
CEAI, Vol.16, No.1 pp. 80-88, 2014 Printed in Romania

Logging System for Cloud Computing Forensic Environments

Alecsandru Pătrașcu, Victor-Valeriu Patriciu

Military Technical Academy, Computer Science Department
Bucharest, Romania (e-mail:alecsandru.patrascu@gmail.com, victorpatriciu@yahoo.com).

Abstract: Cloud computing represents a rather new technology and a different paradigm in the field of
distributed computing that involve more and more researchers. We can see in this context the need to
know exactly where, when and how a piece of data is processed or stored. Compared with classic digital
forensic, the field of cloud forensic poses a lot of difficulties since data is not stored on a single storage
unit and furthermore it involves the use of virtualization technologies.
In this paper we will present in detail a new and novel way of monitoring activity in cloud environments
and datacenters using a secure cloud forensic framework. We talk about the architecture of such
framework and how can it be applied on top of new or existing cloud computing deployments. Also, for
testing and results collecting we have implemented this solution to our previous developed cloud
computing system.

Keywords: cloud computing; data forensics; logging framework; distributed computing; binary diff.

1. INTRODUCTION

Since its creation, the cloud computing technology presented
itself to the users as a way in which they could rent various
amounts of computing power under the form of virtual
machines, intermediate platform targeted to developers or
ready to use applications for mass usage. The technologies
surrounding it have evolved with great pace, but nevertheless,
we can find a single concern in all of them - cloud computing
security. Also, the need of knowing how the information is
delivered from and to the clients and under what condition is
it processed is emerging alongside with the security issues.

In this context, cloud computing has become in the last years
a paradigm that attracts more and more researchers. One of
the main research areas in this field is the way in which
common data and processing power can be shared and
distributed across single or multiple datacenters that are
spread across a specific geographical area or even the entire
globe. A new need for IT experts is increasing: the need to
know exactly how, where and in what condition is the data
from the cloud stored, processed and delivered to the clients.
We can say with great confidence that cloud computing
forensics has become more and more a need in todays
distributed digital world.

In case of classic computer forensics, the purpose is to
search, preserve and analyze information on computer
systems to find potential evidence for a trial. In cloud
environments the entire paradigm changes because we don't
have access to a physical computer, and even if we have
access, it is a great chance that the data stored on it is
encrypted or split across multiple other computer systems.

In order to resolve these fundamental problems, researchers
have developed over the years various technologies. Systems

such as Host-based Intrusion Protection Systems (HIPS) or
Network-based Intrusion Protection Systems (NIPS) have a
single point of view at their core: making network penetration
hard.

But this is not enough in our current digital world, as we
store more and more data remotely, in cloud systems.
Hackers, malware and all other Internet threats are real
menaces to our data. Thus, legal investigators must have a
way in which they can monitor the activity of a certain virtual
machine. The problem that they face in this case is mainly
concerning jurisdiction, as the cloud data is often split across
multiple datacenters, over multiple countries or even
continents. On second case, current cloud infrastructures tend
to leave this sensible part away and only monitor virtual
machines for performance rather than what is happening
inside them.

Taking in account all the variables that have appeared in
cloud computing technologies, modern hypervisors and
virtualization technologies implement more or less simple
mechanisms for data monitoring across datacenters. Starting
from the basic building blocks composed by simple logs that
are gathered from the entire cloud infrastructure, every
monitoring module must have a precise target and must not
affect the proper function of the systems from the datacenter.
All virtualization technologies have a difficulty in this area.

Because of the reasons explained so far, a fair observation
can be made: Cloud Computing is a new, raw and tough
research domain because it involves knowledge from many
other domains like Distributed Computing, algorithms and
data structures, networking protocols and many other, in
order for it to function properly. The main concerns that are
rising are influenced by the transition from the regular basic
server infrastructure held by users to a centralized datacenter
maintained by a third-party provider.

CONTROL ENGINEERING AND APPLIED INFORMATICS 81

In this paper we are going to present a new and novel way in
which we can integrate a full forensics framework on top of a
new or existing cloud infrastructure. We will talk about the
architecture that stands at it ground and we will present its
advantages for the entire cloud computing community. We
will present also the impact that our technology proposal will
have on existing cloud infrastructures and as a proof of
concept we will present some particular implementation
details over our own cloud computing framework that we
have already developed in (Patrascu et al., 2012). Of course
we are not neglecting the security part of our proposal and we
will present briefly a mechanism that helps us secure the
transmissions across our cloud infrastructure modules.

The rest of the document is structured as follows. In section 2
we present some of the related work in this field, that is
linked with our topic and in section 3 we present in detail our
proposed cloud forensics logging framework. Section 4
presents how our framework can be installed inside a
datacenter and what modifications can be made in order to
improve the overall performance without interrupting the
normal activity of the datacenter. Section 5 is dedicated to
presenting our results from our implementation made so far,
and in section 6 we conclude our document.

2. RELATED WORK

In the field of classic incident response there are is a lot of
active research and many books, guides and papers.
Nevertheless, in the field of cloud computing incident
response the papers are mostly theoretical and present only an
ideal model for it.

In the direction of classic incident response, one of the most
interesting guides is the one from NIST. In it we can find a
summary containing a short description and
recommendations for the field of computer forensics, along
with the basic steps that must be made when conducting a
forensic analysis: collection, examination, analysis and
reporting. A great deal of attention is paid to the problem on
incident response and how should an incident be detected,
isolated and analyzed.

Bernd Grobauer and Thomas Schreck talk in (Grobauer et al.,
2010) about the challenges imposed by cloud computing
incident handling and response. This problem is also
analyzed in (Chen et al., 2012), where they consider that
incident handling should be considered a well-defined part of
the security process. Also it is presented a description for
current processes and methods used in incident handling and
what changes can be made when migrating towards a cloud
environment from the point of view of a customer or an
security manager.

Furthermore, the integration of cloud incident handling and
cybersecurity is presented in two papers, one written by
(Takahashi et al., 2010) and the other written by (Simmons et
al., 2012). They talk about how Internet development leads to
a widespread deployment of various IT technologies and
security advances. In their paper they also propose an
ontological approach for integration of cybersecurity in the

context of cloud computing and present how information
should be used and analyzed in such environments.

The field of cloud logging, as a support for forensics, is also
starting to emerge along with the ones presented before. In
this directions, we find thesis, such as the one of Zawoad et al
which present in (Zawoad, 2013) an architecture for a secure
cloud logging service. They talk about the need of log
gathering from various sources around the datacenter or
hypervisors in order to create a permanent image of the
operations done in a datacenter and they present an
architecture that can be used to help in this direction.

The same challenges are evidenced by (Marty, 2011; Sibiya
et al., 2012). The paper discusses a logging framework and
presents a series of guidelines that can provide assurance to
forensics investigators that the data has been reliably
generated and collected and propose a standardized way to do
logging, in order to have a single and centralized logging
collector and processor, thus saving time and money for both
businesses and users.

Also, as can be seen in papers such as (Amarilli et al., 2011;
Atanasiu et al., 2012), the variety of applications that include
logging and that can be used in case of a network is large and
include also tools for reverse engineering and obfuscation
detection and prevention. This is the main reason that
forensic investigators must follow a standard set of
procedures: after physically isolating the targeted computer,
so that its data cannot be accidentally altered, they make a
digital copy of the hard drive. Once the drive has been
copied, it is put in a secure storage facility to maintain it in
proper conditions. All of our investigation is done on a digital
copy of the original data.

During our research we have focused on choosing an
intermediate representation of data that is sent between the
local and central forensic modules. We have analyzed
different existing metalanguages for logging.

The first one is the “Management metalanguage
Specification” proposed by the UnixWare community. Its
advantage is that it can be used as a transparent API in the
kernel modules as it provides an interface for an external
host. The downside is that it needs a lot of auxiliary binary
data to be sent in order to re-create the entire picture at the
other end, and using it we get quickly traffic larger than the
one that can be obtained by sending only the basic snapshots.
This is due to the fact that this metalanguage is designed to
be used only locally over a system.

On the other side, the CEE (Common Event Expression)
organization proposes a set of specifications using the JSON
and XML markup languages for event logging on disk or in
transit over a network. These requirements are designed for
maximum interoperability with existing event and
interchange standards to minimize adoption costs. The
advantage of this approach is that CEE expresses its
interfaces and does not promote an actual implementation.

Using the information gathered at this step and taking in
consideration that our project is novel in this field, we will
provide our own logging metalanguage, based on the CEE

82 CONTROL ENGINEERING AND APPLIED INFORMATICS

specifications for compatibility. Due to advantages it offers,
we are going to use the JSON markup language as data
envelope because it is a simple, clean, concise and human-
readable format. It is also good for decoupling our cloud
forensic modules because we can implement each module
using its own programming language and having only a
common JSON interface for using it. Along with this format
we intend to use it along with a storage module that is fit for
our needs. We have chosen this approach in order to have the
collected data from a host in a single database and only
provide management messages to the above central forensic
modules.

3. LOGGING FRAMEWORK ARCHITECTURE

In this section we will present the top view architecture of a
cloud enabled forensics system. We will start with the
general concepts and aspects that our system will implement
and then focus on the logging part. We will also talk about
the system perspective from the forensic investigator part.

3.1 General forensics architecture

The system presented in this paper has a modular architecture
and each of the modules is presented in detail. It is easy to
see that the entire framework can be extended with other
modules or plugins. In order to have a solid working
platform, we must first introduce the concept of a cloud
computing framework. As can be seen in Figure 1 the top
view of a cloud computing framework contains two main
layers: the virtualization layer and the management layer.

Fig. 1. Basic cloud computing architecture.

In the virtualization layer we find the actual workstations that
host the virtual machines and have virtualization enabled
hardware. In the management layer we find the modules
responsible with enabling the entire operations specific to the
cloud, as presented in the previous sections. These modules
are:

 Security. This module is responsible with all
security concerns related to the cloud system. For
simplicity we can consider it as an intrusion
detection and alarming module.

 Validation engine. This module receives requests to
add new jobs to be processed. Every new request is
checked for consistency and it is validated and if it
is legit, the new lease is transformed in a job for our
system and it is properly inserted in the job queue.

 Virtual jobs. This module creates an abstraction
between the data requested by the user and the
payload that must be delivered to the cloud system.

 Scheduler. This is one of the most important
modules in a cloud framework. Its main purpose is
to efficiently schedule the jobs to the virtualization
layer. It also must communicate with the other
modules in order to find new instances, new
services, virtual machine managers, load balancers
in the system.

 Hypervisor interface. This module acts like a
translation layer that is specific to a virtualization
software vendor. It must implement each vendor
API specifications.

 Load distribution. This module is responsible with
horizontal and vertical scaling of the requests
received from the scheduler. It must run a distinct
application framework in order to decouple the code
from the existing underneath runtime. The algorithm
must be applied automatically and in the process of
this analysis, the number of workstations must be
taken in account.

 Internal cloud API. This module is intended as a
link between the virtualization layer and the cloud
system. In order to be more scalable and also
maintain a high degree of abstraction, a common
interface must be provided and every
implementation of the specific API must implement
this.

 External cloud API. This module offers a way to the
user to interact with the system. It must provide
means to add new jobs in the cloud system. The
requests are registered and sent to the validation
engine module. This API must be flexible enough to
permit adding details to the jobs, like the hardware
specifications of the virtual machine, operating
system to be used, packages to be installed.

Now that the notion of a cloud computing framework was
presented, we will talk about the modifications that must be
made to it in order to create a forensic enabled cloud
computing architecture. As can be seen in Figure 2 the
modification affects all the existing modules.

Fig. 2. Forensic enabled cloud computing architecture.

CONTROL ENGINEERING AND APPLIED INFORMATICS 83

More exactly, we see a new module, the Cloud Forensic
Module. Its main goal is to gather all forensic and log data
from the virtual machines that are running inside the
virtualization layer. Furthermore, we must attribute to the
security module greater responsibilities and permit it to
communicate with all the other modules in the management
layer.

Of course, in order to gather data reliably from the virtual
machines we must interact with the hypervisors existing in
the workstations kernel. In our paper we present only what
modifications must be made to a Linux kernel. We have
chosen this alternative because in a Linux kernel we can find
at least two distinct, free and open source virtualization
techniques: KVM and XEN. An image of a forensic enabled
kernel can be seen in Figure 3.

Fig. 3. Forensic enabled kernel.

On our research we will focus on the KVM technology.
KVM (Kernel-based Virtual Machine) is a full virtualization
solution for Linux on x86 hardware containing virtualization
extensions on Intel or AMD processors. It consists of a
loadable kernel module called kvm.ko, that provides the core
virtualization infrastructure and a processor specific module
called kvm-intel.ko or kvm-amd.ko. Using KVM an user can
run multiple virtual machines running unmodified Linux or
Windows images. Each virtual machine has private
virtualized hardware such as a network card, disk and a
graphic adapter.

The cloud forensic interface is implemented as a series of
stand-alone kernel modules and user-space applications that
can be activated or disabled at runtime. Our goal is to provide
the users a way to manage it from the kernel building menu.
We need this segregation because we want to have access to
all the modules from the kernel that helps in the entire
process of virtualization. Parts like system calls, process
management, virtual file system, memory management,
networking management are extremely important to our
research because they represent the basic building blocks
between a virtual machine running on a host and the
operating system. We will detail furthermore the main
interest directions for our research.

The first step toward full kernel integration is to have a
proper API both to the kernel and to the external system. We
are interested mostly about KVM internal API. This API is a
set of ioctl instructions that are issued in order to control
different aspects of a running virtual machine. In computing,
ioctl (short for “input-output control”) represents a system
call made to a specific device which cannot be done using
regular system calls. Logically, this API is split across three
different main parts: main system ioctls, meant to set proper

KVM internal variables and used when creating a new virtual
machine, virtual machine ioctls, meant to set different
attributes of a virtual machine, like the memory size or layout
and virtual CPU ioctls, meant to be used to control the
operation of a virtual machine virtual CPU.

In order to be fully compatible with the Linux API, the entire
KVM API is centered around the concept of file descriptors.
This means that once activated, KVM creates a new device
called “/dev/kvm”. On initial open of the device we get a
handle of the internal KVM system that we can use to issue
proper ioctl commands. For example, sending a
KVM_CREATE_VM command to the kernel, we get a
response containing a virtual machine file descriptor that we
can further use to set different values.

It is easy to see that we can get all details concerning about
the status of the ”virtual hardware” that is used for a certain
virtual machine. This is useful because, for example, we can
get details such as:

 the memory pages that are dirtied since a last call,
using the KVM_GET_DIRTY_LOG ioctl and the
following data structure:

struct kvm_dirty_log {
 {...}
 union {
 void __user *dirty_bitmap;
 __u64 padding;
 };
 {...}

 getting processor registry values, using the
KVM_GET_REGS ioctl and the following data
structure:

struct kvm_regs {
 {...}
 __u64 rsi, rdi, rsp, rbp;
 __u64 r8, r9, r10, r11;
 {...}

 setting processor registry values - KVM_SET_REGS
ioctl;

 translation of a memory virtual address according to
virtual CPU own translation mode, using the
KVM_TRANSLATE ioctl and the following data
structure:

struct kvm_translation {
 __u64 linear_address;
 __u64 physical_address;
 {...}

From the point of view of live cloud computing forensics, a
great impact is given by the Memory Management Unit
(MMU). For virtualization software it is very important to
have a proper MMU module. In our case, KVM uses its own
MMU modules with the purpose of translation from guest
physical address to host physical address. This gives us a real
advantage because interacting with these modules gives us a

84 CONTROL ENGINEERING AND APPLIED INFORMATICS

full map of what is going on inside a virtual machine memory
space.

In order to be considered reliable, a virtual machine MMU
must respect a set of particular requirements, like correctness
(the virtual machine must not be able to determine that it is
running using an emulated MMU) and security (the virtual
machine must not allocate memory beyond the limits
imposed by the MMU). These requirements are going to be
monitored by our forensic module and at any time we will
have a full memory footprint and the whole previous states.

It is important for a forensic investigator to have access to the
network communication devices and to the storage devices.
In case of virtual machines running under KVM it is done
using the virtio interface. Virtio is a virtualization standard
for network and disk device drivers where just the guest's
device driver is aware of the fact that it is running in a virtual
environment, and cooperates with the hypervisor and this
enables guests to achieve high performance network and disk
operations. Its design allows the hypervisor to export a
common set of emulated devices and make them available
through a common API. Using this interface we gain full
access to everything related to the disk and/or network
devices than an investigator can use.

3.2 Cloud logging architecture

In this section we present how our framework is working and
how it is created in order to run on top of new or existing
cloud computing infrastructures. As example for it we will
present the integration with our previously implemented
Cloud Computing framework in (Patrascu et al., 2012).

The architecture is a layered one, containing five layers, each
with its own purpose. We will present each of them in detail
in the following paragraphs. We also represented it in a
graphical way, in Figure 4 the whole layers and the
relationship between them. The layers are all implemented
using the distributed computing paradigm. Actually, they
represent jobs in our cloud computing environment. We
preferred this architecture because it is natively scalable on
top of existing datacenters or computer networks and can deal
with large amount of data and connected clients.

Furthermore, in order to make sure that the data is kept safely
and no one will tamper it, each operation made by the system
will go through a hashing algorithm, both original, resulting
and diff files. These hashes will be stored encrypted using a
passphrase provided by the investigator.

The cloud architecture presented in our previous work makes
use of the concept of leases, in which we can specify the
amount of time the job must run, or specify between what
hours in a day it is running. To achieve our goal, we created a
lease that during the day, when the datacenter is mostly
occupied by the users, uses a minimum number of nodes and
during the night, when the datacenter is almost entirely free,
it automatically scales up to use a maximum number of
nodes.

Fig. 4. Cloud Forensics Logging Framework.

3.3 Top view architecture

The first layer, as presented in our previous work (Patrascu
and Patriciu, 2013), represents the management layer in a
cloud computing deployment. It contains the modules
responsible with enabling the entire operations specific to the
cloud. We can also see the previously mentioned Cloud
Forensic Module.

The second layer represents the virtualization layer in a cloud
computing deployment. Its purpose is to contain the actual
workstations that host the virtual machines and have
virtualization enabled hardware. A dedicated “Local logging
module” must be installed into the existing physical machine.
It is responsible with the RAW data gathering from the
monitored virtual machines. The data quantity can be
adjusted by the investigator and he can choose to monitor a
particular virtual machine or monitor the entire activity
existing inside that machine.

In order to gather data reliably from the virtual machines the
local logging module must be integrated fully with the
running hypervisor inside the physical machine. In this paper
we focus on the integration with the “KVM” virtualization
technology that exists in modern Linux kernel releases. We
have chosen it because it is a full open-source virtualization
solution, integrated with the Linux kernel since 2007 and it is
actively used by many companies across the world.

CONTROL ENGINEERING AND APPLIED INFORMATICS 85

An important thing that must be taken in consideration is
what data are we intercepting from the virtual machine and
send it to further processing. Since all the activity can be
intercepted, there is the risk of severe time penalties and
processing speed. In order to solve this problem, at this point
we will offer the possibility for an investigator to choose the
logging level for a certain virtual machine. This is helpful
considering that, for example, an investigator only wants to
analyze the virtual memory for its contents, and it is not
interested in virtual disk images or virtual network activity.
Also at this step we must consider the problem of network
transmission overhead.

The third layer represents a storage layer for the RAW data
sent from the local logging modules existing in the
virtualization layer. The logging modules will send RAW
data, in the form they are gathered from the hypervisor. Thus,
this layer has the function of a distributed storage and it
contains a series of nodes, each running a database. We have
chosen this approach in order to create a flexible and scalable
layer architecture that can face the data traffic coming from
the upper layer.

Since the data that is going to be sent from the physical
virtualization host to the central forensic management unit
can reach important size, we will implement a mechanism of
“diff” between two pieces of data. For example, if an
investigator will want to analyze a virtual machine memory
over a period, the local forensic module will sent only one
initial memory snapshot and after that only what has been
changed will be sent. Of course we can use the full potential
of the host and provide a local aggregation module that will
pre-process the data collected before sending it to the central
forensic module. This approach is new to the field of cloud
computing forensics and we consider it a great way to reduce
the impact over the network.

The process will run in the following manner. Initially the
logging modules will send a reference file and then, at a user
defined time period, the modules will send a delta file, that
represents the difference between the previous reference file
and the current state. Thus, it will implement a snapshot
mechanism at the hypervisor level. We have chosen this
approach because we want to offer to the forensic
investigator the possibility to have an image of what is
happening inside a virtual machine between two snapshots.
This feature is currently not available in other hypervisors,
such as VMware's; in their case we can have a snapshot at
time t0 and one at time ti, but we cannot know the state of the
virtual machine between the 0 and i step.

This layer has also another purpose. In case of extreme
emergency, the forensic investigator can “see” a real-time
evolution of the monitored virtual machine by issuing a direct
connection to this layer. This feature is made available
through the Cloud Forensic Module, which has the ability to
by-pass normal RAW data processing.

The fourth layer has the purpose of analyzing, ordering,
processing and aggregating the data stored in the previous
layer. Since all these steps are computing intensive, the entire
analysis process will be made in an offline manner and will

be available to the investigators as soon as the job is ready.
After this entire process the investigator will have a full
image of what happened over the monitored remote virtual
machine in a manner such as the one encountered in software
source code version tools, thus permitting him to navigate
back and forth into the history of the virtual machine.

This layer is implemented also as a distributed computing
application. We have chosen this approach due to the
processing power needs that our framework demands; more
exactly it needs to do correlations between different
snapshots in a fair amount of time.

The fifth layer represents the storage of the results published
by the previous layer. A forensic investigator will interact
with the monitored virtual machine snapshots at this layer, by
using the Cloud Forensic Module from the Management
layer.

4. DATACENTER ENABLED ARCHITECTURE

In order to have a proper working forensic and logging
system we must pay a great deal of attention to its
performance. Since all the activity can be intercepted, there is
the risk of severe time penalties and processing speed. In
order to solve this problem, we offer the possibility for an
investigator to choose the logging level for a certain virtual
machine. This is helpful considering that, for example, an
investigator only wants to analyze the virtual memory for its
contents, and it is not interested in virtual disk images or
virtual network activity.

The situation is different in case of implementing our
solution in a real datacenter where large-scale parallel
computers are the base of high performance computing and it
relies on a Ethernet network interconnection that is fast and
efficient.

To better understand the issues imposed by our solution we
will first present a computer architecture existing in today's
datacenters. In Figure 5 you can see a Fat Tree topology, as
presented in Al-Fares et al (2008), composed from multiple
building blocks. The basic building block is called a cluster.
A cluster is composed from multiple racks, each rack having
multiple servers and one switch called top of the rack switch
(ToR). This allows communications between adjacent servers
to be made really fast. Using the same principle of data
locality, each ToR is linked by a level 2 switch (L2S) and
each L2S is linked to an aggregation switch. Each cluster is
linked to a cluster router (CR) and finally, each CR to a
border router.

To better handle data that is going to be processed and
transferred, we propose a slight modification of this topology.
In the first place, the modifications will start at the physical
servers that are stored in each rack. For this, we need a
dedicated forensics network port, just like a management
port, as can be seen in Figure 6. Also, this port must have a
correspondent in the ToR switch. This port will be used by
our Cloud infrastructure for collecting and processing data
and also it will be used by the authenticated forensic
investigators. Using this approach we will make sure that the

86 CONTROL ENGINEERING AND APPLIED INFORMATICS

network connections between the users and their virtual
machines remain untouched and the time penalties will be
reduced to a minimum. In this case the only lag the
hypervisor will have is the moment in which the forensic
system will try to take a snapshot of a virtual machine.

Fig. 5. Datacenter topology.

Fig. 6. Dedicated forensics port on a server.

Cascading the modification, the new datacenter topology will
be like the one presented in Figure 7. We marked with a red
line the alteration that must be made in the form of an extra
Ethernet used port. This topology is just like a secondary
backbone, which is used only by the forensic system and the
investigators.

Fig. 7. Datacenter topology for Cloud forensics.

5. RESULTS

In this section we are going to present details regarding the
results collected after the implementation of our Cloud
Logging modules.

5.1 Testbed configuration

For testing, the modules have been implemented and split
across multiple workstations, as can be seen in Figure 8.
They are represented as a cluster of servers, each having the
functionality presented in detail in the architecture section.
As it can be seen, the entire modules found in the dotted
perimeter, called ``Cloud Computing Forensic System'', can
also be ran all on one workstation. Elements like network
switches are not represented in order not to burden the
graphic, but the IP address of the hosts are kept. In our
configuration we have used three distinct workstations, each
having the functionalities and network addresses presented in
the figure.

CONTROL ENGINEERING AND APPLIED INFORMATICS 87

Fig. 8. Mapping modules to workstations.

The hardware platform used was composed from an AMD
Phenom II X6, 6 cores, 8GB RAM, RAID0 configured hard-
disks running KVM as hypervisor and QEMU as a
hypervisor interface, an Intel DualCore, 4GB RAM as the
storage layer and an AMD C-60 DualCore, 4GB RAM as the
management layer. The network used is 10/100 MB.

5.2 Experimental results

The experiments were made using KVM as a hypervisor and
QEMU and libvirt as drivers for the hypervisor. The tests that
were made had the target set on the virtual machine used
memory (RAM snapshot) and the virtual machine storage
(DISK snapshot). The network communication is still work
in progress and no actual results can be published.

The actual snapshots were taken using the following
commands for RAM snapshot: virsh snapshot-create-as
VM_NAME SNAPSHOT_NAME –atomic and for the DISK
snapshot: virsh snapshot-create-as VM_NAME
SNAPSHOT_NAME --disk-only --atomic

The process of recording the virtual machine activity was
made over a period of several hours, at a time step of 10
minutes. The CPU load when conducting records using all
the 6 cores was about 20%.

The results are interesting, if we take in consideration the
technologies used internally by KVM. For example, RAM
snapshots are made entirely from host machine RAM and do
not contain necessarily consecutive RAM location.
Nevertheless, in our experiments the RAM snapshots were

the largest, reaching even gigabytes in size. On the other
hand, the DISK snapshot is made efficiently by KVM each
snapshot having a couple of tens or hundreds of megabytes in
size.

Bellow you can see the actual tests that were made. We have
split the tests in two distinct zones, one up to 100 MB and
one after this barrier. Table 1 and Figure 9 presents the data
collected from our modules and the time needed to process
the entire data. The transfer time between the Cloud Forensic
Interface module and the Storage module is not taken in
consideration, as being a constant time, of about 82 seconds
for a 800 MB file. Table 2 and Figure 10 presents the data
collected from our modules and the time needed to process
the entire data.

Table 1. Tests up to 100 MB in size.

Size (KB) Time (ms)
4 296

454 517
1227 1136
5505 4929

10813 8000

Table 2. Tests over 100 MB in size.

Size (KB) Time (ms)
108036 58982
740032 401156
4251346 2277855

Fig. 9. Tests up to 100 MB in size.

Fig. 10. Tests over 100 MB in size.

88 CONTROL ENGINEERING AND APPLIED INFORMATICS

5. CONCLUSION

In this paper we presented a novel solution that provides to
the digital forensic investigators a reliable and secure method
in which they can monitor user activity over a Cloud
infrastructure. Our approach takes the form of a complete
framework on top of an existing Cloud infrastructure and we
have described each of its layers and characteristics.
Furthermore, the experimental results prove its efficiency and
performance.

As we have seen, the field of cloud computing forensics and
incident response is a new field for research that attracts more
and more scientists. It poses a lot of challenges due to the
distributed nature of the cloud but steps are starting to be
made in this direction. In our paper we have presented a
novel and new way in which user actions can be monitored
and reproduced inside a cloud environment, even if it spreads
over multiple datacenters.

Our work is focused on increasing reliability, safety, security
and availability of Cloud Computing systems. The
characteristics of such systems present problems when
tackling with secure resource management due to its
heterogeneity and geographical distribution. We presented
the design of a hierarchical architectural model that allows
investigators to seamlessly analyze workloads and virtual
machines, while preserving scalability of large scale
distributed systems.

As future work we intend to continue in this research
direction in order to further optimize the snapshot and
transfer algorithms, as well as the modules of the framework.
Of course, further testing using more complex scenarios and
a thin integration with other existing Cloud infrastructures
would also help us to further improve our solution.

REFERENCES

A. Amarilli, D. Naccache, P. Rauzy and E. Simion, “Can a
program reverse-engineer itself?”, in Proceedings of the
Thirteenth IMA International Conference on
Cryptography and Coding, 2011.

A. Atanasiu, R.F. Olimid and E. Simion, “On the Security of
Black-Box Implementation of Visual Secret Sharing
Schemes”, in Journal of Mobile, Embedded and
Distributed Systems, 2012.

A. Pătrașcu and V. Patriciu, “Beyond Digital Forensics. A
Cloud Computing Perspective Over Incident Response
and Reporting”, in IEEE 8th International Symposium on
Applied Computational Intelligence and Informatics
(SACI), 2013

A. Pătrașcu, C. Leordeanu, C. Dobre and V. Cristea, “ReC2S:
Reliable Cloud Computing System”, in European
Concurrent Engineering Conference, Bucharest, 2012.

B. Grobauer and T. Schreck, “Towards incident handling in
the cloud: challenges and approaches”, in Proceedings of
the 2010 ACM workshop on Cloud computing security
workshop, New York, 2010

G. Chen, “Suggestions to digital forensics in Cloud
computing ERA”, in Third IEEE International
Conference on Network Infrastructure and Digital
Content (IC-NIDC), 2012

G. Sibiya, H. Venter and T. Fogwill, “Digital forensic
framework for a cloud environment”, Proceedings of the
2012 Africa Conference, 2012

http://cee.mitre.org/language/1.0-beta1/cls.html
http://uw714doc.sco.com/en/UDI_spec/m_mgmt.html
M. Al-Fares, A. Loukissas and A. Vahdat, “A Scalable,

Commodity Data Center Network Architecture”, in
Proceedings of the ACM SIGCOMM 2008 conference on
Data communication, 2008

M. Simmons and H. Chi, “Designing and implementing
cloud-based digital forensics”, in Proceedings of the
2012 Information Security Curriculum Development
Conference, pages 69-74, 2012

NIST SP800-86 Notes, “Guide to Integrating Forensic
Techniques into Incident Response”,
http://cybersd.com/sec2/800-86Summary.pdf

R. Marty, “Cloud Application Logging for Forensics”, in
Proceedings of the 2011 ACM Symposium on Applied
Computing, 2011

S. Zawoad, A.K. Dutta and R. Hasan, “SecLaaS: Secure
Logging-as-a-Service for Cloud Forensics”, in 8th ACM
Symposium on Information, Computer and
Communications Security (ASIACCS), 2013

T. Takahashi, Y. Kadobayashi and H. Fujiwara, “Ontological
Approach toward Cybersecurity in Cloud Computing”,
2010

