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Abstract: This paper demonstrates control accuracy and computational efficiency of nonlinear model 
predictive control (NMPC) strategy which utilizes a probabilistic sparse kernel learning technique called 
Relevance vector regression (RVR) and particle swarm optimization with controllable random 
exploration velocity (PSO-CREV). An accurate reliable nonlinear model is first identified by RVR with a 
radial basis function (RBF) kernel and then the optimization of control sequence is speeded up by PSO-
CREV. An improved system performance is guaranteed by an accurate sparse predictive model and an 
efficient and fast optimization algorithm. To compare the performance, model predictive control (MPC) 
using a deterministic sparse kernel learning technique called Least squares support vector machines (LS-
SVM) regression is done on a highly nonlinear distillation column with severe interacting process 
variables. SVR based MPC shows improved tracking performance with very less computational effort 
which is much essential for real time control. 
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1. INTRODUCTION 

Model predictive control (MPC) is recognized as one of the 
advanced control technique which has been very successful 
in practical applications (Qin and Badgwell, 2003). This 
acknowledgment is due to its ability to handle constraints 
imposed on process inputs and outputs, interactions between 
process variables, process nonlinearities, dead times, and 
model uncertainties. MPC algorithm has the capability of 
controlling multi input, multi output (MIMO) nonlinear 
processes with significant time-delays and process 
interactions more efficiently.   

In earlier times linear model predictive controllers were 
repeatedly used in practice. But linear model predictive 
controllers fail to experiment the inevitable nonlinear 
behaviour of chemical processes. Linear model predictive 
controller is inadequate for highly nonlinear processes and 
moderately nonlinear processes which have large operating 
regimes. This shortcoming coupled with increasingly 
stringent demands on throughput and product quality has 
spurred the development of nonlinear model predictive 
control (Henson, 1998). Two challenging tasks in nonlinear 
model predictive controller are acquiring an accurate 
nonlinear model and solving nonlinear optimization problem 
online.  

The performance of nonlinear model predictive controller 
depends on model accuracy. For a highly tuned controller a 
very accurate model is necessary (Rossiter, 2003). Thus 
precise nonlinear model is expected for better controlled 
performance. Neural networks were widely believed for 

estimation of nonlinear system dynamics due to its simplicity 
besides its poor extrapolation, poor generalization. Moreover, 
training a neural network is too lengthy and the number of 
training data required is more (Liu et al., 2010).  

The sparse kernel learning is a nonlinear modeling method 
originally proposed in the machine learning area (Taylor and 
Cristianini, 2004; Bishop, 2006). A deterministic nonlinear 
modeling method, support vector machines (SVM) which 
overwhelms the over fitting and poor generalization ability of 
neural network with less number of training data and less 
training time providing better tracking performance is 
introduced in (Vapnik, 1998). But, practical applications of 
SVMs are limited because of its requirement of larger 
number of kernels to approximate the optimal solutions. In 
least squares support vector machines (LS-SVM) the 
regularization parameter γ and the kernel width parameter σ 
are the two parameters to be tuned to improve the 
generalization ability of predicted model. Thus the LS-SVM 
model is burdened with additional externally determined 
parameters, which is a time consuming task. Subsequently 
(Tipping, 2000) introduced relevance vector machine (RVM) 
which attracted much interest in the research community 
owing to its advantages over support vector machine. They 
are established on a Bayesian formulation which results in 
usage of less number of relevance vectors leading to much 
more sparse representation than support vector machine 
(SVM). Unlike in SVM framework where the basis functions 
must satisfy Mercer’s kernel theorem, in the RVM case there 
is no restriction on the basis functions (Vapnik, 1998; 
Tipping, 2001). Also, kernel width σ is the only parameter to 
be tuned in Relevance vector regression (RVR) model. 
Consequently the sparse RVR model could generalize better 
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with very less computation time than SVM. The result given 
in (Tipping, 2000) demonstrates the comparable 
generalization performance of RVM than SVM with 
intensely fewer kernel functions.  

Nonlinear system identification using RVM is successfully 
discussed in many literatures (Gustavo et al., 2007; Psorakis 
et al., 2010; Mihalis et al., 2012; Wong et al., 2012) which 
highlights its significance. To the author’s best knowledge, 
combinations of RVM model and MPC approach are less 
reported in literatures. The complexity of developing an 
accurate model for the distillation column and the 
nonlinearities of its dynamics, make very attractive the use of 
relevance vector machine. 

Despite of accurate approximation of nonlinear dynamics by 
RVR model it suffers from computational burden as model 
predictive controller does prediction and optimization at each 
sampling instant. The particle swarm optimization is an 
attractive tool owing to its simplicity and high performance, 
it has been proven to be a powerful competitor to other 
evolutionary algorithms (Eberhart and Kennedy, 1995; 
Kennedy and Eberhart, 1995) and been widely used in many 
optimization processes (Yoshida et al., 1999; Messerschmidt 
and Engelbrecht, 2004). It is a computationally efficient 
method since it is a derivative free method.  

(Chen and Li, 2007a, b) developed a novel method of 
optimization, particle swarm optimization with controllable 
random exploration velocity (PSO-CREV) for its 
computational efficiency and improved performance than 
conventional particle swarm optimization. 

In this paper, a nonlinear model predictive controller 
combining relevance vector regression model and particle 
swarm optimization with controllable random exploration 
velocity (PSO-CREV) is presented; which merges the 
advantage of accurate prediction and less computational 
effort. Simulation results of a highly nonlinear multi input 
multi output (MIMO) distillation column process with severe 
interacting process variables illustrates the better tracking 
performance of RVM based MPC when compared to LS-
SVM based MPC. 

This paper encompasses five sections commencing with the 
introduction as the first section followed by the second 
section which describes RVM. The third section explains 
MPC based on RVM and particle swarm optimization. The 
fourth section shows a comparative study of a highly 
nonlinear distillation column process with suitable simulation 
results of RVM based MPC and LS-SVM based MPC and the 
fifth section concludes the paper. 

2. RELEVANCE VECTOR REGRESSION 

RVM is a probabilistic model whose functional form is 
equivalent to that of SVM. It achieves comparable 
recognition accuracy to the SVM, yet provides a full 
predictive distribution, and also requires substantially fewer 
kernel functions (Bishop and Tipping, 2000). RVM is based 
on Bayesians approach in which a prior is introduced over the 
model weights and each weight is administrated by one 

hyperparameter. The most probable value of each hyper 
parameter is iteratively evaluated from the data. The model is 
sparser since the posterior distributions of some proportion of 
the weights are set to zero. 

Consider a given training set of M regression data 
points{ }M

mmm yx 1),( = , where M
m Rx ∈  is the input data to 

the actual plant and Rym ∈  is the output data of the actual 
plant and is assumed to contain Gaussian noise ε  with mean 
0 and variance 2σ . In high dimensional feature space z , the 
outputs of an extended linear model can be expressed as a 
linear combination of the response of a set of M basis 
functions, as follows: 
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In the above nonlinear function estimation model, mw is the 

weight vector and (.)mϕ is an arbitrary basis function (or 
kernel). In the present work RBF is used as the kernel 
function because of its ability to reduce computational 
complexity of the training process. The vector form of 

T
Mwww ],.......[ 1=  and the responses of all kernel function 

T
M xxx )]().....([)( 1 ϕϕϕ =  which maps the input data into a high 

dimensional feature space .z   

Hence the obtained error signal could be stated as   
),0(ˆ 2σε Nyy mmm =−=              (3) 

The objective of relevance vector regression is to find the 
finest value of w  such that ),(ˆ wxy  makes good 
predictions for unknown input data. For the RVM model in 
equation (2) let T

M ]..........[ 1 ααα = be the vector of M 
independent hyperparameters, each associated with one 
model weight or kernel function.  

The Gaussian prior distributions of the RVM framework are 
chosen as shown below,     
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Here mα  is the hyperparameter that governs each weight mw  
The likelihood function of independent training targets 
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The above likelihood function is enhanced by the prior in 
equation (4) defined over each weight to reduce the 
complexity of the model and to avoid over fitting. 
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Now using Bayes rule, the posterior distribution over model 
weights could be calculated as follows, 

),/(
)/(),/(),,/( 2

2
2

σα
ασσα

yp
wpwypywp =                           (6) 

The posterior distribution in equation (6) is a Gaussian 
distribution function, 

),(),,/( 22 σµσα Nywp =                         (7) 

Whose covariance and mean are respectively given by 
12 )( −− +=Σ ATϕϕσ             (8) 

 yTϕσµ Σ= −2              (9) 

with )(αdiagA =  

Marginalization of the likelihood distribution over the 
training targets given by equation (5) can be obtained by 
integrating out the weights to acquire the marginal likelihood 
for the hyperparameters.  

),0()/(),/(),/( 22 CNdwwpwypyp == ∫ ασσα   (10)  

Here the covariance is given by    TAIC ϕϕσ 12 −+=  

In equation (8) and equation (9) the only unknown variables 
are the hyperparameters α . The values of these 
hyperparameters are estimated using the framework of type II 
maximum likelihood (Berger, 2010).  

)log2log(2/1),/(log 12 yCyCMyp T −++−= πσα    (11) 

Logarithm is included in equation (11) to reduce 
computational complexity. Maximization of the logarithmic 
marginal likelihood in equation (11) over α leads to the most 
probable value MPα which provides the maximum a 
posteriori (MAP) estimate of the weights. 

The ambiguity about the optimal value of the weights, given 
by (6), is used to express ambiguity about the predictions 
made by the model, i.e., given an input *x , the probability 
distribution of the corresponding output *y is given by the 
predictive distribution 

dwywpwxypxyp )ˆ,ˆ,/()ˆ,,/()ˆ,ˆ,/( 22**2** σασσα ∫= (12) 

which has the Gaussian form  

),()ˆ,ˆ,/( 2**2** σσα YNxyp =           (13) 

The mean and variance of the predicted model are 
respectively, 

µϕ )( ** xY T=        and        )()(ˆ **22* xxT ϕϕσσ Σ+=       (14) 

Maximizing the logarithmic marginal likelihood in (11) leads 
the optimal values of many of the hyperparameters mα  
typically infinite yielding a posterior distribution in (6) of the 
corresponding weights mw that tends to be a delta function 
peaked to zero. Thus the corresponding weights are deleted 

from the model along with its accompanying kernel function. 
Hence very few data points corresponding to nonzero weights 
build the RVM model and are called the relevance vectors. 
This results in very good sparseness of RVM model than 
SVM model. Thus the computation time for prediction using 
RVM model is reduced significantly. 

3. MPC BASED ON RVM AND PARTICLE    
SWARM OPTIMIZATION 

3.1  RVM Based MPC Principle  

The basic structure of RVM based nonlinear model predictive 
controller is shown in Fig. 1. It includes three important 
blocks, the actual plant to be controlled with output y(k). The 
RVM model of the actual plant to be controlled with 
predicted output ŷ(k)= [ŷ(k+1)/k ,… ŷ(k+Np)/k] here, Np is 
the prediction horizon of MPC which dictates how far we 
wish the future to be predicted for. Next is the optimization 
block which provides the optimized control signal 
u(k)=[u(k/k),…u(k+ Nu -1 /k)] where Nu is the control horizon 
of MPC which dictates the number of control moves used to 
attain the future control trajectory, subjected to the specified 
constraints which is required for the plant to achieve the 
desired trajectory ref(k)=[ref1(k) ….refNp(k)]. Here k stands 
for the current sampling instant.  

 

Fig. 1. Basic structure of RVM based nonlinear model     
Predictive control. 

Thus at each sampling instant a sequence of manipulated 
variable u(k)  is calculated in order to minimize the 
formulated performance index i.e. the difference between the 
predicted output of the model and the desired reference 
trajectory over the specified prediction horizon Np.  

The number of manipulated variable in the sequence is 
decided by the control horizon value Nu and only the first 
manipulated variable is applied to the actual plant. This 
course is repeated at each sampling instant.  

The basic structure of LS-SVM based nonlinear model 
predictive control is obtained by replacing RVM model by 
LS-SVM model in Fig. 1.  

3.2  Performance index formulation 

For a MIMO mn × nonlinear process the predicted outputs of 
RVM model is a function of past process outputs, 
Y(k)=[y1(k)…..y1(k-ny+1),y2(k)…..y2(k-ny+1),…. 
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,ym(k)…..ym(k-ny+1)] and past process inputs, U(k-1)=[u1(k-
1)…u1(k-nu+1), u2(k-1)…u2(k-nu+1),.... ,un(k-1)…un(k-nu+1)]. 
Which could be compactly rewritten as 
Y(k)=[Y1(k),Y2(k)…,Ym(k)] and U(k-1) = [U1(k-1),U2(k-
1)….,Un(k-1)] . Here, Y(k) and U(k-1) are the vectors holding 
the past controlled outputs and past manipulated inputs 
respectively. The number of past controlled outputs and past 
manipulated inputs depends on the corresponding process 
orders nu and ny respectively. 

Thus the prediction of m outputs for a MIMO mn ×  
nonlinear process can be illustrated by the following discrete 
time model, 

)]1(),(),([)1(ˆ 11 −=+ kUkukYfky    

)]1(),(),([)1(ˆ 22 −=+ kUkukYfky  

 ……..             (15) 

)]1(),(),([)1(ˆ −=+ kUkukYfky mm     

where k is the discrete time index 

The simple idea behind regression problem using sparse 
kernel learning structure is to project the input vectors by a 
nonlinear mapping into the high dimensional kernel Hilbert 
space and then to perform a linear regression in this feature 
space. Thus after system identification with the regression 
data set, prediction of each output could be formulated as  
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where j=1…m and M is the number of subsets of training 
samples. 

Accordingly, the performance index to be minimized to 
achieve the optimal control sequence can be obtained as 
shown below, 

 
( ) ( )[ ] ( )[ ]∑ ∑∑∑

= = ==

+∆++−+=
m

j

n

j

N

i
jj

N

Ni
jjj

u

inuikyikrefqJ
1 1 1

22
2

1

ˆ λ  (17) 

In the performance index formulated in Equation (17) 
ŷ depends on the  kernel function which in turn is a function 

of manipulated  variable u,  which is  optimized and applied to 
the actual plant in order to minimize the deviation between the 
reference value and controlled variable. 

N1   -   minimum prediction horizon 
N2   -   maximum prediction horizon 
Nu   -   control horizon 
m   -   number of outputs 
n   -   number of inputs 
ref(.)              -   reference trajectory 

(.)ˆ jy   -   jth predicted output of RVM model 

(.)ju∆       -   change of jth  control input defined 
                           as uj(k+i)-uj(k+i-1) 
 k       -   current sampling instant 

jjq λ,                 -   time independent weighting coefficients. 

 3.3  Conventional Particle swarm optimization 

Although nonlinear predictive controller is good at 
controlling unknown nonlinear systems, it does not mean that 
practical implementation is without difficulties. The primary 
shortage results from its computational cost (Chen and Li, 
2007a, b). Usage of evolutionary algorithm for MPC 
optimization overcomes this difficulty. Inspired by the 
foraging behaviour of birds, American psychologist Kennedy 
and electrical engineer Eberhart developed the particle swarm 
optimization algorithm (Kennedy and Eberhart, 1995). This 
evolutionary algorithm has the capability of universality and 
global optimization. 

If in an n dimensional search space, the swarm 
X=[X1,...,X2,…,Xm] is composed of m particles. Let the 
position and velocity of ith individual particles be 
Xi=[xi1,xi2,…xin]T and Vi=[vi1,vi2,…vin]T respectively and the 
best position be Pi=[Pi1,Pi2,…,Pin]T. Let the global best 
position, gbest be Pg=[pg1,pg2,…pgn]T . Then the updated 
velocity and position of particle Xi will be as in Equation (18) 
and Equation (19). 
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where d=1,2,…,n,  i=1,2,…m, 

m  -  swarm size, 
 t  -  iteration counter, 
w   -  inertia weights 
r1, r2  -  random numbers in the range [0,1], 
c1, c2   - learning factors. 

Learning factors c1 and c2 usually equals to 2. However, other 
settings were also used. But usually c1 equals to c2 and ranges 
from [0, 4]. 

3.4  Disadvantages of Conventional PSO 

From Equation (18) and Equation (19) it is understood that the 
strength of exploration performance is merely determined by 
the degrading rate of )( )()( t

id
t

id XP −  and )( )()( t
id

t
gd XP −  as r1 

and r2 are supplemented as relational coefficients to 

)( )()( t
id

t
id XP − and )( )()( t

id
t

gd XP −  respectively. Hence if a 
swarm converges to a local minimal solution, the algorithm 
may not have the capability to neglect it and hence the 
strength of exploration behavior of the conventional PSO 
algorithm needs improvement. This task of improving the 
exploration strength is achieved in a modified novel algorithm 
PSO-CREV. 

3.5   PSO-CREV Algorithm 

The intensity of exploration capability of conventional PSO 
was improved significantly by Chen and Li, (2007a, b), after 
incorporating some modifications in the position and velocity 
equations as shown in Equation (20) and Equation (21) 
respectively. 
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idξ   -  Bounded random variable with continuous uniform     

 distribution, 
)(tε    -   tends to zero as t increases, and∑

∞

=
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 α       -  ranges between 0 and 1. 

In order to achieve the global optimal solution the random 
velocity )(t

idξ  is introduced to enhance the particles to reach 
the strange solution space which might be very close to the 
global optimal solution. 

4. APPLICATION ON BINARY DISTILLATION 
COLUMN PROCESS 

This section describes the better accuracy and less 
computational demand of LS-SVM based NMPC than NN 
based NMPC by simulating a binary distillation column.  

The arrangement of distillation column process for the 
separation of a binary mixture of methanol and n-propanol is 
shown in Fig. 2. Two conventional controllers denoted by LC 
are used to maintain the levels in the reflux tank and bottom 
product tank. The MPC algorithm is responsible for 

controlling the composition of top product Dx  and bottom 

product Bx  by manipulating the reflux stream flow rate, L 
and vapour stream flow rate, V. Two critical controller 
performance attributes of set point tracking and disturbance 
rejection are presented through simulations.  

The binary distillation column considered is under LV –
configuration (Skogestad and Morari, 1988). It exhibits 
severe nonlinearity and strong cross coupling both under 
steady state and dynamic operating conditions. Simulation 
results convey the suitability of NMPC to tackle this 
nonlinearity and cross coupling. 

 
Fig. 2. Schematic of the binary distillation column process. 

The fundamental model containing the following nonlinear 
differential equations is used as the real process during 
simulation. The molar flows, relative volatility, liquid holdup 

on all trays are assumed to be constant. Mixing on all stages 
is perfect and vapour holdup is assumed to be nil. 

The important notations of the distillation column are listed 
below, 
F   -  Feed rate [kmol/min] 
qF   -  Fraction of liquid in feed 
D and B  -  distillate and bottom product flow  
                                         rate [kmol/min] 
xD and xB -  distillate and bottom product  
    composition 
L   -  reflux flow [kmol/min] 
V   -  boilup flow [kmol/min] 
MB   -   Liquid holdup on reboiler [kmol] 
MD   -  condenser holdup [kmol] 
Mi   -  Liquid holdup on theoretical tray i  
    [kmol] 
N   -  total number of theoretical trays 
NF   -  Feed tray location from bottom 
QF   -  fraction liquid in feed 
LB   -   Liquid flow rate into reboiler 
VT  -  vapour flow rate on top tray 
XB  -  ln xB, logarithmic bottom  
    composition 
YD  -  ln(1-yD), logarithmic top  
    composition 
xi  -    liquid mole fraction of light  
    component on stage i 
yi  -  vapour mole fraction of light  
    component on stage i 
yT  - vapour mole fraction of light  
   component on top tray 
ZF  -  mole fraction of light component  
   in feed 

ref
Dx   -  desired value of distillate product  

   composition 
ref
Bx   - desired value of bottom product  

   composition 

Material balance equations for change in holdup of light 
component on each tray; 

)1(,2 , +≠≠= FF NiNiNi

iiiiiiiiii yVxLyVxLxM −−+= −−++ 1111&         (22)
 

above feed location 1+= FNi
 

Fviiiiiiiiii yFyVxLyVxLxM +−−+= −−++ 1111&   (23) 

below feed location, FNi =
 

FLiiiiiiiiii xFyVxLyVxLxM +−−+= −−++ 1111&   (24) 

reboiler, 1=i
  

111 , xxBxyVxLxM BiiiiiiB =−−= ++&        (25)
 

total condenser, 1+= Ni  

111 , +−− =−−= NDiiiiiiD xyDxxLxVxM &       (26) 
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VLE on each tray, ),1( Ni =  , constant relative volatility 

))1(1( iii xxy −+= αα              (27) 

Flow rates above and below feed trays assuming constant 
molar flows are, 

FNi >  above feed, ,LLi =  Vi FVV +=              (28) 

FNi ≤  below feed, ,Li FLL += VVi =         (29) 

FqF FL =   , LV FFF −=                (30) 

condenser holdup is kept constant, 

LFVLVD VN −+=−=                  (31) 

reboiler holdup is kept constant, 

VFLVLB L −+=−= 12                (32) 

Vapour phase and liquid phase composition of the feed  

FF yx , respectively  are obtained by solving the equations 
below. 

FVFLF yFxFFZ +=           (33) 

))1(1( FFF xxy −+= αα          (34) 
 
4.1  Training and testing the model 

The dynamic model of the binary distillation column is 
simulated open loop to collect the training and testing data. 
The simulation is carried out at random constrained reflux 
flow and boilup flow and its corresponding distillate and 
bottom product compositions are recorded. The constraint to 
the input signals, reflux flow and boilup flow are 2.5≤ u1(t) ≤ 
2.9 and 3≤ u2t) ≤ 3.5 respectively. The binary distillation 
column model considered under LV- configuration contains a 
total of 41 stages including the reboiler and total condenser. 
Thus the dynamic model contains 41 nonlinear differential 
equations. In order to capture the above order of dynamics 
using SVR model, two past outputs and past inputs are 
sufficient hence the following second order model is chosen.  

))2(),1(),2(),1(),2(),1(()( 2211111 −−−−−−= kukukukukykyfky         (35) 
))2(),1(),2(),1(),2(),1(()( 2211222 −−−−−−= kukukukukykyfky        (36) 

A sequence of 100 samples is used to train the sparse 
Bayesian RVR model offline. Hyper parameter estimation is 
carried out by Expectation Maximization (EM) updates on 
the objective function (Tipping, 2001). For this RVR model 
RBF kernel is used with the width parameter estimated 
automatically by the learning procedure (Tipping, 2001) this 
improves generalization ability and reduces computational 
complexity of the training process. 

Thus, unlike in LS-SVM there is no necessity for 
computationally expensive determination of regularization 
parameter by cross validation technique. Also in the RVR 
model confidence intervals, likelihood values and posterior 
probabilities could be explicitly encoded easily. 

The SVR model is also trained offline using a sequence of 
100 samples using the leave one out method. Leave one out 
method is one in which the function approximator is trained 
on all the data except for one point and the prediction is made 
for that point. This procedure is repeated for each data point. 
The average error is computed by combining the different 
estimate of the performance and used to evaluate the model. 
The assumption is made that the input data is distributed 
independent and identically over the input space (De 
Brabanter et al., 2011). The identification performance of 
RVR model and SVR model are assessed by the root mean 
square error (RMSE) performance function. 
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where )(ky)  represents the output of the model for the 
sampling instant k,  where )(ky  represents the output of the 
plant for the sampling instant k and N represents total number 
of samples. Fig. 3 and Fig. 4 correspond to the modeling 
results of RVR and SVR methods. While modelling the 
training set, RVR model can attain a slightly better 
identification performance than SVR. Similarly, for the test 
data which are beyond the training data, the RVR model can 
achieve better performance than SVR. The comparative 
graph of prediction errors of RVR model and SVR model for 
test data are shown in Fig. 4, which explores the better 
extrapolation capability of RVR model than SVR model.  

 
Fig. 3. Training performance comparison of RVR and SVR 
models. 

Accuracy of the model in terms of RMSE (37) is tabulated in 
Table 1.Thus one can conclude that the RVR based empirical 
modeling can accomplish better accuracy and extrapolation 
capability than LS-SVM based modeling. 

Table 1. Accuracy of   RVR and SVR model of binary 
distillation column process. 

Model RMSEtraining RMSEtesting 

Dx  Bx  Dx  Bx  
RVR 0.0021 0.0024 0.0023 0.0025 
SVR 0.0027 0.0028 0.0028 0.0030 
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Fig. 4. Testing performance comparison of RVR and SVR  
model.  

The offline trained and validated RVR model or LS-SVM 
model is then used as the nonlinear model for nonlinear 
MPC. Fig. 5 illustrates the random set point tracking 
performances of RVR based MPC and SVR based MPC. The 
tracking performance of RVR based MPC is better when 
compared with LS-SVM based MPC even in the presence of 
severe interacting process variables.  

Also as the PSO-CREV algorithm converges to the best 
solution at each sampling instant the manipulated variables 
reflux flow rate, L and boil up flow rate, V corresponding to 
SVR-PSO-CREV and NN-PSO-CREV are with very less 
fluctuations as shown in Fig.6 presenting the index of control 
performance. 

 
Fig. 5. Set point tracking performance of distillation column 
process by RVM-MPC and LS-SVM-MPC.  

The unmeasured disturbance rejection capability of RVM-
PSO-CREV based MPC and LS-SVM-PSO-CREV based 
MPC are compared by subjecting the distillation column 
process with dissimilar magnitudes of disturbance at different 
sampling instants. The control variables, Reflux flow rate, L 
and boilup flow rate, V with disturbances at different 
sampling instance are shown in Fig. 7. 
 

 

Fig. 6. Changes in the process variables for tracking the top 
product and bottom product compositions of distillation 
column process. 

 
Fig. 7.  Changes in the process variable to show unmeasured 
disturbance. 

 
Fig. 8. Performance comparison of unmeasured disturbance 
rejection. 
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Certainly the unmeasured disturbance rejection performance 
of RVR-PSO-CREV based MPC is better when compared to 
LS-SVM-PSO-CREV based MPC as shown in Fig. 8. 
Thus the better capability of RVR based MPC; in 
overcoming the interaction among process variables are 
vibrant from the simulation results. Accordingly RVR-PSO-
CREV based MPC behaves suitably for process control 
industrial applications. 

4.2  Tabulation of performance indices for different 
controlling techniques 

This section enunciates the performance indices and 
computational cost of the controllers discussed in previous 
section. Integral absolute error (IAE) is the performance 
criteria which quantifies the accuracy of all controllers. 
Table. 2 shows the IAE value and computational time related 
to each controller for the simulation results carried out for 75 
samples. 

The distillation column model under simulation has very 
slow time constants on the order of minutes. The sparseness 
property of RVR model sharply reduces the computational 
time of RVR-MPC to 31.06 seconds for 75 samples (ie., 
nearly 0.414 Seconds for sample), which is much shorter than 
the sampling time of the distillation column process. Hence, 
it is clear that LS-SVM based MPC is the one which 
consumes more time with more integral average error and 
RVR-PSO-CREV model predictive controller is the better 
controller with less computational load and less integral 
average error. 

Thus when compared to LS-SVM-PSO-CREV based MPC , 
RVM-PSO-CREV based MPC is the best controller based on 
various attributes like better prediction accuracy, better 
generalization capability, better set point tracking 
performance, better unmeasured disturbance rejection 
capability with very less computation time due to its sparse 
model. Hence it is well suitable for industrial process control 
applications.

 
Table 2. Performance Indices of various control strategies.

 
5.  CONCLUSIONS 

A viable solution to the problem of nonlinear model 
predictive control is proposed in this paper. A probabilistic 
sparse kernel learning technique, RVM is used to create an 
accurate for prediction model and a derivative free 
optimization method, PSO-CREV is used to achieve faster 
convergence. Based on the simulation results of highly 
nonlinear distillation column process, the tracking 
performance of RVM- PSO-CREV based MPC is better than 
LS-SVM-PSO-CREV based MPC with very less 
computational cost and better unmeasured disturbance 
rejection capability which confirms its feasibility. Simulation 
results convey that such better performance is due to better 
prediction accuracy, better generalization capability and more 
sparseness property of RVM model and fast accurate 
convergence of PSO-CREV algorithm. 
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