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Abstract:

The problems arising in Time Delay Systems (TDS) have increased complexity with

respect to those related to Linear Delay Free Systems. Linear Matrix Inequalities (LMI) proved to be
a useful instrument for solving several control problems (see [1]). The present paper is approaching

the dynamic output feedback H _ control problem for a class of TDS, where both the state dynamics
and the output depends on the delayed states. Two new procedures are proposed to solve the optimal

and the sub-optimal H _ control problems.
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1. INTRODUCTION

Starting with the beginning of the 1980’s, the
H_ control problem has been extensively

0

studied. For the delay free linear systems several
results approaching the problem of output H_
feedback synthesis have been published in the
1990’s. For a general theoretic framework for
this problem and other related issues see [1].
Gahinet [2] and Iwasaki [3] extended the general

control problem using the Bounded Real Lemma
(BRL) and linear matrix inequalities (LMI).
Necessary and sufficient conditions for the
existence of an H_ controller were given in

terms of three LMI’s.

The delay is frequently a source of instability
and encountered in various engineering systems
such as chemical processes, hydraulics, power
plants or combustion engines. As a result the
stability of TDS received much attention in the
last years. Since these systems include



40

CONTROL ENGINEERING AND APPLIED INFORMATICS

perturbations, it is important to study the
H _ problem for this class of systems. There

have been published several results in the last
years regarding the control for TDS, see [4], [5],
[6], [7], [8] and [9]. For an analytical approach,
see [10]. Most of the approaches that have
numerical relevance (can be applied in general
situations), are Lyapunov based methods. As a
general pattern a Lyapunov functional” is
defined for the system and the final results are
expressed in terms of LMI’s. The resulting
LMI’s are dependent on the way the Lyapunov
functional is chosen.

The purpose of this paper is to offer necessary
and sufficient conditions for the existence of an

H_ output feedback controller, for a class of

TDS described in (1.5) and to propose a
procedure that will converge towards an
optimum controller, or in other words to
approach as much as possible the minimum
value for the infinite norm.

First a sufficiency condition for the asymptotic
stability of the closed loop system is proposed.

Then the existence conditions for an H_ output

controller are expressed in terms of three LMI’s.
A description of how to construct such a
controller starting from the solution of this set of
LMI’s is presented.

A previous result proposed by Jeung in [11],
approach the problem of H_ control by

extrapolating the classical pattern for delay free
systems to TDS. Due to the fact that TDS are
more complex, by simply applying the classical
methodology for the H_synthesis does not

provide the best results. The approach presented
in this paper starts in a similar way, but for a
class of TDS with multiple delays described by
(1.5) and using a different Lyapunov functional
proposed in a more recent paper by Park in [4].
In the final stages of the synthesis process
however, it becomes TDS oriented trying to
achieve the best possible results for this class of
systems.

Due to the increased complexity of TDS the
classical methodology proposed in Jeung [11]

“In the literature there are two main approaches one using
Lyapunov-Krasovskii functionals and the other using Lyapunov-
Razumikhin functions. The last one is considered to be more
conservative since it is using the Khargonekar Lemma, and it is
recommended only when the previous one fails. For more details
see Dugard [8].

for the sub-optimal problem might simply not
work in many situations. The major reason for
that is the fact that the presence of the delay
makes the LMI’s more complex, and as a result
we cannot optimize in the same time with
respect to all variables. As a consequence, an
iterative process is necessary and this brings up

a new manner to solve the H_ synthesis, which

consist in finding first a feasible set of weight
matrices for the Lyapunov functional, by solving
in two steps the equivalent problem and then
computing a controller K by solving the initial
problem.  Afterwards the initial problem is
iteratively solved with respect of the weight
matrices and with respect of the controller
parameters in an alternate manner till no
relevant progress is achieved or the attenuation
of the perturbations becomes small enough. An
analysis of several aspects is presented in the
last chapter of this paper. In the end, two
convergent procedures are proposed, one for
approaching the minimum H_ norm as much as
possible and the other one for solving the sub-

optimal problem. This results are delay
independent.

Let us consider the general control configuration
in Fig. 1, where the system is

— » P —»
—>
K |l
Figure 1
described by
H b (S)m _ {Pn (s) Py (s)}m
y Uuj [Pu(s) Pp(s)]ly
and the controlleris (1.1)

u=K(s)y.

The closed loop transfer function from w to z
will be given by a linear fractional
transformation

HZW = Fl(P7K)’
where

F (P,K)=P, + PLK(I =P,K)"'P,. (1.2)
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Considering the system in Fig. 1, the optimal
H_ control problem is to find all the dynamic
controllers K which minimize

|7 (P.K)||, = max & (F (P,K)(jw)) ~ (1.3)
or, expressed in a in time domain interpretation

IF, (P, = max 120

— 14
I

The purpose of the H_ control is to minimize

the effect of some perturbations, seen as an
exogenous input, over a certain set of quality

output in the worse possible scenario. The H_,

synthesis methodology actually guarantees an
upper bound on the propagation of the
perturbation in the worst case. The objective is

to minimize this upper bound (the optimal H_

control) or to bring it under a certain limit (the
sub-optimal case).

The problem formulation itself is independent
with respect to the presence of the delay.

In this paper we will consider a system with
concentrated state delays described by the (1.5)

%x(t) = Ax(t) +

+ ZL: AX(t—7;)+ B,w(t) + B,u(t)

z(t) = C,x(t) +

+ ZL: CZ_iX(t —7;)+ Dyw(t) + Dy,u(t)

y(t) = C x(t) + ZL: C, ix(t—7;)+ D, w(t)

x(t) = ¢(t), te[-max(z,,...,7,,0)]
(1.5)

where x e R" is the state vector, we R™is

the exogenous input, ue R™is the control
input,

z € R™ is the controlled output and y € R "?is

the measurement output. The controller will be
defined by:
ix t)=Ax, +B,y
dt ¢ KTk (1.6)

As we can see, the controlled and the measured
outputs depend on delayed states. In many real
situations it is expected that some of the
matrices in the triplets A, C, ;, c, , might be

0 but that will not affect our results.

2. PROBLEM FORMULATION

Given the system described by (1.5) and the
controller (1.6) where X, € R", the closed loop

system will be described by the system of
equations (2.1)

S8 A+ A7)+

et Ay (G(t—7 )+ Byw(t)
2(t) =C, () +Cy S(t—7) +...
o+ Cy (E(t—7 )+ Dyw(t)

(2.1)

where [ joi _| X
&(t) is the joint state &(t) = % (0 and
k

{A+ B,D,C, B,C,]
I =

B.C, A |
. +B,D,C, ., O]
= AI 2-k™y_i ,i:].:l_,
B.C, ; O_
_[B,+B,D,D, (2.2)
o Bk D21

Cc| :[Cz + D12DkCy DlZCk ]'
C,.=lc, . +D,D.C,, 0li=1:L

cl_i z_i

Dcl = [Dll + D12 Dk D21]'

In order to derive the existence conditions for
the controller we have to separate the unknown
matrices. We can gather all the controller
parameters in one matrix

Dk Ck
K:{Bk AJ (2.3)
and define
[A 0 a7
N N e R
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D
D10 :[DlZ O]’ Dzoz{ 21}

(2.4)

We can express now the state matrices (2.2) in
terms of (2.3) and (2.4)

A = Agy + BgoKCoy,

Ay i =(Ay i +ByKC, )E,

Ba =By + BooKDy,

Ca =Cyo + DygKCy

Ca i =(C, i + DypKCy )E,

Do =Dy + Dy KDy
(2.5)
All the matrices defined in (2.4) contain only
plant data. From (2.5) we can see that the state
matrices of the closed loop system have an afine

dependency on the controller data K. In order to
design a stabilizing controller K which

minimizes the H_norm of the closed loop

system (2.1) a few additional results are
necessary.

Lemma 1. (Schur complement). For any
symmetric matrix | = by Lo , the following
IZ I-22

are equivalent
1) L<o
2) L;;<0,Ly - LIz LIllle <0

3) L,<0 L,-L,L,L;,<0.

Lemma 2. (Projection Lemma). Considering the
matrices FeR™™, GeR*", QeR™,

Q=Q" and KeR™*, and assuming that
rank(F)<n and rank(G)<n, the LMI

FKG+G'K'F" +Q<0 has a solution K if

and only if F/QF, <0 and

(GTJ_)T Q(GTJ_)<0, where F, and G, are any

basis of the orthogonal subspaces of F and G'.
For proof, see [3].

3. STABILITY AND H_NORM BOUND

Given the closed loop system described by (2.1),
let us consider the following Lyapunov
functional

V(&1 =£()" P&(t) +
; ZL:IO Et+9) ETREEM+S)ds, (3

where P=P' >0,P,=P' >0,...,P. =P >0
and E is defined in (2.4).

If % <0 is satisfied for every £ e R", then
t

the system described by (2.1) is stable, i.e.
Et)>0 as t—oo.

If we consider

4]
Ei)= Eé‘(t:— z;)
Eet=r.) (3.2)
from (3.1) and (2.1) it

%:g(tfwga), where W is defined in

results

(3.3).
ALP+PA, + |
- PA 1 PAy_L
+Y E'PE - -
Wl F
AcT|_1P -P 0
A;_LP 0 - =R i
(3.3)

Theorem 3.1. If there is a set of symmetric
positive definite matrices P e Rk gnd
P.,...,PL eR™ such that the LMI W <0 is

satisfied the system described by (2.1) is
asymptotically stable.
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The H_ norm of the system (2.1) is defined as
|20,
w,

defined as ||W(t)||§ = .|.0 “w(t)T wt) dt .

|H |, = max

, Where the L, norm is
w(t)=0

Considering  zero initial conditions, i.e.
X(t)=0,vt<0, and the functional defined in

(3.1), if we presume that for all t>O0the
following relation holds

iV(f) +2'z—y*w'w<0,

dt (3.4)

then [H,,| <.

For proof, if we integrate from O to T we get

V(M) -V (£(0) +
+.[OT (z"z-y*w'w)<0 (39

to the fact that

2],
T <Y
vl

If T —> othen V-0, since the system is
stable.

and due £(0)=0 and

V(&£(T)) =0 itresults

If we define

6:[0 Ccl_l CcI_L Dcl] (36)

cl

then the inequality (3.4) is equivalent with the
LMI (3.7).

W, =
[AlP +PA, + |
L PA .. PA PB
+Z ETPiE c_1 c_L cl
i=1
= Al P -P, 0 - 0
: 0o . - :
Al P - 0
B,P 0o - 0 4™
+CTC <0. (3.7)

Since

W72<0:>
PB,
2 O T
—w+y2 . [BIP 0 - 0]<0=
0
—W <0. (3.8)

from Wy2 <0 it results W <0 and as a result

(3.7) implies also the stability of the closed loop
system.

The LMI (3.7) is depending on »%. If W, <0

also lWyzgo and if we

Y
R=y"P,R,=y"P,...,R_=y""P_, then after
applying the Schur complement (3.7) becomes
equivalent with (3.9).

denote by

Wy =
[ATR+RA, + 1
L RA, ;| - RA, RB c!
T 1_1 1_L cl cl
+iZ:1:E R,E (3_9
A;JR _Rl C;J
: . . <0
A;_LR _RL C;_L
B;R ~Am Dq
L Ccl CCIJ e CcliL Dcl - 71 pL |
)

Theorem 3.2. If there is a set of symmetric
positive definite matrices R e R ™% and
R,,...,R_eR™ and a controller K such that

W, <0, the system described by (2.1) is

asymptotically stable and has an L, gain smaller
then y.

If the delays are not present, the Theorem 3.2
becomes equivalent with the Bounded Real
Lemma. Further on we will use in (3.9) P
instead of R since it makes no difference as long
as they are both variable.

4. THE H_CONTROLLER

The inequality (3.9) is not linear in terms of both
the weight matrix P and the controller
parameters. We can see that easily since
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PA, =P(Ay +BypKCy) . As a result the direct

approach by trying to solve (3.9) is not possible.
We will express the existence conditions for an
H_ controller in terms of three LMI’s. Let us
consider the inequality (3.9) and the notations
(24) and (2.5). After applying the Schur
complement the LMI (3.9) can be rewritten as

>+ ATIKOT + OK'TITA <0,
(4.1)

where IT and ©® are defined in (4.2), Ais
defined in (4.3) and X is defined in (4.4).

T
r B 0 b Cy Onxk
2 nxk O I
0 | kxp2 k
kxm2 k CT 0
Onx(m2+k) yl nxk
T
I 0n><(m2+k) ®= CyL Onxk
| Onemasny | D2Tl 0 1
D, O
012 Pk 0 plx(p2+k)
nx(rT]2+k) 0n><(p2+k)
0 . -
nx(m2+k)
- _Onx(p2+k)
(4.2)
L L
A — —
A=diagiP 1,1, 1, 1, IM““}
(4.3)

By applying the Lemma 2 (Projection Lemma)
we can completely eliminate the controller
matrices. The inequality (4.1) will become
equivalent with the following set of LMI’s

Agop + PAoo PAO_l PAO_L
A(;r_lp - Pl
A(-I)—_LP - PL
T = B,,P
CZ_O Cz_l Cz_L
E
i E

PB,, CZT_O ET ... ET
C..
cr,
-7 Iml DlTl
Dy, I
-P™
- pL—l_

MTA7ZATMI, <0

T
®lZ®L <0 (45)

where II, and © are any basis of the
orthogonal subspaces of the matrices IT and ©®.

To simplify the conditions (4.5) we will denote

Y Nl L, [X M
P= T i IP = T ”
N Y M X

(4.6)
where  X,YeR™, M,NeR™, and
X,Y eR¥*. We will consider also the
following notation

'%} z[om}
_D12 1 ODlZ (47)
and
o [ O, |
C;_l Oc1
C;_L OCL
D;l 1 _OD21_ (48)
where OBZ c Rnx(n+p1—m2) vOD12 cR pyx(n+pl-m2) ,

OC’OCl""’OCL c Rnx((L+1)n+m1—p2) and
C)D21 c Rm2><((L+l)n+ml—p2).

We can construct now I1, (see (4.9)) and
©, (see (4.10)), and simplify (4.1) to obtain

the (4.11)-(4.13) equivalent set of LMI’s.

(4.4)
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IT, =

Os;

0 kx(n+pl-m2)

0 |

nx(n+pl-m2) n

O kx(n+pl-m2)

0

mix(n+pl-m2) ml

Opsz
0

nx(n+pl-m2) n

L 0kx(n+pl—m2) n

Oc

0 kx((L+1)n+ml-p2

Oc,
Oc.
Opa
|

0 pIx((L+)n+ml-p2 " pl

Onx((L+l)n+ml—p2) n

L Onx((L+l)n+ml—p2 n
(4.10)

S, Oz:B, + OLX -0 X
T
+OD12D11

BlT OBl +
+ D11TO|312
XOBl - Pl_l

-7V Iml <0

XOg, -P*
(4.11)

{ S Sve }<<0 (4.12)

S\-(F_C ' Ipl

S, =0l XATO,, + O}, AXQ,, +
+ O-IngCZ XOBl + O;l XC;I- OD12 +

L
+Z(O;1A +Og)12cz_i)Pi_l(O;1Ai +Og12Cz_i)T -

i=1
- Yoglzomz
S, =

L

=(OLATYO, + D OLATYO, +0p,,B YO, ) +
i=1
L

+(OLATYO, + D OLATYO, +0p, B YO,)" +
i=1

L
+ Z(Og PO. —O5P.0¢) —7 OpOp1,

i=1
L
SJ_C :Czoc +ZCZ_iOCi + D110D21-
i=1

(4.13)

If we take a look to the size of the LMI’s (4.11)
and (4.12) they are actually of comparable
dimensions, (L+)n+ml+ +pl-m2 and

(L+Dn+ml+ pl-p2.
Theorem 4.1. If there is a set of positive definite

matrices P,,...,P_,X and Y such that the
LMI’s (4.11) and (4.12) are satisfied, and

{x I n}
>0

I, Y

(4.14)
there exists a y sub-optimal H_ controller for
the system (1.5). The order of the controller will
be given by

rank(l,, — XY)=k <n.
(4.15)

If in addition we minimize y, the solution will
converge towards the optimal one.

Proof. The equivalence between (3.8) and (4.11)
and (4.12) have been proven. Regarding now the
LMI (4.14), there exist a symmetric positive
definite matrix P satisfying (4.6), if (4.14) is

satisfied. For proof we define 7 { X '} and
MT 0
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from P'P=1we get
XY+MNT  XN+MY |
MTY +XNT MTN+XY
{'” Onxk}, (4.16)
kan Ik
or
XY +MN" =1
XN +MY =0_,,
MTN+XY =1,. (4.17)

Using now (4.17) if we consider the following
transformation

S N
:{XY i K,MXLAXT (ﬂ
1

we can see that ﬁ Hzojpzo if Z has

(4.18)

maximal rank , condition satisfied in a
generic case. If we consider the strict
inequality then the rank condition is not
necessary anymore.

5. Controller Synthesis and Numerical
Results

The Theorem 4.1 provides the necessary
conditions for the existence of an H_ controller.
Due to the structure of the LMI (4.11) the
problem is not linear in both the pair X, Y and
the weight (or multiplier) matrices P,i=1:L.
As a result the optimal value for » cannot be
searched by optimizing in the same time with
respect to all of these matrices. One possible
approach would be to do it sequentially. This
means to fix first the matrices P,,i=1:L and
find a feasible pair X and Y that minimizey .
Then given the computed matrices X and Y, find
a set of matrices P,,i=1:L that minimize »
and repeat these steps till no major progress is
achieved. Once the unknown matrices X and Y

are computed we can determine the P matrix
from the following equality

{ Y l} P[I X }
T - T
N" O 0 M (5.1)
where the matrices M and N can be computed
from MNT =1-XY using a Singular Value

Decomposition (SVD). Given now the
P,P,i=1:L matrices we can go back and

compute the controller matrices as any solution
to the LMI (4.1).

One of the packages in use for solving SDP is
SDPT3, which works with Matlab5x and was
developed by K.G.Toh 1998 (see [12]). For
more about SDP see [13],[14].

Let us consider de following system

A=-1A =05,
C,=1C, ,=05
C,=02C, ;=2
B, =18, =1

D, =02,D,, =0.1,D,, =0.1. (5.2)
We can choose as an initial value for P, =1 and
solve the following SDP problem

{min y
SDP 14 ¥ (5.3)
LMI's(4.11), (4.12), (4.14)

In this case the SDP algorithm converged and
we obtained X =2.162, Y =1.28, y=0.781. If
we try now to compute the controller matrices,
using the previously computed values for X and
Y, by solving

min(y)
SDP_2¢ K , (5.4)
LMI's(4.2)
we get A, =-154,B, =0.3,C, =1.7521

D, =-0 and »=1.976. As we can see, in (5.4)
we achieved a bigger value for the min value of
y compared with (5.3). This is due to the fact
that we solved actually different SDP problems
in which the optimum is influenced by the
arbitrary choice of the P,,i=1:L matrices and
the way we computed the P matrix. In
consequence a different approach for the
optimal and sub-optimal H_ problems is
necessary, and we will present in the end of this
section two procedures to solve them.
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Table 1

SDP1 | SDP2 SDP3 SDP2

a) b) c) d)

4 /4 4 P, 4
1 |0.781 | 1.976 | 1.339 | 0.197 | 1.339
2 | 0649 | 1.318 | 1.278 | 0.133 | 1.278
3 | 0629 | 1.279 | 1.258 | 0.099 | 1.258
4 | 0.613 | 1.258 | 1.245 | 0.078 | 1.245
5 | 0598 | 1.245 | 1.236 | 0.063 | 1.236
6 | 0582 | 1.236 | 1.229 | 0.050 | 1.229
7 | 0563 | 1.229 | 1.223 | 0.039 | 1.223
8 054 | 1.223 | 1.219 | 0.032 | 1.219
9 | 0515 | 1.219 | 1.215 | 0.026 | 1.215
10 | 0.488 | 1.216 | 1.213 | 0.021 | 1.213
11 | 0459 | 1.213 | 1.211 | 0.017 | 1.211
12 | 0425 | 1.211 | 1.208 | 0.013 | 1.208
13 | 0.374 | 1.208 | 1.206 | 0.009 | 1.206
14 | 0.32 | 1.205 | 1.204 | 0.007 | 1.204
15 | 0.271 | 1.206 | 1.205 | 0.057 | 1.205
In order to find the optimum P, ,i=1:L

matrices we can change the LMI (4.11) through
a series of a Schur complement transformations
in (5.5). With the values for X and Y computed
in the first step we can solve the following
problem

{ min (y)
SDP_3/Ritt . (5.6)
LMI"s(4.11), (5.5)

The SDP algorithm converged and we
getP, =0.183, =1.333. If we solve now again
the SDP_1 with the new value for P, we get
X =6.452,Y =0.992, y =0.645 and if solve again
SDP_3we get P, =0.121, y =1.271.

Both SDP problems 1 and 3 are convex and the
values of y are decreasing at each step but for

each problem itself. As we can see, for
numerical reasons, the values of y achieved by

solving the SDP_3 are not smaller then the ones
obtained from SDP_1.

In consequence a possible procedure to find a
value for » as small as possible could be to

solve successively the SDP_1 and SDP_3 till no
significant progress is achieved. By doing so for
the system (5.2) we get the values in Table 1.

We solved also the SDP_2 to see the impact of
each step on the final result. In Fig. 2 we can see
the graphic of the values presented above

As we can see from the Table 1 the value of P,

the weight of the delay in the cost functional, is
decreasing toward zero. Due to numerical
aspects the value of y resulted in SDP_2 is
decreasing up to point and then is growing again
making no sense to iterate further more.

Tx O;l Bl + Oglz D11 O-IB—lAi + O;lzcz_l : O-IB—lAL + Oglzcz_L
BlT Og, + D11T Op1 A
A0y +C' Oy, -P, <0.
AI Oy + Cj ) Opy, -P.
where

L
TXO = Ogl XAT OBl + OglAXC)Bl + OElZCZ XOBl + O;lxc;r OBl + Z(Oglx) Pl (XOBl)

i=1

(5.5)
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Figure 2 (SDP_1 - a), SDP_2 - b), SDP_3 —), SDP_2 - d) sec. )

Both SDP problems SDP_1 and SDP_3 are
conveXx. As a result optimizing at one step using
the matrices computed in the previous one
should provide always a smallery. The

monotone decreasing values for » should

ensure the convergence of the procedure.
However due to numerical reasons related to the
way the SDP problems are solved, at a certain
step the values computed by solving the SDP_3
are not smaller then those resulted from solving
the SDP_1. In spite of that, due to the fact that
each procedure provides a better set of matrices,
the values of y are decreasing from one step to

another for each SDP. As long as the value of
y computed by solving the initial problem

SDP_2 is decreasing by an amount bigger then a
reasonable value, it makes sense to continue
iterating.

The above-presented approach has a few
inconveniences. One of them is that the real
indication over when we should stop is given by
SDP_2 and as a result it has to be solved. A
more efficient way to proceed is to solve first
the SDP_1 in order to get a feasible set of
matrices X and Y and then construct P and solve
the SDP_2. At this point we have a feasible
controller K and we can optimize with respect of
the P and the P,,i=1:L matrices by solving the

following problem

SDP_4{PTF?!EL(7) . (5.7)

LMI's (4.1)

Table2.

SDP2 SDP4
a) b)
4 4 P,

1 [1.9764 | 1.4804 |0.2710
2 1.3663 | 1.3024 | 0.1642
3 1.2972 | 1.2944 | 0.1596
4 1.2944 | 1.2900 | 0.1524
5 1.29 1.2827 | 0.1403
6 1.2826 | 1.2701 | 0.1190
7 1.2698 | 1.2503 | 0.0842
8 1.2491 | 1.2280 | 0.0409
9 1.2241 | 1.2126 | 0.0151
10 | 1.2086 | 1.2047 | 0.0057
11 |1.2033 | 1.2018 | 0.0022
12 | 1.2013 | 1.2007 | 0.00086
13 | 1.2005 | 1.2003 | 0.00034
14 | 1.2002 | 1.2001 | 0.00014
15 | 1.2001 | 1.2001 | 0.00006
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The convexity of both SDP problems, ensure the
convergence of the procedure. By repeatedly
solving the SDP_2 and SDP_4 till no further
progress we can get a value of » close to the

optimal one.

If we apply this procedure to the system
described in (5.2) we get the values in Table 2.
In analogy with the previous optimization
procedure we can see a similar behavior in the
evolution of the values of the matrix P, which

in this case is also approaching 0. On the other
hand the minimum value of y achieved in the
second case is smaller and this is somehow

natural, since we directly optimize the initial
problem instead of an equivalent one.

In Fig. 4 we can see the graphic of the values
displayed in Table 2.

o 2 4 B B

Figure 3

At each iteration we compute first the controller,
and then we optimize with respect to the P,
P,i=1:L matrices. The min value of y which

is the closest to the real one for that specific
controller, and for a certain iteration, is given by
solving the SDP_4. Since solving the SDP_2 at
step d) in the first procedure and at step a) in the
second one provides us with a value of y

computed in a similar way, we can compare
these values at successive iterations in Fig. 4.
What we can see is that in the case of the second
procedure the starting point is worst and the
convergence is slower in the early stages, while
after iteration no 8 it converges faster and to a
minimum value, which is smaller then the one
achieved in the first procedure. It is somehow
normal since we optimized directly the initial
problem and the influence of the numerical
errors is smaller. The main advantages of the
second procedure are a smaller computational

10 12 14 16 18 20
lteration

((SDP_2-4a),SDP_4-b))

effort, due to the fact that we get the controller
matrices directly, and better final results.

In the case of the optimal H_ problem we can

propose a third algorithm in which we solve first
both the SDP_1 and SDP_3 to get a good
starting point and then we repeatedly solve the
SDP_2 and SDP_4 till no significant progress is
achieved. It is somehow obvious that solving the
SDP_3 at the initial stage, and by doing so
optimizing with respect of p,i=1:L, provides a
better starting point for the second faze where
all P and p,i=1:L have been optimized once,

and as a consequence it is an improvement with
respect to the previous approach. In Fig. 5 we
can see the values for y in this last approach,
plotted with a dot line, compared with the ones

presented in Fig. 4. One could ask why not to
solve directly the inequality (4.1). The reason
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why is because (4.1) is not linear in terms of
both, the controller matrices and P, and we do
not have a receipt to chose an initial feasible
value for one of them.

To sum up, we propose the following procedure
to solve the H_ optimal problem.

2 T r r r T r T r r
k)
181 1
£
E1BF E
143
o
14F a E
12 1 1 1 1 B 1 1
0 2 4 B 8 10 12 14 18 18 20
[teration
Figure 4 ((SDP_2 first proc. - a), SDP_2 second proc. - b) )
2 T T T T T T T T T
181 B
£
E 1B} N
i
]
1.4F B
1.2 = = .
0 10 12 14 18 18 20

fteration

Figure 5 ((SDP_2 first proc. - a), SDP_2 second proc. - b), --- line third proc. )



CONTROL ENGINEERING AND APPLIED INFORMATICS

51

Procedure | (H_, optimal).

1) Solve the SDP_1 and compute the X and Y
matrices.

2) Solve the SDP_3 and compute the P,,i=1:L
matrices.

3) Compute the P matrix.

4) Solve the SDP_2 and compute the K matrix.
5) Solve the SDP_4 and compute the P and
Pi'i =1:L v Yeurrent = 7' v 7 previous = 7

6) While 7/previous ~ Veurrent = €PS

6.1) Solve the SDP_2 and compute the K
matrix.

6.2) Solve the SDP_4 and compute the P
and P,i=1:L,

7/current = ]/ '

7previous = Y current *

7) Return ».

In the case of the H_ sub-optimal control

problem, simply checking the solvability of the
LMI set (4.11), (4.12) and (4.14) it’s not a
solution since the optimizing with respect to the
P,i=1:L matrices is also necessary. We can

propose in this case a similar approach to the
optimal case. The only difference is that the
algorithm will stop if no progress is achieved or
if the current value of » becomes smaller then a

requested value. The following procedure is
proposed to solve the H_ sub-optimal problem.

Procedure Il (H_, sub-optimal ).

1) Solve the SDP_1 and compute the X and Y
matrices.

2) Solve the SDP_3 and compute the P,,i=1:L
matrices.

3) Compute the P matrix.

4) Solve the SDP_2 and compute the K matrix.
If V< 7/requested STOP.

5) Solve the SDP_4 and compute the P and
Pi'i =1L, Yeurrent =7+ 7 previous = 7 -

6)  While
(7/ < yrequested )

(7previous — Veurrent = eps) and

6.1) Solve the SDP_2 and compute the K
matrix.

6.2) Solve the SDP_4 and compute the P
and P,i=1:L,

Y previous = Y current »

Veurrent =7 -
) I Y <Vrequesea TEWUM A B,,Cy,D, . Else
go to 8).

8) Return,
solution’.

"The problem doesn’t has a

6. CONCLUSIONS

The LMI’s are a powerful and also practical tool
for the study of many control problems among
which the H_, control.

We approached the problem for a general class
of TDS in which both the state dynamics and the
output depend on the delayed states. In the case
of the dynamic output feedback the synthesis
problem cannot be solved directly and an
equivalent set of LMI’s is used. This is a
classical approach for the delay free systems,
but one of the problems related to TDS is that
we cannot optimize in the same time with
respect of the pair X, Y and the weight matrices
P,i=1:L, see (4.1)-(4.6). Moreover, if we

get the controller matrix as a solution to the LMI
(4.1) in the unknown K we also need an
alternating iterative process in order to get a
value of » that is as close as possible to the
optimal one. Computational procedures are
proposed for solving both the optimal and the
sub-optimal problems which offer both, a good
start and good final results in the last stages of
the iterative process.
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