Based on the type of the visual features s(P ∗) used in the
minimization process, the cost function defined in Equation (1)
varies from E2D(P ) for 2D visual features from image space
and image-based visual servoing (IBVS) to E3D(P ) for 3D
visual features from the Cartesian space and position-based
visual servoing (PBVS).

2.1 Image-based Visual Servoing (IBVS)

In traditional IBVS, the cost function is expressed directly in
the 2D image space. Thus, the 2D visual servoing is also called
image-based visual-servoing. Usually, the 2D coordinates of
a set of image points are considered as features, the vector
s(P ) becomes s2D(P ) = [x1, y1, . . . , xN , yN ]T while the
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desired vector s(P ∗) is s2D(P ∗) = [x∗1, y
∗
1 , . . . , x

∗
N , y

∗
N ]T .

Equation (1) may be written as

E2D(s(P )) =
1

2
ei(P )T ei(P ), (6)

where

ei(P ) = s2D(P )− s2D(P ∗). (7)

Using the Newton minimization method presented in Section 2,
the velocity vector in Equation (5) can be rewritten as

Vi = −λJ+
i (P )ei(s). (8)

This is the IBVS control law with respect to the cost function
defined in Equation (6). The matrix Ji(P ) = ∂(ei(P ))

∂P is then
the image Jacobian matrix or some times called the interaction
matrix Wilson et al. (1996). It describes the relation between
the changes or motion in the image space and the corresponding
changes or motion in the Cartesian space.

For a set of features contains N image points, the Jacobian
matrix is given as

Ji(P ) =
[
JTi1 . . . J

T
ik . . . J

T
iN

]T
,

where Jik is computed as a function of the kth image point
coordinates xk, yk and its depth Zk as follows

Jik =

− 1

Zk
0

xk
Zk

xkyk −(1 + x2
k) yk

0 − 1

Zk

yk
Zk

1 + y2
k −xkyk −xk

 . (9)

To avoid the Jacobian singularity, the number of features is
selected such that N > 3. This corresponds to at least 4
image points. In the simplest case, we consider points as visual
features. The interaction matrix for a large range of image
features (straight lines, ellipses, etc.) can be found in Espiau
et al. (1992).

Note that Ji(P ) depends on the depth Z of each selected
point feature. Thus, even if the 2D visual servoing is “model-
free” we still need some knowledge about the depths of the
points. Several solutions have been proposed in order to solve
the problem of the estimation of the depth Abdul Hafez and
Jawahar (2006b); Luca et al. (2007); Yap et al. (2011); Janabi-
Sharifi and Marey (2010). An estimate of the depth can be
obtained using, as in 3D visual servoing, a pose determination
algorithm (if a 3D target model is available), or using a structure
from known motion algorithm (if the camera motion can be
measured). However, using this choice may lead the system
close to, or even reach, a singularity of the interaction matrix.
Furthermore, the convergence may also not be attained due
to local minima reached because of the computation by the
control law of unrealizable motions in the image Chaumette
(1998). The pseudo-inverse J+

i of the interaction matrix Ji is

usually approximated by Ĵ+
i can be estimated using different

computational methods. It can be numerically estimated or
computed analytically.

In general, image-based visual servoing is known to be robust
not only with respect to camera but also to robot calibration
errors. However, its convergence is theoretically ensured only
in a region (quite difficult to determine analytically) around
the desired position. Except in very simple cases, the analysis
of the stability with respect to calibration errors seems to be
impossible, since the system is coupled and non-linear.

2.2 Position-based Visual Servoing (PBVS)

The control law in position-based visual-servoing uses directly
the error on the pose of the camera. Based on the number of
visual features available in the image the pose can be computed
regardless the availability of the model of target object. 3D
visual features such as the position and orientation can be part
of the feature vector s3D(P ) = [T, uθ]T = [Tx, Ty, Tz, uθ]

T .
Here, T is the translation vector and uθ is the rotation vector
represented by the rotation axis u and angle θ. The desired fea-
tures are s3D(P ∗). Similarly to Equation (6) and Equation (7),
we can write

E3D(s(P )) =
1

2
ep(P )T ep(P ), (10)

where
ep(P ) = s3D(P )− s3D(P ∗). (11)

Using the Newton minimization method presented in Section 2,
the velocity vector given in Equation (5) can be written for the
PBVS control law as

Vi = −λJ+
p (P )ep(s), (12)

where the matrix

Jp(P ) =
∂(ep(P ))

∂P
is the Cartesian Jacobean matrix. It describes the relation be-
tween the motion or changes of the selected 3D features, and
changes of the camera pose or the motion of the camera.

The translation vector T represents the translation between
the current camera frame FC and the desired one FC∗ . Then,
s3D(P ) = [ C

∗
TC , uθ]

T , s3D(P ∗) = 0(6×1), and the Jacobian
matrix is given as

Jp(P ) =

[
RC∗
C 0(3×3)

0(3×3) Jw

]
, (13)

where

Jw =
∂(uθ)

∂P
= I3 −

θ

2
[u]× +

(
1− sinc θ

sinc2 θ
2

)
[u]2×. (14)

Here, sinc(x) = sin(x)
x , and J−1

w uθ = uθ.

Let us note that the matrices T and uθ are computed using
pose estimation algorithm Yap et al. (2011); Janabi-Sharifi
and Marey (2010). The intrinsic camera parameters should
be available. In addition, the CAD model of the target object
should also be available. The main advantage of this approach
is that it directly controls the camera trajectory in Cartesian
space. Once we have the desired camera and the current camera
pose, the camera displacement to reach the desired position is
thus easily obtained, and the control of the robot end-effector
can be performed either in open loop or, more robustly, in
closed-loop. However, since there is no control in the image, the
image features used in the pose estimation may leave the image,
especially if the robot or the camera is coarsely calibrated. This
leads to servoing failure. Also note that, if the camera is coarse
calibrated, or if errors exist in the 3D model of the target,
the current and desired camera poses will not be accurately
estimated.

2.3 Hybrid 2 1/2 D Visual Servoing

Usually, hybrid methods use 2D and 3D information extracted
from partial geometric reconstruction. Partial geometric recon-
struction may be done based on homography matrix decom-
position Malis et al. (1999) or from decomposing the essential
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matrix Malis et al. (2000). Many hybrid visual servoing meth-
ods can be identified as partitioned methods Deguchi (1998);
Corck and Hutchinson (2001); Kyrki et al. (2004), since they
are partitioning the degrees of freedom of the robot motion. In
the remaining of this Subsection, the seminal work on hybrid
visual servoing Malis et al. (1999) is reviewed in addition to
three examples of the partitioned methods.

Design of the Error Function and Computing the Jacobian
The 2 1/2 D visual servoing is a hybrid method that partially
uses the information from the 2D image space and 3D Cartesian
space. The selection of partial 2D and 3D information to
be involved in the 2 1/2 D visual servoing control law is
done by defining the feature vectors s2D(P ) and s3D(P ) as
follows Malis et al. (2000):

s2D(P ) = [x, y, log(Z)]T , (15)

s3D(P ) = [ C
∗
(uθ)C ]T . (16)

Here, x and y are the normalized image coordinates of a
selected image pointm and Z is its 3D depth given with respect
to the current camera frame. The angle θ and axis u represent
the rotation between the current and desired camera frame.

Let the desired values of these two feature vectors be
s2D(P ∗) = [x∗, y∗, log(Z∗)]T , and s3D(P ∗) = [03×1].

(17)
The error functions ei(P ) = s2D(P )− s2D(P ∗) and ep(P ) =
s3D(P )− s3D(P ∗) are defined as follows

ei(P ) = [x− x∗, y − y∗, log(Z/Z∗)]T , (18)

ep(P ) = [ C
∗
(uθ)C ]T . (19)

To compute the Jacobian matrix, let us write the time derivative
of these error functions as a function of the camera screw
velocity V . The time derivative of ep(P ) = uθ can be written
as

∂(ep(P ))

∂t
=
∂uθ

∂t
=
∂(ep(P ))

∂P
.
∂P

∂t
= Jp(P ).Vc = [03×3 Jw]Vc. (20)

The matrix Jw is given same as Equation( 14).

The time derivative of ei(P ) can be written as
∂(ei(P ))

∂t
=
∂(ei(P ))

∂P
.
∂P

∂t

=
∂([x− x∗, y − y∗, log(Z/Z∗)]T )

∂P
.
∂P

∂t

= Ji(P ).Vc =

[
1

d∗
Jv Jv,w

]
Vc. (21)

Here, d∗ is unknown parameter related to the depth Z of the
concern point as ρ = Z/d∗. Substituting in Equation (5) after
considering that

J(P ) =

[
1

d∗
Jv Jv,w

03×3 Jw

]
, (22)

One can note that the matrix J−1(P ) is an upper triangular
square matrix. This matrix does not suffer from any singularity
in the task space.

3. VISUAL SERVO CONTROL BY MINIMIZING
HYBRID WEIGHTED OBJECTIVE FUNCTION

We proposed in Abdul Hafez and Jawahar (2006a, 2007) a
hybrid (2D-3D) cost function that contains dense information

from the 2D image space and the full 3D pose information.
The minimization of this objective function is applied to the
visual servoing process. A close work to ours is the error
function which was proposed in Malis et al. (1999); Malis and
Chaumette (2002) and the one recently proposed in Kermorgant
and Chaumette (2011). In Malis et al. (1999), the error function
was defined as a 6-vector. The 3-vector that contains the 2D
visual information from the image space is used to recover
the position of the camera, where the 3-vector that contains
the 3D visual information from the pose space is used to
recover the orientation of the camera. This has been reviewed
in Section 2.3. In contrast, current method uses both the image
space information and pose space information to recover the
full camera pose information, both position and orientation.
Both 2D and 3D errors are concatenated in a (2N+6)-vector and
minimized together. It is assumed that an n image points and 6
dimensional 3D vector (3 for translation and 3 for rotation). In
such a minimization method, the minimization process searches
for a least squares solution that minimizes both the 2D error
from the image space and the 3D error from the pose space
simultaneously.

The work presented in Kermorgant and Chaumette (2011), is
identical to the one we proposed in Abdul Hafez and Jawahar
(2006a, 2007), with an exception that the weights are com-
puted and assigned in different way. These differences are
focused and detailed later in this section. This paper extends
the previous works Abdul Hafez and Jawahar (2006a, 2007);
Kermorgant and Chaumette (2011) in such a way that: (i) the
weights are assumed time variants. Indeed, the weights ma-
trix will be augmented in the pseudo-inverse of the Jacobean
in Equation (5), (ii) stability analysis and proof is presented
for the hybrid task. (iii) the weights computation methods are
presented as well.

3.1 Control Law from Minimizing the Hybrid Function

Let us define a hybrid cost function as the weighted sum of the
two E3D(s(P )) and E2D(s(P )) function as follows

Eh(s(P )) = λ2
1 E2D(s(P )) + λ2

2 E3D(s(P )). (23)

Here, λ1 and λ2 are positive scalar factors that play the role
of the step size of the minimization process in addition to the
integration ratio between 2D and 3D spaces. The functions
E3D(s(P )) and E2D(s(P )) are the PBVS and IBVS cost
functions as defined in Equations (6) and (10) respectively.
Recollect that the features s2D(P ) are selected as the 2D
coordinates of a set of image points. The current features are
s2D(P ) = [x1, y1, . . . , xN , yN ]T while the desired vector
s(P ∗) is s2D(P ∗) = [x∗1, y

∗
1 , . . . , x

∗
N , y

∗
N ]T . In contrast,

the feature s3D(P ) is selected as the pose vector P . The
current features are s3D(P ) = [T, uθ]T = [Tx, Ty, Tz, uθ]

T .
while the desired features are s3D(P ∗). While minimizing
this cost function, the process searches for a solution that
reduce the value of the two individual functions E3D(s(P ))
and E2D(s(P )).

Consider a positioning task to be achieved by minimizing
the hybrid objective function given in Equation (23). This
is the weighted sum of the objective functions defined in
Equations (6) and (10) as IBVS and PBVS objective functions
respectively. The gradient vector of this objective function is
given as
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∂Eh(P )

∂P
=

2λ1∂λ1

∂P
+ λ2

1

∂
(
ei(P )T ei(P )

)
∂P

+
2λ2∂λ2

∂P
+ λ2

2

∂
(
ep(P )T ep(P )

)
∂P

(24)

The partial derivative of the weights can be written as ∂λi

∂P =
∂λi

∂t
∂t
∂P . The term ∂λi

∂t can be neglected if we assume that the
weights are varying slowly. This is a classical assumption in
visual servoing literature Garcia-Aracil et al. (2005); Mansard
et al. (2009); Cheah et al. (2007).

By substituting this assumption in Equation 24, the later can be
simplified to

∂Eh(P )

∂P
= λ2

1

∂
(
ei(P )T ei(P )

)
∂P

+ λ2
2

∂
(
ep(P )T ep(P )

)
∂P

= λ2
1ei(P )T

∂
(
ei(P )

)
∂P

+ λ2
2ep(P )T

∂
(
ep(P )

)
∂P

= λ2
1ei(P )TJi(P ) + λ2

2ep(P )TJp(P ). (25)

The above equation can be written in a compact matrix form as
∂Eh(P )

∂P
=
[
ei(P )T ep(P )T

] [ Λ1 0
0 Λ2

] [
Ji(P ) 0

0 Jp(P )

]
. (26)

Here, the matrices Λi = diag(λ2
i ). Equation (26) can be written

by decomposing the matrices Λi as
∂Eh(P )

∂P
=
[
ei(P )T ep(P )T

][ Λ̃1 0

0 Λ̃2

][
Λ̃1 0

0 Λ̃2

][
Ji(P ) 0

0 Jp(P )

]
,

(27)
where the matrices Λ̃i = diag(λi).

The above formula can be shown in the form of an augmented
error function as

∂Eh(P )

∂P
= eh(P )TJh(P ). (28)

Here, the error

eh(P ) = Λ̃
[
ei(P )T ep(P )T

]T
. The matrix Jh is Jh = Λ̃J(P ), where Λ̃ =

[
Λ̃1 0

0 Λ̃2

]
and J(P ) =

[
Ji(P ) 0

0 Jp(P )

]
. Similarly to the analysis in

Section 2, the velocity signal that is a function of the change
in the pose is given as:

V = −µJ+
h eh(P ), (29)

where J+
h = (JTh Jh)−1JTh is the pseudo inverse of the matrix

Jh, and µ is proportional constant or the step size factor.

3.2 Stability Analysis of the Hybrid visual control law

This subsection considers the fundamental issues related to the
stability of visual servoing control law. Then, the stability of the
visual servoing using the proposed hybrid function is presented.
Visual servoing system can be generally considered as a non-
linear control system.

The stability of such systems, the closed-loop visual servo
system, can be studied as the stability of non-linear system
using Lyapunov theory. Let us consider a candidate Lyapunov
function defined as

L =
1

2
(s(P )− s(P ∗))T (s(P )− s(P ∗)) =

1

2
e(P )T e(P ).

(30)

The first order derivative of this function is
∂L
∂t

= −λe(P )T J(P )Ĵ(P )+ e(P ) (31)

From the automatic control theory Isidori (1995); Khalil
(2002), we can consider that the global asymptotic stability of
a system to which the above Lyapunov function L is defined, is
obtained when the following sufficient condition is ensured:

J(P )Ĵ(P )+ > 0. (32)

In general, if the number of the features N is equal to the
number of degrees of freedom of the robot, the matrices J(P )

and Ĵ(P )+ are of full rank 6, and the condition Equation (32)
is ensured. This is subject to good approximation of the matrix
Ĵ(P )+. For more details about stability analysis of the two vi-
sual servoing controllers, IBVS and PBVS, readers are referred
to Chaumette and Hutchinson (2006).

Let us consider the different possibilities for the values of the
weights, i.e. the different possible values of the factors λ1 and
λ2. These include the following cases:

(1) The first case is λ1 = 1 and λ2 ≥ 0. This case is reduced
to pure IBVS when λ2 = 0. Let us remember that IBVS
has the property of producing a straight line trajectories in
the image space.

(2) The second case is λ2 = 1 and λ1 ≥ 0. This case is
reduced to pure PBVS when λ1 = 0. Let us remember
that PBVS has the property of producing a straight line
trajectories in the Cartesian space.

(3) The third case is λ1 > 0 and λ2 > 0. This is the
general hybrid visual servoing algorithm. The algorithm
here shows the properties of both IBVS and PBVS based
on the values of the factors λ1 and λ2.

However, some of these cases are published in the literature
in different works by different authors. We originally proposed
the third case in Abdul Hafez and Jawahar (2007). Later on
to Abdul Hafez and Jawahar (2007), a work that is similar to
the second case is proposed by Kermorgant and Chaumette pro-
posed in Kermorgant and Chaumette (2011). The differences
of the later work to our work is explained and discussed in
Section 4.2.

Recollecting Equation (29) and considering the above first and
second case, this equation can be written in the first case,
particularly when λ2 = 0 as:

V = −µ
[[
I 0
0 0

] [
Ji(P ) 0

0 Jp(P )

]]+ [
I 0
0 0

] [
ei(P )
ep(P )

]
= −µJi(P )+ei(P ), (33)

and in the second case, particularly when λ1 = 0 as

V = −µ
[[

0 0
0 I

] [
Ji(P ) 0

0 Jp(P )

]]+ [
0 0
0 I

] [
ei(P )
ep(P )

]
= −µJp(P )+ep(P ). (34)

In these two cases, classical stability analysis can be done
following the methodology given in Section 3.2 and detailed
in Chaumette and Hutchinson (2006).

In the third case, we assume each factor λi varies smoothly
with respect to time. We have here the general case described in
Equation (29). We originally proposed this case in Abdul Hafez
and Jawahar (2007). Here, the stability analysis is reconsidered.
However, we follow discussion presented in subsection 3.2
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to show the local stability of the system. Local stability is
guaranteed as long as the matrices Jp(P )+ and Ji(P )+ are
good approximations of the inverse Jacobean of the matrices
Jp(P ) and Ji(P ) respectively. This means that

Jh(p)Jh(p)+ > 0. (35)
The factors λ1 > 0 and λ2 > 0 can help simplifying the
stability analysis sice they are always positive. This ensure the
positive definite condition of the matrix given above in Eq. (35).
One thing to be noticed is that the configuration may reach a
potential local minima when Λeh(p) ∈ Jh(p)T . This case of
potential local minima is described in Chaumette (1998).

4. HANDLING THE CONSTRAINTS BY THE
IMPORTANCE FACTORS λ1 AND λ2

The weighting factor λ1, is assigned to 2D features, based on
an error function that measures the possibility of a feature to
get out of the camera field of view. This means whenever a 2D
feature approaches the image border, the value of the weighting
factor λ1 will be increased. Higher value of λ1 allows the
behavior of IBVS to dominate. Similarly, the value of weighting
factor λ2 are computed based on an error function in the robot
joint space. Next subsection shows the computation of these
weights ω2D and ω3D in the third i.e. the general case then, in
the later subsection, the case 1 and case 2, we call the special
cases, are presented.

4.1 The general case

As we have seen in the previous section, case one is reduced
to IBVS and case two is reduced to PBVS. The computation
of the factors λ1 and λ2 in the third case i.e. the general case
will be done based on this fact. The computation is done in
such a way that whenever the behaviour of IBVS is required,
larger value is given to λ1. Similarly, whenever the behaviour
of PBVS is required, larger value is given to λ2. We explain
below the method used to compute these importance factors
λ1 and λ2. In the remaining of this subsection, we call λ1 as
the importance factor for IBVS, and call λ2 as the importance
factor for PBVS.

The importance weight of the PBVS is inversly proportional to
the ability of following the straight line camera path. Hence,
the importance factor controller of position-based with respect
to one arm joint can be written to be inversely proportional to
the end-effector deviation from the straight line path as follows:

ω3D =
1√

2πσr
exp

[
− r2

2σ2
r

]
. (36)

Here, σr is a selected threshold, and r is the distance of the
end-effector to the straight line path. A plot of the importance
weights of position-based basic controller with respect to the
distance to the image border is illustrated in Fig. 3.

The importance weight of the IBVS is proportional to the
weakness of the performance of position-based visual servoing.
The performance of position-based vision control is measured
by the ability of keeping the point features (ui, vi) visible in the
camera field of view. The error in the performance of position-
based vision control can be measured as a function of the
distance of the ith point to the nearest image border. Let the
parameter {dit}Ni=1 be the distance of the ith point to the nearest
image border at time t, where

di = min{ui −m0, v
i − n0,m0 − ui, n0 − vi}, (37)
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Fig. 3. The importance function of the 3D visual information.
The importance factor is a function of the distance r. When
the working point is far from the straight line, the factor is
zero value.

where m0 and n0 are margins to the image borders, and N
is the number of image points. Hence, the importance factor
controller of image-based with respect to one image point
can be written to be inversely proportional to this distance as
follows:

ωit =
1√

2πσd
exp

[
−d

i(2)

2σ2
d

]
. (38)

Here, σd is a selected threshold such that only image points
within a minimum distance to its image border will contribute
to the importance weight. We get the following importance
weight for ith image point. Finally, the importance weight
image-based vision control algorithm is given as

ω2D = max
i
{ωit}Ni=1. (39)

A plot that shows the image borders a long with the marginsm0

and n0 to compute the distance to the image border is illustrated
in Fig. 4.

One thing that we may note from curves of the importance
factors is that each one is bounded with a maximum value,
but this is not the same in the first two cases . The two values
of the factors are normalized to play the role of balancing the
amount of 2D and 3D information need to be integrated and
hence contribute to the velocity vector of the camera computed
by the visual controller.

4.2 The special reduced cases

The discussion here in this subsection is about the other first
and second cases. In case one, it is assumed that IBVS is
the default controller. This means that the trajectories in the
image space are a straight lines. In addition, since the 3D
trajectories is a complex 3D curve, arm joints may reaches its
limits. Whenever a joint approaches its limit, a higher value is
assigned to λ2. Similarly, PBVS is assumed to be the default
controller in case two. The 3D trajectory is straight line while
the image trajectories may move out of the camera field of
view. Whenever an image feature approaches the image border,
a higher value is assigned to λ1. The work presented later
by Kermorgant and Chaumette proposed in Kermorgant and
Chaumette (2011) is similar to the case two of our work in
the sense that it assumes the default scheme is the PBVS that
produces a straight line 3D trajectory. It is different in the sense
that in Kermorgant and Chaumette (2011) a different weight is
assigned to every different image feature, and the weights are
unbounded hence they can grow up to infinity.
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Fig. 4. The margins to the image borders that affect the values
of the importance factor of the 2D visual information.

The work recently proposed in Kermorgant and Chaumette
(2011) presents a different weighting strategy in a similar
framework. This strategy assumes that Λ2 = diag(λ2) = I6. In
other words, the importance factor of 3D information is λ2 = 1.
In contrast, Λ1 = diag(λ1i), where λ1i is the importance
factor of the 2D information associated with the image feature
(ui, vi). In this case, whenever a 2D feature (ui, vi) is going to
leave the camera FoV, the importance factor λ1i associated with
it is increased. To bring more attention to the feature near the
border, the weight λ1 will go to infinity when the image feature
go near to image border. Briefly, the servoing process starts
by default as PBVS, and start injecting 2D features (ui, vi)
whenever it approaches any of the image borders. Due to the
effect of measurement errors and other types of noise, the
contribution of the concern feature to the velocity signal may
not be enough in this case to bring the feature back into the
image toward its desired position. Another issue to be noted
in this work is that the weights of image features are going to
infinity when many features are very near from the border. This
may gives large amount of contribution to IBVS scheme, hence
the arm may reaches its limits. In addition, the hight gain which
is earned in such situation may cause stability problem to the
servoing system.

Another close work but previous to ours is the 2 1/2 D visual
servoing error function that was proposed in Malis et al. (1999)
and has been reviewed in Subsection 2.3 from this paper.
In Malis et al. (1999), the features are selected as a 6-vector. The
first 3-vector is s2D(P ) = [x, y, log(Z)]T that contains the
2D visual information from the image space. These features are
used to recover the position of the camera, where the another
3-vector is 3D(P ) = [ C

∗
(uθ)C ]T that contains the 3D visual

information from the pose space is used to recover only the
orientation of the camera. Let us rewrite the weighting matrices
in the control law given in Equation (29) as Λ̃1 = diag(λ1i),
where i = 1, . . . , 2N ; and Λ̃2 = diag(λ2j) = I6, where
j = 1, . . . , 6. We find that the 2 1/2 D visual servoing is
fitting within our frame work by assigning {λ1i = 0}2Ni=3 and
{λ2j = 0}3j=1.

In contrast, our method uses each of the full image space
information and pose space information to recover the full

Tx Ty Tz R P Y

Initial pose 1st task 0.0 -1.7 0.0 0.0 0.0 -1.57
Desired pose 1st task 0.0 -1.7 0.0 0.0 0.78 -1.57
Initial pose 2nd task 2.15 -2.09 0.0 0.8 -0.6 -1.57
Desired pose 2nd task 0.0 -1.5 0.0 0.0 0.0 -1.57
Object pose 0.0 0.0 0.0 0.0 0.0 -1.57

Table 1. The initial and desired camera pose, and
object frame pose with respect to the world refer-

ence frame.

X Y Z X Y Z

P1 0.0 0.0 0.0 P2 0.25 0.25 0.0
P3 -0.25 0.25 0.0 P4 -0.25 -0.25 0.0
P5 -0.25 0.25 -0.2 P6 -0.2 -0.2 0.1

Table 2. The 3D points coordinates in the object
frame.

camera pose i.e., both position and orientation. The 2D features
are s2D(P ) = [x1, y1, . . . , xN , yN ]T , i.e., the coordinates
of the considered image points. The 3D features s3D(P ) =
[T, uθ]T = [Tx, Ty, Tz, uθ]

T , i.e., the pose vector. Both 2D
s2D(P ) and 3D features s3D(P ) are concatenated into a 12-
vector and minimized together. In such a minimization method,
the minimization process searches for a least squares solution
that minimizes the 2D error from the image space and the 3D
error from the pose space simultaneously. This produces an
optimal performance in both spaces.

5. RESULTS AND DISCUSSION

We present simulation experiments where the proposed meth-
ods are compared to previous method like IBVS, PBVS, and to
hybrid methods, namely 21/2D visual servoing. These meth-
ods in addition to our proposed method are implemented in a
simulation framework. The simulation assumes a perspective
camera model with 1000m focal length and unit aspect ratio.
The servoing target object consists of six non-planar points. The
object pose, and initial and desired camera pose with respect to
a world reference frame are given in Table 1. The object point
coordinates are given in Table 2.

As we have mentioned in the introduction, the Cartesian camera
path and the feature image trajectory reflect the behavior of
the working point of the optimization process. Through the
experiments done in this section, we evaluate the camera path
resulting from optimizing our hybrid objective function, show-
ing that it is improved with respect to the basic visual servoing
algorithms as well as with respect to other state of the art hybrid
visual servoing method. This can be noted where our algorithm
produces much shorter camera path. The same discussion can
be applied to the image trajectory, which it is nothing but the
projection of the working point to the image space. Similarly,
we are interested in producing an image trajectory that is within
the image area.

The experiments performs a comparison through two position-
ing tasks. The first one is a π/4 rad rotation error around the
camera optical axis. It is the first task presented above. This
task is useful to evaluate the efficiency of the proposed methods
compared to previous works in the literature like IBVS and its
improved version, 21/2D visual servoing. The task is achieved
using our proposed method. Results are compared to IBVS and
21/2D VS. The camera retreat in each method is evaluated by
the magnitude of the screw velocity Vz along the camera optical
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Fig. 5. The image features trajectories and the screw velocity. Image-based visual servoing in (a) and (d). 21/2D visual servoing (b)
and (e), and our proposed method in (c) and (f). The desired positions of the image features are marked by +. The translational
and rotational velocities are measured by m/sec and rad/sec respectively. The image-based method shows considerable amount
of camera retreat, i.e. high value of velocity Vz along the axis z. In contrast, it much smaller values in case of using 21/2D
and our proposed methods.

axis and finally the performance of our proposed method is
compared to the IBVS and 21/2D VS methods.

The second task is a general positioning task that contains
a rotation and translation errors. It is the last task presented
above. This task is useful to evaluate the camera trajectory
in the Cartesian space. Camera trajectories resulting from our
proposed method and methods like PBVS and 21/2D VS are
compared here.

5.1 Camera Retreat from Rotation Error

The experiments for the first task is done using out proposed,
IBVS and 21/2D. The results are shown in Figure 5. In case
of using IBVS, the camera retreat along the camera optical
axis is demonstrated in Figures. 5(a) and 5(d). These figures
show the image trajectory and screw velocity respectively. A
nice image trajectory was obtained while a considerable pure
backward translation motion (camera retreat) was observed.
The task is completed properly using 21/2D method. This is
shown in Figures. 5(b) and 5(e). It is clear that there is no
notable translation motion while the rotation error decreased
properly to zero. In other words, the task has been done without
camera retreat.

The results in case of our method are shown in Figures. 5(c),
5(f) respectively. The proposed method shows an image trajec-
tory similar to the one obtained using 21/2D method. However,
a moderately small camera retreat is observed.

5.2 Camera Trajectory in the Cartesian Space

Here, we consider the second task. This is a general task with
both translational and rotational motion. First we present the
results from PBVS where the camera trajectory in the Carte-
sian space is a straight line. This is the shortest camera path.
Figures 6(a) and 6(d) show the features trajectory in the image
space and camera trajectory in the Cartesian space respectively.
However the image trajectory is an undesirable complex curve
and some features got out of the camera field of view. In con-
trast, 21/2D visual servoing, as shown in Figures 6(b) and 6(e),
has improved the image trajectory, but nothing about the Carte-
sian camera path, it is not a straight line at all.

Using our proposed method produces, as illustrated in Fig-
ures 6(c) and 6(f), a camera trajectory that is not only very close
to a straight line, but also with fine image trajectory.
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Fig. 6. The image features trajectories and the camera trajectory in the Cartesian space. PBVS visual servoing in (a) and (d),
21/2D visual servoing in (b) and (e), and our proposed method in (c) and (f). The desired positions of the image features are
marked by +. The PBVS methods produces a stright line but the features leave the camera field of view. In 21/2D method
one feature follows straight line in the image and remaining features’ trajectory is acceptable, hence the camera trajectory is
unpredictable curve. In contrast, our proposed method shows very near to the straight line camera trajectory along with image
trajectories that keep the features in the field of view.

In general, our proposed methods show an improved perfor-
mance in image space and Cartesian space together. In both
methods, image features are less probable to leave the image
while the camera performs less retreat in the Cartesian space.
An improvement is observed in the trajectories in the image
space for all considered points. Most of the previous hybrid
methods improve the path of only one point in the image.

6. SUMMARY

In this paper, we presented the visual servoing problem using a
minimization framework. The two traditional IBVS and PBVS
methods along with previous hybrid methods like 2 1/2 D VS
are also defined using the same minimization framework. The
IBVS uses an error function consists of 2D information from
the image, while PBVS uses an error function consists of 3D
information from the Cartesian space. Our major contribution
is presented here as an extended hybrid objective function. This
proposed hybrid function concatenates the two individual 2D
and 3D error vector in one extended vector. Here, the full 2D
and 3D information are used in the process, in the general case,
comparing with the earlier hybrid methods that partially use the

2D and 3D information in the visual servoing process. Stability
analysis is presented. A methods for proper computations of
the weights that satisfy the visibility and path constraints are
shown. Experiments have been carried out within a simulation
framework. The results are analyzed and a comparison of our
proposed method to classical and hybrid methods is presented
using some of the canonical tasks stated in the literature.
Experiments show that the proposed methods outperform the
state of the art method in both the image and Cartesian spaces.
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