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Abstract:   The problems arising in Time Delay Systems (TDS) have increased complexity with 
respect to those related to Linear Delay Free Systems. Linear Matrix Inequalities (LMI) proved to be 
a useful instrument for solving several control problems (see [1]). The present paper is approaching 
the dynamic output feedback control problem for a class of TDS, where both the state dynamics 
and the output depends on the delayed states. Two new procedures are proposed to solve the optimal 
and the sub-optimal control problems. 
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1. INTRODUCTION 

 

Starting with the beginning of the 1980’s, the 
 control problem has been extensively 

studied. For the delay free linear systems several 
results approaching the problem of output  
feedback synthesis have been published in the 
1990’s. For a general theoretic framework for 
this problem and other related issues see [1]. 
Gahinet [2] and Iwasaki [3] extended the general 

control problem using the Bounded Real Lemma 
(BRL) and linear matrix inequalities (LMI). 
Necessary and sufficient conditions for the 
existence of an controller were given in 
terms of three LMI’s. ∞H

∞H

∞H

The delay is frequently a source of instability 
and encountered in various engineering systems 
such as chemical processes, hydraulics, power 
plants or combustion engines. As a result the 
stability of TDS received much attention in the 
last years.  Since these systems include 
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perturbations, it is important to study the 
problem for this class of systems.  There 

have been published several results in the last 
years regarding the control for TDS, see [4], [5], 
[6], [7], [8] and [9].  For an analytical approach, 
see [10].  Most of the approaches that have 
numerical relevance (can be applied in general 
situations), are Lyapunov based methods.  As a 
general pattern a Lyapunov functional

∞H

* is 
defined for the system and the final results are 
expressed in terms of LMI’s.  The resulting 
LMI’s are dependent on the way the Lyapunov 
functional is chosen. 

The purpose of this paper is to offer necessary 
and sufficient conditions for the existence of an 

 output feedback controller, for a class of 
TDS described in (1.5) and to propose a 
procedure that will converge towards an 
optimum controller, or in other words to 
approach as much as possible the minimum 
value for the infinite norm. 

∞H

First a sufficiency condition for the asymptotic 
stability of the closed loop system is proposed. 
Then the existence conditions for an output 
controller are expressed in terms of three LMI’s. 
A description of how to construct such a 
controller starting from the solution of this set of 
LMI’s is presented. 

∞H

A previous result proposed by Jeung in [11], 
approach the problem of  control by 
extrapolating the classical pattern for delay free 
systems to TDS. Due to the fact that TDS are 
more complex, by simply applying the classical 
methodology for the synthesis does not 
provide the best results. The approach presented 
in this paper starts in a similar way, but for a 
class of TDS with multiple delays described by 
(1.5) and using a different Lyapunov functional 
proposed in a more recent paper by Park in [4]. 
In the final stages of the synthesis process 
however, it becomes TDS oriented trying to 
achieve the best possible results for this class of 
systems.    

∞H

∞H

 

Due to the increased complexity of TDS the 
classical methodology proposed in Jeung [11] 

                                                 
* In the literature there are two main approaches one using 
Lyapunov-Krasovskii functionals and the other using Lyapunov-
Razumikhin functions.  The last one is considered to be more 
conservative since it is using the Khargonekar Lemma, and it is 
recommended only when the previous one fails. For more details 
see Dugard [8].   

for the sub-optimal problem might simply not 
work in many situations.  The major reason for 
that is the fact that the presence of the delay 
makes the LMI’s more complex, and as a result 
we cannot optimize in the same time with 
respect to all variables. As a consequence, an 
iterative process is necessary and this brings up 
a new manner to solve the  synthesis, which 
consist in finding first a feasible set of weight 
matrices for the Lyapunov functional, by solving 
in two steps the equivalent problem and then 
computing a controller K by solving the initial 
problem.  Afterwards the initial problem is 
iteratively solved with respect of the weight 
matrices and with respect of the controller 
parameters in an alternate manner till no 
relevant progress is achieved or the attenuation 
of the perturbations becomes small enough.  An 
analysis of several aspects is presented in the 
last chapter of this paper.  In the end, two 
convergent procedures are proposed, one for 
approaching the minimum norm as much as 
possible and the other one for solving the sub-
optimal problem. This results are delay 
independent. 

∞H

∞H

Let us consider the general control configuration 
in Fig. 1, where the system is 

 

 

 

 

 

 

                              Figure 1 
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The closed loop transfer function from  to  
will be given by a linear fractional 
transformation 
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Considering the system in Fig. 1, the optimal 

 control problem is to find all the dynamic 
controllers K which minimize 

∞H

)))(,((max),( jwKPFKPF ll σ
ω

=
∞

 (1.3) 

or, expressed in a in time domain interpretation 
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The purpose of the  control is to minimize 
the effect of some perturbations, seen as an 
exogenous input, over a certain set of quality 
output in the worse possible scenario. The  
synthesis methodology actually guarantees an 
upper bound on the propagation of the 
perturbation in the worst case. The objective is 
to minimize this upper bound (the optimal  
control) or to bring it under a certain limit (the 
sub-optimal case). 

∞H

∞H

∞H

The problem formulation itself is independent 
with respect to the presence of the delay. 

In this paper we will consider a system with 
concentrated state delays described by the (1.5) 
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where  is the state vector, is 
the exogenous input, is the control 
input, 

nx R∈ 1mw R∈
2mu R∈

1pz R∈  is the controlled output and is 
the measurement output. The controller will be 
defined by: 

2py R∈
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As we can see, the controlled and the measured 
outputs depend on delayed states. In many real 
situations it is expected that some of the 
matrices in the triplets , ,  might be 
0 but that will not affect our results.  

iA izC _ iyC _

 

2.  PROBLEM FORMULATION 

Given the system described by (1.5) and the 
controller (1.6) where , the closed loop 
system will be described by the system of 
equations (2.1)  

k
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In order to derive the existence conditions for 
the controller we have to separate the unknown 
matrices. We can gather all the controller 
parameters in one matrix 
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We can express now the state matrices (2.2) in 
terms of (2.3) and (2.4)  
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All the matrices defined in (2.4) contain only 
plant data. From (2.5) we can see that the state 
matrices of the closed loop system have an afine 
dependency on the controller data K. In order to 
design a stabilizing controller K which 
minimizes the norm of the closed loop 
system (2.1) a few additional results are 
necessary. 

∞H

Lemma 1. (Schur complement). For any 

symmetric matrix , the following 

are equivalent 
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Lemma 2. (Projection Lemma). Considering the 
matrices  ,  

 and 
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 and , the LMI 
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For proof, see [3]. 
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3. STABILITY AND NORM BOUND ∞H

Given the closed loop system described by (2.1), 
let us consider the following Lyapunov 
functional 
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from (3.1) and (2.1) it results 
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Theorem 3.1. If there is a set of symmetric 
positive definite matrices )()( knknRP +×+∈  and 

 such that the LMI  is 
satisfied the system described by (2.1) is 
asymptotically stable. 

nn
LPP ×∈R,,1 K 0<W
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The norm of the system (2.1) is defined as ∞H
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then the inequality (3.4) is equivalent with the 
LMI (3.7). 
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from 02 <γW  it results  and as a result 

(3.7) implies also the stability of the closed loop 
system.  
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Theorem 3.2. If there is a set of symmetric 
positive definite matrices  and 

 and a controller K such that 
)()( knknRR +×+∈

nn
LRR ×∈R,,1 K

0<γW , the system described by (2.1) is 
asymptotically stable and has an  gain smaller 
then 

2L
γ . 

If the delays are not present, the Theorem 3.2 
becomes equivalent with the Bounded Real 
Lemma. Further on we will use in (3.9) P 
instead of R since it makes no difference as long 
as they are both variable. 

 

4. THE CONTROLLER ∞H
The inequality (3.9) is not linear in terms of both 
the weight matrix P and the controller 
parameters. We can see that easily since 
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)( 000000 KCBAPPAcl += . As a result the direct 
approach by trying to solve (3.9) is not possible. 
We will express the existence conditions for an 

controller in terms of three LMI’s. Let us 
consider the inequality (3.9) and the notations 
(2.4) and (2.5). After applying the Schur 
complement the LMI (3.9) can be rewritten as 
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where  and ⊥Π ⊥Θ are any basis of the 
orthogonal subspaces of the matrices  and Π Θ . 

To simplify the conditions (4.5) we will denote  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= −

XM
MX

P
YN
NY

P TT ~,~ 1

      (4.6)
 ,0<ΛΠΘ+ΘΛΠ+Σ TTT KK          

(4.1) 

where  and Θ  are defined in (4.2), Π Λ is 
defined in (4.3) and  is defined in (4.4). Σ

where  , and nnRYX ×∈, , knRNM ×∈,
kkRYX ×∈

~,~ . We will consider also the 
following notation 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Π

+×

+×

×

+×

+×

+×

×

×

)2(

)2(

112

)2(1

)2(

)2(

2

2

0

0
0

0
0

0
0

0

kmn

kmn

kp

kmm

kmn

kmn

kmk

kn

D

I
B

M

M

,      

(4.2) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎭

⎪
⎬

⎫

=Θ

+×

+×

+×

×

×

×

×

×

L

D
C

C
I

C

kpn

kpn

kpp

km
T

kn
T
yL

kn
T
y

kpk

kn
T
y

)2(

)2(

)2(1

121

1

2

0

0
0

0
0

0
0

0

M

M

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⊥ 12

2

12

2

D

B

O
O

D
B

      (4.7) 

and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊥ 21

1

21

_

1_

D

CL

C

C

T

T
Ly

T
y

T
y

O
O

O
O

D
C

C
C

MM

         (4.8)

  

 
where , 

 and 

)21(
12

)21(
2

1, mpnp
D

mpnn
B RORO −+×−+× ∈∈

)21)1((
1 ,...,, pmnLn

CLCC ROOO −++×∈
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=Λ
876

L
876

L

L

nnpm

L

nn IIIIIIP 11diag  
 . )21)1((2

21
pmnLm

D RO −++×∈

        (4.3) 

We can construct now ⊥Π  (see (4.9)) and 
⊥Θ  (see (4.10)), and simplify (4.1) to obtain 

the (4.11)-(4.13) equivalent set of LMI’s. 
 By applying the Lemma 2 (Projection Lemma) 

we can completely eliminate the controller 
matrices. The inequality (4.1) will become 
equivalent with the following set of LMI’s  
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If we take a look to the size of the LMI’s (4.11) 
and (4.12) they are actually of comparable 
dimensions, +++ 1)1( mnL   and 21 mp −+

211)1( ppmnL −+++ . 

Theorem 4.1. If there is a set of positive definite 
matrices ,LPP ,,1 K X  and Y  such that the 
LMI’s (4.11) and (4.12) are satisfied, and  

0>⎥
⎦

⎤
⎢
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YI
IX

n

n

   (4.14)
 

there exists a γ  sub-optimal controller for 
the system (1.5). The order of the controller will 
be given by  

∞H

.)(rank nkXYI n ≤=−
   (4.15)

 

If in addition we minimize γ , the solution will 
converge towards the optimal one.  

Proof. The equivalence between (3.8) and (4.11) 
and (4.12) have been proven. Regarding now the 
LMI (4.14), there exist a symmetric positive 
definite matrix P  satisfying (4.6), if  (4.14) is 

satisfied.  For proof we define  and ⎥
⎦

⎤
⎢
⎣

⎡
=

0TM
IX

Z
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from IPP =−1 we get 
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Using now (4.17) if we consider the following 
transformation 
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we can see that    if  Z has 

maximal rank , condition satisfied in a 
generic case. If we consider the strict 
inequality then the rank condition is not 
necessary anymore. 
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5. Controller Synthesis and Numerical 
Results 

The Theorem 4.1 provides the necessary 
conditions for the existence of an  controller.  
Due to the structure of the LMI (4.11) the 
problem is not linear in both the pair X, Y and 
the weight (or multiplier) matrices .  
As a result the optimal value for 

∞H

LiPi :1, =
γ  cannot be 

searched by optimizing in the same time with 
respect to all of these matrices.  One possible 
approach would be to do it sequentially.  This 
means to fix first the matrices  and 
find a feasible pair X and Y that minimize

LiPi :1, =
γ .  

Then given the computed matrices X and Y, find 
a set of matrices  that minimize LiPi :1, = γ  
and repeat these steps till no major progress is 
achieved.  Once the unknown matrices X and Y 
are computed we can determine the P matrix 
from the following equality 

,
00 ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
TT M

XI
P

N
IY

  (5.1)
 

where the matrices M and N can be computed 
from  using a Singular Value 
Decomposition (SVD). Given now the 

XYIMN T −=

LiPP i :1,, =  matrices we can go back and 
compute the controller matrices as any solution 
to the LMI (4.1).  

 

One of the packages in use for solving SDP is 
SDPT3, which works with Matlab5x and was 
developed by K.G.Toh 1998 (see [12]). For 
more about SDP see [13],[14].  

Let us consider de following system  
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We can choose as an initial value for  and 
solve the following SDP problem 

11 =P

SDP_1          (5.3) 
⎪⎩

⎪
⎨
⎧

)14.4(),12.4(),11.4('

)(min
,

sLMI
YX
γ

In this case the SDP algorithm converged and 
we obtained ,162.2=X  ,28.1=Y  781.0=γ .  If 
we try now to compute the controller matrices, 
using the previously computed values for X and 
Y , by solving 

SDP_2 ,   (5.4) 
⎪⎩

⎪
⎨
⎧

)1.4('

)(min

sLMI
K

γ

we get 21,75.1,3.0,54.1 ==−= kkk CBA  
0−=kD  and 1.976=γ .  As we can see, in (5.4) 

we achieved a bigger value for the min value of 
γ  compared with (5.3).  This is due to the fact 
that we solved actually different SDP problems 
in which the optimum is influenced by the 
arbitrary choice of the  matrices and 
the way we computed the P matrix. In 
consequence a different approach for the 
optimal and sub-optimal  problems is 
necessary, and we will present in the end of this 
section two procedures to solve them. 

LiPi :1, =

∞H
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Table 1 

SDP_3 .  (5.6) 
⎪⎩

⎪
⎨
⎧

=

)5.5(),11.4('

)(min
:1,

sLMI
LiPi

γ

 

SDP1 

a) 

SDP2 

b) 

SDP3 

c) 

SDP2 

d) 

 

γ  γ  γ  
1P  γ  

1 0.781 1.976 1.339 0.197 1.339 

2 0.649 1.318 1.278 0.133 1.278 

3 0.629 1.279 1.258 0.099 1.258 

4 0.613 1.258 1.245 0.078 1.245 

5 0.598 1.245 1.236 0.063 1.236 

6 0.582 1.236 1.229 0.050 1.229 

7 0.563 1.229 1.223 0.039 1.223 

8 0.54 1.223 1.219 0.032 1.219 

9 0.515 1.219 1.215 0.026 1.215 

10 0.488 1.216 1.213 0.021 1.213 

11 0.459 1.213 1.211 0.017 1.211 

12 0.425 1.211 1.208 0.013 1.208 

13 0.374 1.208 1.206 0.009 1.206 

14 0.32 1.205 1.204 0.007 1.204 

15 0.271 1.206 1.205 0.057 1.205 

The SDP algorithm converged and we 
get 333.1,183.01 == γP . If we solve now again 
the SDP_1 with the new value for  we get 1P

645.0,992.0,452.6 === γYX  and if solve again 
SDP_3 we get 1.271,0.1211 == γP .  

Both SDP problems 1 and 3 are convex and the 
values of  γ  are decreasing at each step but for 
each problem itself.  As we can see, for 
numerical reasons, the values of γ  achieved by 
solving the SDP_3 are not smaller then the ones 
obtained from SDP_1.  

In consequence a possible procedure to find a 
value for γ  as small as possible could be to 
solve successively the SDP_1 and SDP_3 till no 
significant progress is achieved. By doing so for 
the system (5.2) we get the values in Table 1. 

We solved also the SDP_2 to see the impact of 
each step on the final result. In Fig. 2 we can see 
the graphic of the values presented above  

As we can see from the Table 1 the value of , 
the weight of the delay in the cost functional, is 
decreasing toward zero. Due to numerical 
aspects the value of 

1P

γ  resulted in SDP_2 is 
decreasing up to point and then is growing again 
making no sense to iterate further more. 

In order to find the optimum LiPi :1, =  
matrices we can change the LMI (4.11) through 
a series of a Schur complement transformations 
in (5.5). With the values for X and Y computed 
in the first step we can solve the following 
problem  
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Figure 2 ( SDP_1 - a), SDP_2 - b), SDP_3 –c), SDP_2 - d) sec. ) 

 

Both SDP problems SDP_1 and SDP_3 are 
convex. As a result optimizing at one step using 
the matrices computed in the previous one 
should provide always a smallerγ . The 
monotone decreasing values for γ  should 
ensure the convergence of the procedure. 
However due to numerical reasons related to the 
way the SDP problems are solved, at a certain 
step the values computed by solving the SDP_3 
are not smaller then those resulted from solving 
the SDP_1.  In spite of that, due to the fact that 
each procedure provides a better set of matrices, 
the values of γ  are decreasing from one step to 
another for each SDP.  As long as the value of 
γ  computed by solving the initial problem 
SDP_2 is decreasing by an amount bigger then a 
reasonable value, it makes sense to continue 
iterating.  

The above-presented approach has a few 
inconveniences. One of them is that the real 
indication over when we should stop is given by 
SDP_2 and as a result it has to be solved. A 
more efficient way to proceed is to solve first 
the SDP_1 in order to get a feasible set of 
matrices X and Y and then construct P and solve 
the SDP_2. At this point we have a feasible 
controller K and we can optimize with respect of 
the P and the  matrices by solving the 
following problem 

LiPi :1, =

SDP_4 .     (5.7) 
⎪⎩

⎪
⎨
⎧

=

)1.4('

)(min
:1,,

sLMI
LiPP i

γ

Table2. 

SDP2 

   a)   

      SDP4 

           b)   

 

γ  γ  
1P  

1 1.9764 1.4804    0.2710 

2 1.3663 1.3024    0.1642 

3 1.2972 1.2944    0.1596 

4 1.2944 1.2900    0.1524 

5 1.29 1.2827    0.1403 

6 1.2826 1.2701    0.1190 

7 1.2698 1.2503 0.0842 

8 1.2491 1.2280 0.0409 

9 1.2241 1.2126 0.0151 

10 1.2086 1.2047 0.0057 

11 1.2033 1.2018 0.0022 

12 1.2013 1.2007 0.00086 

13 1.2005 1.2003 0.00034 

14 1.2002 1.2001 0.00014 

15 1.2001 1.2001 0.00006 
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The convexity of both SDP problems, ensure the 
convergence of the procedure. By repeatedly 
solving the SDP_2 and SDP_4 till no further 
progress we can get a value of γ  close to the 
optimal one.  

If we apply this procedure to the system 
described in (5.2) we get the values in Table 2.  
In analogy with the previous optimization 
procedure we can see a similar behavior in the 
evolution of the values of the matrix , which 

in this case is also approaching 0. On the other 
hand the minimum value of 

1P

γ  achieved in the 
second case is smaller and this is somehow 
natural, since we directly optimize the initial 
problem instead of an equivalent one.  

In Fig. 4 we can see the graphic of the values 
displayed in Table 2. 

 

 
Figure 3    ( (SDP_2 - a) , SDP_4 - b) ) 

 

 

At each iteration we compute first the controller, 
and then we optimize with respect to the P, 

 matrices. The min value of LiPi :1, = γ  which 
is the closest to the real one for that specific 
controller, and for a certain iteration, is given by 
solving the SDP_4.  Since solving the SDP_2 at 
step d) in the first procedure and at step a) in the 
second one provides us with a value of γ  
computed in a similar way, we can compare 
these values at successive iterations in Fig. 4.  
What we can see is that in the case of the second 
procedure the starting point is worst and the 
convergence is slower in the early stages, while 
after iteration no 8 it converges faster and to a 
minimum value, which is smaller then the one 
achieved in the first procedure.  It is somehow 
normal since we optimized directly the initial 
problem and the influence of the numerical 
errors is smaller.  The main advantages of the 
second procedure are a smaller computational 

effort, due to the fact that we get the controller 
matrices directly, and better final results.  

 

In the case of the optimal  problem we can 
propose a third algorithm in which we solve first 
both the SDP_1 and SDP_3 to get a good 
starting point and then we repeatedly solve the 
SDP_2 and SDP_4 till no significant progress is 
achieved. It is somehow obvious that solving the 
SDP_3 at the initial stage, and by doing so 
optimizing with respect of , provides a 
better starting point for the second faze where 
all P and 

∞H

LiPi :1, =

LiPi :1, =  have been optimized once, 
and as a consequence it is an improvement with 
respect to the previous approach.  In Fig. 5 we 
can see the values for γ  in this last approach, 
plotted with a dot line, compared with the ones 
presented in Fig. 4. One could ask why not to 
solve directly the inequality (4.1). The reason 
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why is because (4.1) is not linear in terms of 
both, the controller matrices and P, and we do 
not have a receipt to chose an initial feasible 
value for one of them.  

To sum up, we propose the following procedure 
to solve the  optimal problem. ∞H

 

 
Figure 4 ( (SDP_2 first proc. - a),  SDP_2 second proc. - b) ) 

 

 

 

 
Figure 5 ( (SDP_2 first proc. - a),  SDP_2 second proc. - b), --- line third proc. ) 
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Procedure I ( optimal).  ∞H

1) Solve the SDP_1 and compute the X and Y 
matrices. 

2) Solve the SDP_3 and compute the LiPi :1, =  
matrices. 

3) Compute the P matrix. 

4) Solve the SDP_2 and compute the K matrix. 

5) Solve the SDP_4 and compute the P  a
,

nd 
LiPi :1, = γγ =current , γγ =previous . 

6) While epscurrentprevious >− γγ  

 6.1)  Solve the SDP_2 and compute the K 
matrix. 

 6.2) Solve the SDP_4 and compute the P  
and , LiPi :1, = currentprevious γγ = ,  

γγ =current . 

7) Return γ . 

 

In the case of the  sub-optimal control 
problem, simply checking the solvability of the 
LMI set (4.11), (4.12) and (4.14) it’s not a 
solution since the optimizing with respect to the 

 matrices is also necessary. We can 
propose in this case a similar approach to the 
optimal case. The only difference is that the 
algorithm will stop if no progress is achieved or 
if the current value of 

∞H

LiPi :1, =

γ  becomes smaller then a 
requested value. The following procedure is 
proposed to solve the  sub-optimal problem. ∞H

 

Procedure II (  sub-optimal ).  ∞H

1) Solve the SDP_1 and compute the X and Y 
matrices. 

2) Solve the SDP_3 and compute the LiPi :1, =  
matrices. 

3) Compute the P matrix. 

4) Solve the SDP_2 and compute the K matrix. 
If requestedγγ <  STOP. 

5) Solve the SDP_4 and compute the P  and 
, LiPi :1, = γγ =current , γγ =previous . 

6) While ( epscurrentprevious >− γγ ) and       
( requestedγγ < ) 

        6.1)  Solve the SDP_2 and compute the K 
matrix. 

 6.2) Solve the SDP_4 and compute the P  
and LiPi :1, = , currentprevious γγ = ,          

γγ =current . 

              7) If requestedγγ <  return . Else  
go to 8). 

kkkk DCBA ,,,

              8) Return, ’The problem doesn’t has a  
solution’.  

 

6.  CONCLUSIONS 

 

The LMI’s are a powerful and also practical tool 
for the study of many control problems among 
which the  control.  ∞H

We approached the problem for a general class 
of TDS in which both the state dynamics and the 
output depend on the delayed states.  In the case 
of the dynamic output feedback the synthesis 
problem cannot be solved directly and an 
equivalent set of LMI’s is used.  This is a 
classical approach for the delay free systems, 
but one of the problems related to TDS is that 
we cannot optimize in the same time with 
respect of the pair X, Y and the weight matrices 

LiPi :1, = , see (4.1)-(4.6).  Moreover, if we 
get the controller matrix as a solution to the LMI 
(4.1) in the unknown K we also need an 
alternating iterative process in order to get a 
value of γ  that is as close as possible to the 
optimal one. Computational procedures are 
proposed for solving both the optimal and the 
sub-optimal problems which offer both, a good 
start and good final results in the last stages of 
the iterative process.  
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