
CEAI, Vol.6, No.1, pp.53-60, 2004 Printed in Romania

INTEGRATION SOFTWARE FOR AN EDUCATIONAL VIRTUAL
LABORATORY SUPERVISING FLEXIBLE MANUFACTURING CELLS

Daniela SARU*, Sergiu Mihai DASCALU**, Aurelian Mihai STANESCU*, Adrian PETCU*

* Department of Control and Industrial Informatics, Faculty of Automatic Control & Computers,
University Politehnica of Bucharest, Sp. Independentei 313, Bucharest, Romania

** Department of Computer Science, University of Nevada, Reno, 1664 N. Virginia St. Reno, NV,
USA

Abstract: Creating and managing virtual enterprises represents the best modern approach for
development and training in most business domains. Building such complex entities requires
collaboration and integration of diverse hardware systems and software applications. Training
software specialists and enterprise managers to design or simply choose the appropriate
architecture is a very important and demanding educational task. This paper describes research
and development aspects of building a software system for remote supervising and control of a
virtual enterprise module. Conceived as a heterogeneous supervisor/control system and using
WindowsTM and QNX operating systems as main support and CORBA technology as integration
tool, this software system is currently used as part of a complex virtual laboratory developed at
the “Politehnica” University of Bucharest. The system’s main purpose is to allow students at
various remote locations to experience mechanisms specific to real-time operating systems,
computer-integrated manufacturing, and control systems. By using Internet connections and
installing simple client applications, students from other universities can also have access to the
virtual enterprise module.

Keywords: e-learning, virtual enterprise, flexible manufacturing cell, client/server, distributed
heterogeneous systems, middleware, CORBA, real-time, QNX.

1. INTRODUCTION

Virtual enterprises can be viewed as distributed
heterogeneous systems. Building such complex
entities requires collaboration and integration of
various hardware systems and software
applications. From this perspective, it is very
important to rely on a well designed IT
infrastructure that offers capabilities such as
scalability, interoperability, legacy application
integration, and so forth [1]. A professional
solution for this problem is to use an object-
oriented middleware technology accepted by
most IT hardware/software vendors [2]. Training
software specialists and enterprise managers to

design or simply decide on the appropriate
architecture is a very important and demanding
educational task. A virtual laboratory that allows
remote control of various virtual enterprise
modules represents a very useful and highly
practical e-learning tool [3].

While working as the software integration team
for the World Bank funded research project
“FABRICATOR” at the Human Resource
Training Center of the “Politehnica” University
of Bucharest, the authors of this paper had the
opportunity to design, implement, and test
integration mechanisms and complex software
components for a virtual enterprise pilot.

54 CONTROL ENGINEERING AND APPLIED INFORMATICS

One of the main modules of this pilot was
the DEGEM 2000 Flexible Manufacturing
Cell (FMC), a training tool for students and
enterprise employees [4]. The present paper
describes several research and development
aspects of building a software system for
remote supervising and control of this cell.
Conceived as a heterogeneous supervisor/
control system that uses WindowsTM and
QNX operating systems as main support and
CORBA technology as integration tool [5],
this software system is currently used as part
of a complex virtual laboratory at the
“Politehnica” University of Bucharest.
Specific mechanisms of real-time operating
systems, computer-integrated manufacturing
and control systems can be experienced by
students from remote locations. By using a
web video camera for tracking all FMC
movements the system allows geographical
distributed participants to visualize the
effects of different commands. The system,
by its design, also guarantees conflict-free
usage of the FMC.

2. SUPERVISOR SYSTEM
ARCHITECTURE

Enterprise Application Integration (EAI)
encompasses not only new software products but
also old yet operational and still very important
software systems referred to as legacy
applications. Because we were dealing with such
an application, we chose to integrate the FMC
into the virtual enterprise pilot by wrapping the
old software supervisor system into a CORBA
interface [1].

The old structure of the control system has three
main modules, as shown in Fig. 1. The module
on the right-hand side of the figure is the ladder
diagram of the Programmable Logic Controller
(PLC). The ladder diagram specifies the
elementary movements inside a working post of

the flexible manufacturing cell. Each elementary
movement is initiated by a particular state
variable that can be set in the PLC by the
computer. These computer-controlled state
variables provide the interface for the
communication link between the computer and
the PLC.

The second module of the old control system is
the communication driver. The presence of both
a dedicated module and a distinct
communication process between the PLC and
the computer is justified by maintenance
reasons. If one wants to use another PLC type
the only necessary adjustment one has to make
involves writing a new driver. The
communication driver’s task is to send
commands from the user to the PLC. These
commands specify actions that the equipment
can perform and must be sent as messages that
the PLC can understand. Consequently, the
driver must create messages conformant to the
PLC data format rules.

The third module is the graphical user interface,
installed on the same computer as the
communication driver. This module offers the
user the possibility to specify commands to be
sent through the communication driver to the
PLC.

Designed to be installed in the vicinity of the
FMC the old software control system was
running under the QNX Real Time Operating
System (QNX RT-OS) on a PC compatible
machine [6].

The main goal of our recent work was to build a
new, network- and Internet-oriented, TCP/IP-
based remote control software system for the
flexible manufacturing cell. The new system has
two main components: a client component,
Command Module, designed to be installed on
WindowsTM platforms, and a specialized server
module that wraps the old software control
system (bottom-right part of Fig. 2). The server
module is working with the QNX operating
system as support and is installed on the same
hardware platform as the controlled process.

User interface (QNX) Communication driver PLC

Fig. 1. Old control system architecture

CONTROL ENGINEERING AND APPLIED INFORMATICS 55

CORBA-based client:
remote cell control

QNX Platform

CORBA
based
server

Driver

PLC

Fig. 2. New control system architecture

Client/server communication [7] uses CORBA
technology, a relatively new middleware
standard that offers excellent interoperability
capabilities for heterogeneous distributed
software applications [2]. Such a heterogeneous
distributed architecture offers the possibility to
install an industrial FMC in dangerous or
noxious environments while the Command
Module and the Graphical User Interface
Module can be placed in a separate remote and
safe room. Both the cost and the usability of this
architecture are very attractive. By installing
only client modules on different campus
platforms and by using the Internet, several
universities can access the same FMC for e-
learning activities.

In order to avoid the intensive use of the FMC
during the testing phase of the software system’s
life-cycle we created and worked with a
Windows server simulator instead of the real
QNX server. This solution not only allowed us
to focus on client module issues concerning
technical and ergonomic aspects of the system
but also provided us with a practical testing tool
that can be re-used for future developments, as
various new client module types are likely to be
added later.

3. REASONS FOR USING CORBA AS THE
INTEGRATION TOOL

During the last decade, OMG’s CORBA
standard specifications were accepted by the

most prominent software vendors as the
performing client/server communication and
application interoperability tools of choice [8].

Since 1991 complex software utilities based on
the CORBA standard were built for a wide
range of different hardware platforms, operating
systems, and programming languages.
Standardization brings the significant
advantages of application compatibility,
portability, and interoperability. By using
CORBA, a customer can build a system using
applications delivered by different vendors,
according to specific business requirements [9].

Choosing a product necessarily involves
considering its performance, price, and
licensing. From this perspective, ORBACUS/E,
an Object Oriented Concepts (OOC) product,
offers enhanced flexibility [10]. At the time we
chose to use it there were available free
downloadable versions for non-commercial
purposes for Microsoft Windows and many
UNIX/Linux flavors, all of them designed to be
used on embedded real-time systems running on
operating systems such as QNX. Importantly,
Orbacus/E was answering appropriately the
strict time response and memory size
requirements of such systems, including the
specific requirements of our system. Also, this
novel integration tool was distributed open
source for C++ and Java, which suitably fitted
our needs.

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

4. APPLICATION REQUIREMENTS

The analysis phase of the software’s
development cycle has revealed several major
requirements for the system, as follows.

Firstly, the server calls need to be very fast. The
server’s final version is intended to run on a
QNX platform, a real-time operating system,
thus it must conform to strict response time
requirements that guarantee correct and efficient
FMC functionality.

Secondly, another important requirement is to
ensure a small network data traffic amount
during method calls. Because the server state is
inspected at regular time intervals, the number
of server polling sessions can be high enough to
generate intensive network traffic. The human
user can modify the number of server polling
sessions in order to obtain more accurate state
information. Additionally, using the TCP/IP
protocol as a CORBA communication support, it
is no longer mandatory to place both the server
and the client in the same LAN (Local Area
Network) – they can be placed anywhere in the
Internet. This option can lead to communication
problems related to traffic bandwidth fluctuation
in the network, thus the information sent and
received through the network during method
calls must be very concise.

Third, besides the minimum data necessary for
command and state visualization, a potential
client also needs time and synchronization
information, stored and managed in a simple
data base. Such data can be used for tracking the
usage of the FMC or to allow a statistical
analysis of the tool. Remote access option
allows multiple clients to concurrently access
the FMC. Avoiding unauthorized access as well
as conflicting resource usage is another
prominent requirement of the software.

Finally, as an FMC command module, the
client application must include at least two
functions: visualize and modify the FMC
state. These two functions can be modeled
inside the software interface as two
methods: one for reading server states, the
other for sending the command code.

5. IMPLEMENTATION DETAILS

5.1. The IDL Interface

Based on the above mentioned analysis of
requirements, we decided to design an IDL

interface [2] containing more than one method
for each base operation type: polling, command,
request access, and release access key. The IDL
interface structure employed is shown in Fig. 3.

// time and data structure type def.
struct inftime
{ short msec;
 short sec;
 short min;
 short hour;
 short day;
 short month;
 short year; };

interface cellcom

{// returns an access key only if the
 // server is available; returns 0
 // otherwise

long registerKey();

// releases the access key; server
// becomes available

void releaseKey(in long key);

// obtains state information; returns
// 0 for success

short display
(in long key, out long states);

// obtains time and state information;
// returns 0 for success

short display_t(in long key, out long
states, out inftime time);

// sends a command for the FMC;
// returns 0 for success and a
// value greater than 0 for failure

short command(in long key,in short cmd);

// sends a command for the FMC and
// obtains state information; returns
// 0 for success

short display_cmd(in long key, in short
cmd, out long states);

// sends a command for the FMC and
// obtains time and state information;
// returns 0 for success

short display_cmd_t(in long key, in
short cmd, out long states, out inftime
time); };

Fig. 3. IDL interface structure

Access keys are tools that enforce mutual
exclusive access to server to those clients that
send commands to the FMC. This is a classical
solution for the well known “readers/writers”
IPC (InterProcess Communication) problem
[11]. Specifically, “reader” processes are client
modules that only request information about the

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

FMC (state, time and date, etc.) while ”writer”
processes are client modules that send
commands to the FMC to change its state.

The registerKey() and releaseKey() methods
must be used by the “writer” processes before
issuing any other calls. The server returns a new,
distinct access key for the caller process if and
only if there is no other valid access key
currently used by a different client. In this
context, it is necessary to note that “currently
used by a client” refers to the time interval
between obtaining and releasing the access key
by that client.

Due to an access key inspection mechanism, if a
client fails to continue the communication with
the server after receiving a key, other clients can
compete to obtain the access.

For any registerKey() call the server checks the
current access key for the last usage moment. If
the non-usage time interval is greater than the
one set as limit by the specific analysis

requirement (for example, 5 seconds), the
current access key is considered “not valid
anymore”. The server can then grant the new
registerKey() request. Keeping “alive” (valid) an
access key is possible if and only if the client
uses the server with an appropriate frequency.
This mode of operation satisfies the system’s
requirements without decreasing the system’s
overall performance.

Access keys are crucial only for command(),
display_cmd() and display_cmd_t() methods. If
they belong to a “reader” client, the other two
methods, display() and display_t() can use any
value as their first call parameter. Otherwise, the
first parameter must be the registered access
key. These method calls help the “writer” client
not only to obtain information about the FMC
but also to preserve the validity of the access
key. Figures 4 and 5 show two possible
client/server scenarios.

Fig. 4. First client/server scenario

58 CONTROL ENGINEERING AND APPLIED INFORMATICS

CLIENT 1 SERVER CLIENT 2

registerKey()

releaseKey()

registerKey()

display()

valid key, access granted

error: server busy, key unavailable

error: incorrect key, command not done

state info

key released

command()

Fig. 5. Second client/server scenario

Specifically, Fig. 4 provides an example of
CORBA interaction for a “writer” client (Client
1) that requests an access key, sends a command
for the FMC, and reads state information.
Concurrently, a “reader” client (Client 2) not
owning an access key can only inspect FMC
evolution, obtaining state and/or date and time
information from the server. Figure 5 presents
the interaction scenario for two “writer” clients
and the server. If the first client has already
obtained an access key and is currently using the
server, the second client must wait. Its request
can not be granted until the first key is released
or expires. Until then the second “writer” client
can only act like a “reader”, inspecting FMC
state through server services.

5.2. The Command Module

The command module client used as a control
panel for the flexible manufacturing cell, the
Remote Cell Control, has been designed for
Microsoft Windows platforms and special
attention has been paid to the graphical user
interface, the information supplied, and its
presentation.

Equipped with a robust and intuitive user
interface (shown in Fig. 6), the Remote Cell
Control implements not only command
functions but several other useful facilities such
as statistical and graphical views of the FMC

state transitions. Using server supplied
information, Remote Cell Control builds
animated graphics for each of the twenty-two
variables that describe the current state of the
supervised object. The animation is done by
shifting each graphic to the left side of its
window, such that older events can be viewed
along with the current time value. On the right
side of the window, the new events are showed.
Every important state variable of the FMC can
be supervised by simply clicking the appropriate
button placed below the graphic. The human
operator receives information about state
transitions from several visual elements with
on/off LEDs appearance placed on the left side
of each graphic. Clicking one of the twenty-two
buttons implies sending a command to the server
through the network, using CORBA
communication mechanisms. The command is
then delivered to the FMC and visual
confirmation will be received by the operator
within a short time delay. This delay is due to
both network data propagation characteristics
and FMC’s reaction latency. Some settings are
allowed in order to reduce the information
display refreshing rate and minimize the delay
of visual confirmation. The right-hand side
smaller panel of the graphical user interface
allows the operator to control the connection
with the server, to access different options, and
to freeze graphics by clicking the Freeze button.

CONTROL ENGINEERING AND APPLIED INFORMATICS 59

Fig. 6. Screenshot of the front panel

The Freeze option allows a thorough study of
state transitions, from a given moment of time
until the freeze command is issued. It is easy to
determine the ordering of events by simply
placing the mouse on a certain point of the
graphic and reading the corresponding time
information (Time at cursor). This information
provides the elapsed time between the
occurrence of the cursor-selected event and the
moment when the Freeze button was pressed.
Compared to a simple visual observation, this
method is more accurate. When clicked, the
Freeze button changes its label to Continue.
Clicking this button again resumes the previous
mode of presentation and the graphics resume
their animation. Although not showed on the
screen during the freeze state, new events that
occurred during this state appear now on the
graphic, on the left side of the point that
corresponds to the current moment. It is
necessary to point out that only the graphics can
be frozen, any change in the server states being
immediately indicated to the operator by the
panel’s LEDS.

The Options button allows the operator to
choose the name and IP address of the server
and the communication port number and the
Reconnect and Disconnect buttons control the
connection with the server. The Reconnect
button can be used for both activating new

functional characteristics and for re-establishing
the connection with the server after it was closed
or lost. The small Message list panel on the
bottom-right corner of the screen contains all the
messages sent to the server.

6. CONCLUSIONS

This paper has presented the main aspects
related to the design and implementation of a
software system for remote supervision and
control of a DEGEM 2000 Educational FMC.
Built as a heterogeneous supervisor/control
system that uses the Windows TM and QNX
operating systems as main support and CORBA
technology as integration tool, this software
system has been recently integrated into a
complex virtual laboratory at the “Politehnica”
University of Bucharest.

Designed primarily for educational purposes, the
system allows students at remote locations to
experience and study mechanisms specific to
real-time operating systems, computer integrated
manufacturing, and control systems. Through
the use of a web video camera that tracks all the
movements within the FMC, it also makes
available to all the participants the visualization
of the effects generated by various commands

60 CONTROL ENGINEERING AND APPLIED INFORMATICS

issued. In addition, by its design, the system
guarantees conflict-free usage of the FMC.

Another significant advantage of the described
system is that the same control system
architecture can be used for industrial flexible
manufacturing cells, including cells in
hazardous environments. This is possible
because client modules such as the Command
Module can be placed separately in remote, safe
rooms.

Lastly, it is worth noting that the described
software system has high scalability and
flexibility: whenever needed, it is possible to
add new types of client modules and to create
clients based on additional hardware and
software platforms, the only constraint being to
use the same IDL interface and CORBA
technology as the integration tool.

7. REFERENCES

[1] Serain, D., - “Enterprise Application
Integration. L’Architecture des Solutions E-
business”, Dunod, Paris, 2001.

[2] Siegel, J., - “CORBA 3 Fundamentals and
Programming. Second Edition”, Wiley
Computer, New York, 2000.

[3] Licks, V., Quiroga, M., Jordan, R. and
Correa, J. S., - “Building Virtual
Laboratories - A Web Based Experience”,
Proceedings of ICECE 2000 -International
Conference on Engineering and Computer
Education, Sao Paulo, pp. 157-160, 2000.

[4] DEGEM 2000 flexible manufacturing cell
documentation.

[5] Saru, D. and Ionita, A. D., - “Object-
oriented Software Systems” (in Romanian),
ALL Educational, Bucharest, 2000.

[6] QNX – Watcom C – Library Reference
Manual.

[7] Orfali, R., Harkey, D., and Edwards, J., -
“Client/Server Survival Guide”, Wiley
Computer, New York, 1999.

[8] OMG - Object Management Group,
http://www.omg.org, accessed February 10,
2003.

[9] CORBA website, http://www.corba.org,
accessed May 5, 2003.

[10] OOC - Object Oriented Concepts Inc.,
http://www.ooc.com, accessed January 15,
2002.

[11] Tanenbaum, A. S., - “Modern Operating
Systems. Second Edition”, Prentice Hall,
Amsterdam, 2001.

	6. CONCLUSIONS
	7. REFERENCES

