
CEAI, Vol.16, No.1 pp. 80-88, 2014                                                                                                             Printed in Romania 
 

Logging System for Cloud Computing Forensic Environments 
 

Alecsandru Pătrașcu, Victor-Valeriu Patriciu 


Military Technical Academy, Computer Science Department 
Bucharest, Romania (e-mail:alecsandru.patrascu@gmail.com, victorpatriciu@yahoo.com). 

Abstract: Cloud computing represents a rather new technology and a different paradigm in the field of 
distributed computing that involve more and more researchers. We can see in this context the need to 
know exactly where, when and how a piece of data is processed or stored. Compared with classic digital 
forensic, the field of cloud forensic poses a lot of difficulties since data is not stored on a single storage 
unit and furthermore it involves the use of virtualization technologies.  
In this paper we will present in detail a new and novel way of monitoring activity in cloud environments 
and datacenters using a secure cloud forensic framework. We talk about the architecture of such 
framework and how can it be applied on top of new or existing cloud computing deployments. Also, for 
testing and results collecting we have implemented this solution to our previous developed cloud 
computing system. 
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1. INTRODUCTION 

Since its creation, the cloud computing technology presented 
itself to the users as a way in which they could rent various 
amounts of computing power under the form of virtual 
machines, intermediate platform targeted to developers or 
ready to use applications for mass usage. The technologies 
surrounding it have evolved with great pace, but nevertheless, 
we can find a single concern in all of them - cloud computing 
security. Also, the need of knowing how the information is 
delivered from and to the clients and under what condition is 
it processed is emerging alongside with the security issues. 

In this context, cloud computing has become in the last years 
a paradigm that attracts more and more researchers. One of 
the main research areas in this field is the way in which 
common data and processing power can be shared and 
distributed across single or multiple datacenters that are 
spread across a specific geographical area or even the entire 
globe. A new need for IT experts is increasing: the need to 
know exactly how, where and in what condition is the data 
from the cloud stored, processed and delivered to the clients. 
We can say with great confidence that cloud computing 
forensics has become more and more a need in todays 
distributed digital world.  

In case of classic computer forensics, the purpose is to 
search, preserve and analyze information on computer 
systems to find potential evidence for a trial. In cloud 
environments the entire paradigm changes because we don't 
have access to a physical computer, and even if we have 
access, it is a great chance that the data stored on it is 
encrypted or split across multiple other computer systems. 

In order to resolve these fundamental problems, researchers 
have developed over the years various technologies. Systems 

such as Host-based Intrusion Protection Systems (HIPS) or 
Network-based Intrusion Protection Systems (NIPS) have a 
single point of view at their core: making network penetration 
hard. 

But this is not enough in our current digital world, as we 
store more and more data remotely, in cloud systems. 
Hackers, malware and all other Internet threats are real 
menaces to our data. Thus, legal investigators must have a 
way in which they can monitor the activity of a certain virtual 
machine. The problem that they face in this case is mainly 
concerning jurisdiction, as the cloud data is often split across 
multiple datacenters, over multiple countries or even 
continents. On second case, current cloud infrastructures tend 
to leave this sensible part away and only monitor virtual 
machines for performance rather than what is happening 
inside them. 

Taking in account all the variables that have appeared in 
cloud computing technologies, modern hypervisors and 
virtualization technologies implement more or less simple 
mechanisms for data monitoring across datacenters. Starting 
from the basic building blocks composed by simple logs that 
are gathered from the entire cloud infrastructure, every 
monitoring module must have a precise target and must not 
affect the proper function of the systems from the datacenter. 
All virtualization technologies have a difficulty in this area. 

Because of the reasons explained so far, a fair observation 
can be made: Cloud Computing is a new, raw and tough 
research domain because it involves knowledge from many 
other domains like Distributed Computing, algorithms and 
data structures, networking protocols and many other, in 
order for it to function properly. The main concerns that are 
rising are influenced by the transition from the regular basic 
server infrastructure held by users to a centralized datacenter 
maintained by a third-party provider. 
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In this paper we are going to present a new and novel way in 
which we can integrate a full forensics framework on top of a 
new or existing cloud infrastructure. We will talk about the 
architecture that stands at it ground and we will present its 
advantages for the entire cloud computing community. We 
will present also the impact that our technology proposal will 
have on existing cloud infrastructures and as a proof of 
concept we will present some particular implementation 
details over our own cloud computing framework that we 
have already developed in (Patrascu et al., 2012). Of course 
we are not neglecting the security part of our proposal and we 
will present briefly a mechanism that helps us secure the 
transmissions across our cloud infrastructure modules. 

The rest of the document is structured as follows. In section 2 
we present some of the related work in this field, that is 
linked with our topic and in section 3 we present in detail our 
proposed cloud forensics logging framework. Section 4 
presents how our framework can be installed inside a 
datacenter and what modifications can be made in order to 
improve the overall performance without interrupting the 
normal activity of the datacenter. Section 5 is dedicated to 
presenting our results from our implementation made so far, 
and in section 6 we conclude our document. 

2. RELATED WORK 

In the field of classic incident response there are is a lot of 
active research and many books, guides and papers. 
Nevertheless, in the field of cloud computing incident 
response the papers are mostly theoretical and present only an 
ideal model for it. 

In the direction of classic incident response, one of the most 
interesting guides is the one from NIST. In it we can find a 
summary containing a short description and 
recommendations for the field of computer forensics, along 
with the basic steps that must be made when conducting a 
forensic analysis: collection, examination, analysis and 
reporting. A great deal of attention is paid to the problem on 
incident response and how should an incident be detected, 
isolated and analyzed. 

Bernd Grobauer and Thomas Schreck talk in (Grobauer et al., 
2010) about the challenges imposed by cloud computing 
incident handling and response. This problem is also 
analyzed in (Chen et al., 2012), where they consider that 
incident handling should be considered a well-defined part of 
the security process. Also it is presented a description for 
current processes and methods used in incident handling and 
what changes can be made when migrating towards a cloud 
environment from the point of view of a customer or an 
security manager. 

Furthermore, the integration of cloud incident handling and 
cybersecurity is presented in two papers, one written by 
(Takahashi et al., 2010) and the other written by (Simmons et 
al., 2012). They talk about how Internet development leads to 
a widespread deployment of various IT technologies and 
security advances. In their paper they also propose an 
ontological approach for integration of cybersecurity in the 

context of cloud computing and present how information 
should be used and analyzed in such environments. 

The field of cloud logging, as a support for forensics, is also 
starting to emerge along with the ones presented before. In 
this directions, we find thesis, such as the one of Zawoad et al 
which present in (Zawoad, 2013) an architecture for a secure 
cloud logging service. They talk about the need of log 
gathering from various sources around the datacenter or 
hypervisors in order to create a permanent image of the 
operations done in a datacenter and they present an 
architecture that can be used to help in this direction. 

The same challenges are evidenced by (Marty, 2011; Sibiya 
et al., 2012). The paper discusses a logging framework and 
presents a series of guidelines that can provide assurance to 
forensics investigators that the data has been reliably 
generated and collected and propose a standardized way to do 
logging, in order to have a single and centralized logging 
collector and processor, thus saving time and money for both 
businesses and users. 

Also, as can be seen in papers such as (Amarilli et al., 2011; 
Atanasiu et al., 2012), the variety of applications that include 
logging and that can be used in case of a network is large and 
include also tools for reverse engineering and obfuscation 
detection and prevention.  This is the main reason that 
forensic investigators must follow a standard set of 
procedures: after physically isolating the targeted computer, 
so that its data cannot be accidentally altered, they make a 
digital copy of the hard drive. Once the drive has been 
copied, it is put in a secure storage facility to maintain it in 
proper conditions. All of our investigation is done on a digital 
copy of the original data. 

During our research we have focused on choosing an 
intermediate representation of data that is sent between the 
local and central forensic modules. We have analyzed 
different existing metalanguages for logging.  

The first one is the “Management metalanguage 
Specification” proposed by the UnixWare community. Its 
advantage is that it can be used as a transparent API in the 
kernel modules as it provides an interface for an external 
host. The downside is that it needs a lot of auxiliary binary 
data to be sent in order to re-create the entire picture at the 
other end, and using it we get quickly traffic larger than the 
one that can be obtained by sending only the basic snapshots. 
This is due to the fact that this metalanguage is designed to 
be used only locally over a system. 

On the other side, the CEE (Common Event Expression) 
organization proposes a set of specifications using the JSON 
and XML markup languages for event logging on disk or in 
transit over a network. These requirements are designed for 
maximum interoperability with existing event and 
interchange standards to minimize adoption costs. The 
advantage of this approach is that CEE expresses its 
interfaces and does not promote an actual implementation.  

Using the information gathered at this step and taking in 
consideration that our project is novel in this field, we will 
provide our own logging metalanguage, based on the CEE 
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specifications for compatibility. Due to advantages it offers, 
we are going to use the JSON markup language as data 
envelope because it is a simple, clean, concise and human-
readable format. It is also good for decoupling our cloud 
forensic modules because we can implement each module 
using its own programming language and having only a 
common JSON interface for using it. Along with this format 
we intend to use it along with a storage module that is fit for 
our needs. We have chosen this approach in order to have the 
collected data from a host in a single database and only 
provide management messages to the above central forensic 
modules. 

3. LOGGING FRAMEWORK ARCHITECTURE 

In this section we will present the top view architecture of a 
cloud enabled forensics system. We will start with the 
general concepts and aspects that our system will implement 
and then focus on the logging part. We will also talk about 
the system perspective from the forensic investigator part. 

3.1 General forensics architecture 

The system presented in this paper has a modular architecture 
and each of the modules is presented in detail. It is easy to 
see that the entire framework can be extended with other 
modules or plugins. In order to have a solid working 
platform, we must first introduce the concept of a cloud 
computing framework. As can be seen in Figure 1 the top 
view of a cloud computing framework contains two main 
layers: the virtualization layer and the management layer. 

 

Fig. 1. Basic cloud computing architecture. 

In the virtualization layer we find the actual workstations that 
host the virtual machines and have virtualization enabled 
hardware. In the management layer we find the modules 
responsible with enabling the entire operations specific to the 
cloud, as presented in the previous sections. These modules 
are: 

 Security. This module is responsible with all 
security concerns related to the cloud system. For 
simplicity we can consider it as an intrusion 
detection and alarming module.  

 Validation engine. This module receives requests to 
add new jobs to be processed. Every new request is 
checked for consistency and it is validated and if it 
is legit, the new lease is transformed in a job for our 
system and it is properly inserted in the job queue. 

 Virtual jobs. This module creates an abstraction 
between the data requested by the user and the 
payload that must be delivered to the cloud system. 

 Scheduler. This is one of the most important 
modules in a cloud framework. Its main purpose is 
to efficiently schedule the jobs to the virtualization 
layer. It also must communicate with the other 
modules in order to find new instances, new 
services, virtual machine managers, load balancers 
in the system. 

 Hypervisor interface. This module acts like a 
translation layer that is specific to a virtualization 
software vendor. It must implement each vendor 
API specifications. 

 Load distribution. This module is responsible with 
horizontal and vertical scaling of the requests 
received from the scheduler. It must run a distinct 
application framework in order to decouple the code 
from the existing underneath runtime. The algorithm 
must be applied automatically and in the process of 
this analysis, the number of workstations must be 
taken in account.  

 Internal cloud API. This module is intended as a 
link between the virtualization layer and the cloud 
system. In order to be more scalable and also 
maintain a high degree of abstraction, a common 
interface must be provided and every 
implementation of the specific API must implement 
this.  

 External cloud API. This module offers a way to the 
user to interact with the system. It must provide 
means to add new jobs in the cloud system. The 
requests are registered and sent to the validation 
engine module. This API must be flexible enough to 
permit adding details to the jobs, like the hardware 
specifications of the virtual machine, operating 
system to be used, packages to be installed. 

Now that the notion of a cloud computing framework was 
presented, we will talk about the modifications that must be 
made to it in order to create a forensic enabled cloud 
computing architecture. As can be seen in Figure 2 the 
modification affects all the existing modules. 

 

Fig. 2. Forensic enabled cloud computing architecture. 
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More exactly, we see a new module, the Cloud Forensic 
Module. Its main goal is to gather all forensic and log data 
from the virtual machines that are running inside the 
virtualization layer. Furthermore, we must attribute to the 
security module greater responsibilities and permit it to 
communicate with all the other modules in the management 
layer.  

Of course, in order to gather data reliably from the virtual 
machines we must interact with the hypervisors existing in 
the workstations kernel. In our paper we present only what 
modifications must be made to a Linux kernel. We have 
chosen this alternative because in a Linux kernel we can find 
at least two distinct, free and open source virtualization 
techniques: KVM and XEN. An image of a forensic enabled 
kernel can be seen in Figure 3. 

 

Fig. 3. Forensic enabled kernel. 

On our research we will focus on the KVM technology. 
KVM (Kernel-based Virtual Machine) is a full virtualization 
solution for Linux on x86 hardware containing virtualization 
extensions on Intel or AMD processors. It consists of a 
loadable kernel module called kvm.ko, that provides the core 
virtualization infrastructure and a processor specific module 
called kvm-intel.ko or kvm-amd.ko. Using KVM an user can 
run multiple virtual machines running unmodified Linux or 
Windows images. Each virtual machine has private 
virtualized hardware such as a network card, disk and a 
graphic adapter.  

The cloud forensic interface is implemented as a series of 
stand-alone kernel modules and user-space applications that 
can be activated or disabled at runtime. Our goal is to provide 
the users a way to manage it from the kernel building menu. 
We need this segregation because we want to have access to 
all the modules from the kernel that helps in the entire 
process of virtualization. Parts like system calls, process 
management, virtual file system, memory management, 
networking management are extremely important to our 
research because they represent the basic building blocks 
between a virtual machine running on a host and the 
operating system. We will detail furthermore the main 
interest directions for our research.  

The first step toward full kernel integration is to have a 
proper API both to the kernel and to the external system. We 
are interested mostly about KVM internal API. This API is a 
set of ioctl instructions that are issued in order to control 
different aspects of a running virtual machine. In computing, 
ioctl (short for “input-output control”) represents a system 
call made to a specific device which cannot be done using 
regular system calls. Logically, this API is split across three 
different main parts: main system ioctls, meant to set proper 

KVM internal variables and used when creating a new virtual 
machine, virtual machine ioctls, meant to set different 
attributes of a virtual machine, like the memory size or layout 
and virtual CPU ioctls, meant to be used to control the 
operation of a virtual machine virtual CPU. 

In order to be fully compatible with the Linux API, the entire 
KVM API is centered around the concept of  file descriptors. 
This means that once activated, KVM creates a new device 
called “/dev/kvm”. On initial open of the device we get a 
handle of the internal KVM system that we can use to issue 
proper ioctl commands. For example, sending a 
KVM_CREATE_VM command to the kernel, we get a 
response containing a virtual machine file descriptor that we 
can further use to set different values. 

It is easy to see that we can get all details concerning about 
the status of the ”virtual hardware” that is used for a certain 
virtual machine. This is useful because, for example, we can 
get details such as: 

 the memory pages that are dirtied since a last call, 
using the KVM_GET_DIRTY_LOG ioctl and the 
following data structure: 

struct kvm_dirty_log {  
 {...} 
 union {  
  void __user *dirty_bitmap;   
  __u64 padding;  
 };   
 {...} 

 getting processor registry values, using the 
KVM_GET_REGS ioctl and the following data 
structure: 

struct kvm_regs {  
 {...} 
 __u64 rsi, rdi, rsp, rbp;  
 __u64 r8,  r9,  r10, r11;  
 {...}  

 setting processor registry values -  KVM_SET_REGS 
ioctl; 

 translation of a memory virtual address according to 
virtual CPU own translation mode, using the 
KVM_TRANSLATE ioctl and the following data 
structure: 

struct kvm_translation {  
 __u64 linear_address;  
 __u64 physical_address;  
 {...}  

From the point of view of live cloud computing forensics, a 
great impact is given by the Memory Management Unit 
(MMU). For virtualization software it is very important to 
have a proper MMU module. In our case, KVM uses its own 
MMU modules with the purpose of translation from guest 
physical address to host physical address. This gives us a real 
advantage because interacting with these modules gives us a 
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full map of what is going on inside a virtual machine memory 
space.  

In order to be considered reliable, a virtual machine MMU 
must respect a set of particular requirements, like correctness 
(the virtual machine must not be able to determine that it is 
running using an emulated MMU) and security (the virtual 
machine must not allocate memory beyond the limits 
imposed by the MMU). These requirements are going to be 
monitored by our forensic module and at any time we will 
have a full memory footprint and the whole previous states. 

It is important for a forensic investigator to have access to the 
network communication devices and to the storage devices. 
In case of virtual machines running under KVM it is done 
using the virtio interface. Virtio is a virtualization standard 
for network and disk device drivers where just the guest's 
device driver is aware of the fact that it is running in a virtual 
environment, and cooperates with the hypervisor and this 
enables guests to achieve high performance network and disk 
operations. Its design allows the hypervisor to export a 
common set of emulated devices and make them available 
through a common API. Using this interface we gain full 
access to everything related to the disk and/or network 
devices than an investigator can use. 

3.2 Cloud logging architecture 

In this section we present how our framework is working and 
how it is created in order to run on top of new or existing 
cloud computing infrastructures. As example for it we will 
present the integration with our previously implemented 
Cloud Computing framework in (Patrascu et al., 2012).  

The architecture is a layered one, containing five layers, each 
with its own purpose. We will present each of them in detail 
in the following paragraphs. We also represented it in a 
graphical way, in Figure 4 the whole layers and the 
relationship between them. The layers are all implemented 
using the distributed computing paradigm. Actually, they 
represent jobs in our cloud computing environment. We 
preferred this architecture because it is natively scalable on 
top of existing datacenters or computer networks and can deal 
with large amount of data and connected clients.  

Furthermore, in order to make sure that the data is kept safely 
and no one will tamper it, each operation made by the system 
will go through a hashing algorithm, both original, resulting 
and diff files. These hashes will be stored encrypted using a 
passphrase provided by the investigator. 

The cloud architecture presented in our previous work makes 
use of the concept of leases, in which we can specify the 
amount of time the job must run, or specify between what 
hours in a day it is running. To achieve our goal, we created a 
lease that during the day, when the datacenter is mostly 
occupied by the users, uses a minimum number of nodes and 
during the night, when the datacenter is almost entirely free, 
it automatically scales up to use a  maximum number of 
nodes. 

 

Fig. 4. Cloud Forensics Logging Framework. 

3.3 Top view architecture 

The first layer, as presented in our previous work (Patrascu 
and Patriciu, 2013), represents the management layer in a 
cloud computing deployment. It contains the modules 
responsible with enabling the entire operations specific to the 
cloud. We can also see the previously mentioned Cloud 
Forensic Module. 

The second layer represents the virtualization layer in a cloud 
computing deployment. Its purpose is to contain the actual 
workstations that host the virtual machines and have 
virtualization enabled hardware. A dedicated “Local logging 
module” must be installed into the existing physical machine. 
It is responsible with the RAW data gathering from the 
monitored virtual machines. The data quantity can be 
adjusted by the investigator and he can choose to monitor a 
particular virtual machine or monitor the entire activity 
existing inside that machine. 

In order to gather data reliably from the virtual machines the 
local logging module must be integrated fully with the 
running hypervisor inside the physical machine. In this paper 
we focus on the integration with the “KVM” virtualization 
technology that exists in modern Linux kernel releases. We 
have chosen it because it is a full open-source virtualization 
solution, integrated with the Linux kernel since 2007 and it is 
actively used by many companies across the world. 
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An important thing that must be taken in consideration is 
what data are we intercepting from the virtual machine and 
send it to further processing. Since all the activity can be 
intercepted, there is the risk of severe time penalties and 
processing speed. In order to solve this problem, at this point 
we will offer the possibility for an investigator to choose the 
logging level for a certain virtual machine. This is helpful 
considering that, for example, an investigator only wants to 
analyze the virtual memory for its contents, and it is not 
interested in virtual disk images or virtual network activity. 
Also at this step we must consider the problem of network 
transmission overhead. 

The third layer represents a storage layer for the RAW data 
sent from the local logging modules existing in the 
virtualization layer. The logging modules will send RAW 
data, in the form they are gathered from the hypervisor. Thus, 
this layer has the function of a distributed storage and it 
contains a series of nodes, each running a database. We have 
chosen this approach in order to create a flexible and scalable 
layer architecture that can face the data traffic coming from 
the upper layer. 

Since the data that is going to be sent from the physical 
virtualization host to the central forensic management unit 
can reach important size, we will implement a mechanism of 
“diff” between two pieces of data. For example, if an 
investigator will want to analyze a virtual machine memory 
over a period, the local forensic module will sent only one 
initial memory snapshot and after that only what has been 
changed will be sent. Of course we can use the full potential 
of the host and provide a local aggregation module that will 
pre-process the data collected before sending it to the central 
forensic module. This approach is new to the field of cloud 
computing forensics and we consider it a great way to reduce 
the impact over the network. 

The process will run in the following manner. Initially the 
logging modules will send a reference file and then, at a user 
defined time period, the modules will send a delta file, that 
represents the difference between the previous reference file 
and the current state. Thus, it will implement a snapshot 
mechanism at the hypervisor level. We have chosen this 
approach because we want to offer to the forensic 
investigator the possibility to have an image of what is 
happening inside a virtual machine between two snapshots. 
This feature is currently not available in other hypervisors, 
such as VMware's; in their case we can have a snapshot at 
time t0 and one at time ti, but we cannot know the state of the 
virtual machine between the 0 and i step. 

This layer has also another purpose. In case of extreme 
emergency, the forensic investigator can “see” a real-time 
evolution of the monitored virtual machine by issuing a direct 
connection to this layer. This feature is made available 
through the Cloud Forensic Module, which has the ability to 
by-pass normal RAW data processing. 

The fourth layer has the purpose of analyzing, ordering, 
processing and aggregating the data stored in the previous 
layer. Since all these steps are computing intensive, the entire 
analysis process will be made in an offline manner and will 

be available to the investigators as soon as the job is ready. 
After this entire process the investigator will have a full 
image of what happened over the monitored remote virtual 
machine in a manner such as the one encountered in software 
source code version tools, thus permitting him to navigate 
back and forth into the history of the virtual machine. 

This layer is implemented also as a distributed computing 
application. We have chosen this approach due to the 
processing power needs that our framework demands; more 
exactly it needs to do correlations between different 
snapshots in a fair amount of time. 

The fifth layer represents the storage of the results published 
by the previous layer. A forensic investigator will interact 
with the monitored virtual machine snapshots at this layer, by 
using the Cloud Forensic Module from the Management 
layer. 

4. DATACENTER ENABLED ARCHITECTURE 

In order to have a proper working forensic and logging 
system we must pay a great deal of attention to its 
performance. Since all the activity can be intercepted, there is 
the risk of severe time penalties and processing speed. In 
order to solve this problem, we offer the possibility for an 
investigator to choose the logging level for a certain virtual 
machine. This is helpful considering that, for example, an 
investigator only wants to analyze the virtual memory for its 
contents, and it is not interested in virtual disk images or 
virtual network activity. 

The situation is different in case of implementing our 
solution in a real datacenter where large-scale parallel 
computers are the base of high performance computing and it 
relies on a Ethernet network interconnection that is fast and 
efficient.  

To better understand the issues imposed by our solution we 
will first present a computer architecture existing in today's 
datacenters. In Figure 5 you can see a Fat Tree topology, as 
presented in Al-Fares et al (2008), composed from multiple 
building blocks. The basic building block is called a cluster. 
A cluster is composed from multiple racks, each rack having 
multiple servers and one switch called top of the rack switch 
(ToR). This allows communications between adjacent servers 
to be made really fast. Using the same principle of data 
locality, each ToR is linked by a level 2 switch (L2S) and 
each L2S is linked to an aggregation switch. Each cluster is 
linked to a cluster router (CR) and finally, each CR to a 
border router. 

To better handle data that is going to be processed and 
transferred, we propose a slight modification of this topology. 
In the first place, the modifications will start at the physical 
servers that are stored in each rack. For this, we need a 
dedicated forensics network port, just like a management 
port, as can be seen in Figure 6. Also, this port must have a 
correspondent in the ToR switch. This port will be used by 
our Cloud infrastructure for collecting and processing data 
and also it will be used by the authenticated forensic 
investigators. Using this approach we will make sure that the 
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network connections between the users and their virtual 
machines remain untouched and the time penalties will be 
reduced to a minimum. In this case the only lag the 
hypervisor will have is the moment in which the forensic 
system will try to take a snapshot of a virtual machine. 

 

Fig. 5. Datacenter topology. 

 

Fig. 6. Dedicated forensics port on a server. 

Cascading the modification, the new datacenter topology will 
be like the one presented in Figure 7. We marked with a red 
line the alteration that must be made in the form of an extra 
Ethernet used port. This topology is just like a secondary 
backbone, which is used only by the forensic system and the 
investigators. 

 

Fig. 7. Datacenter topology for Cloud forensics. 

5. RESULTS 

In this section we are going to present details regarding the 
results collected after the implementation of our Cloud 
Logging modules. 

5.1 Testbed configuration 

For testing, the modules have been implemented and split 
across multiple workstations, as can be seen in Figure 8. 
They are represented as a cluster of servers, each having the 
functionality presented in detail in the architecture section. 
As it can be seen, the entire modules found in the dotted 
perimeter, called ``Cloud Computing Forensic System'', can 
also be ran all on one workstation. Elements like network 
switches are not represented in order not to burden the 
graphic, but the IP address of the hosts are kept. In our 
configuration we have used three distinct workstations, each 
having the functionalities and network addresses presented in 
the figure. 
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Fig. 8. Mapping modules to workstations. 

The hardware platform used was composed from an AMD 
Phenom II X6, 6 cores, 8GB RAM, RAID0 configured hard-
disks running KVM as hypervisor and QEMU as a 
hypervisor interface, an Intel DualCore, 4GB RAM as the 
storage layer and an AMD C-60 DualCore, 4GB RAM as the 
management layer. The network used is 10/100 MB. 

5.2 Experimental results 

The experiments were made using KVM as a hypervisor and 
QEMU and libvirt as drivers for the hypervisor. The tests that 
were made had the target set on the virtual machine used 
memory (RAM snapshot) and the virtual machine storage 
(DISK snapshot). The network communication is still work 
in progress and no actual results can be published.  

The actual snapshots were taken using the following 
commands for RAM snapshot: virsh snapshot-create-as 
VM_NAME SNAPSHOT_NAME –atomic and for the DISK 
snapshot: virsh snapshot-create-as VM_NAME 
SNAPSHOT_NAME --disk-only --atomic 

The process of recording the virtual machine activity was 
made over a period of several hours, at a time step of 10 
minutes. The CPU load when conducting records using all 
the 6 cores was about 20%. 

The results are interesting, if we take in consideration the 
technologies used internally by KVM. For example, RAM 
snapshots are made entirely from host machine RAM and do 
not contain necessarily consecutive RAM location. 
Nevertheless, in our experiments the RAM snapshots were 

the largest, reaching even gigabytes in size. On the other 
hand, the DISK snapshot is made efficiently by KVM each 
snapshot having a couple of tens or hundreds of megabytes in 
size.  

Bellow you can see the actual tests that were made. We have 
split the tests in two distinct zones, one up to 100 MB and 
one after this barrier. Table 1 and Figure 9 presents the data 
collected from our modules and the time needed to process 
the entire data. The transfer time between the Cloud Forensic 
Interface module and the Storage module is not taken in 
consideration, as being a constant time, of about 82 seconds 
for a 800 MB file. Table 2 and Figure 10 presents the data 
collected from our modules and the time needed to process 
the entire data. 

Table 1.  Tests up to 100 MB in size. 

Size (KB) Time (ms) 
4 296 

454 517 
1227 1136 
5505 4929 

10813 8000 

Table 2.  Tests over 100 MB in size. 

Size (KB) Time (ms) 
108036 58982 
740032 401156 
4251346 2277855 

 

Fig. 9. Tests up to 100 MB in size. 

 

Fig. 10. Tests over 100 MB in size. 
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5. CONCLUSION 

In this paper we presented a novel solution that provides to 
the digital forensic investigators a reliable and secure method 
in which they can monitor user activity over a Cloud 
infrastructure. Our approach takes the form of a complete 
framework on top of an existing Cloud infrastructure and we 
have described each of its layers and characteristics. 
Furthermore, the experimental results prove its efficiency and 
performance.  

As we have seen, the field of cloud computing forensics and 
incident response is a new field for research that attracts more 
and more scientists. It poses a lot of challenges due to the 
distributed nature of the cloud but steps are starting to be 
made in this direction. In our paper we have presented a 
novel and new way in which user actions can be monitored 
and reproduced inside a cloud environment, even if it spreads 
over multiple datacenters. 

Our work is focused on increasing reliability, safety, security 
and availability of Cloud Computing systems. The 
characteristics of such systems present problems when 
tackling with secure resource management due to its 
heterogeneity and geographical distribution. We presented 
the design of a hierarchical architectural model that allows 
investigators to seamlessly analyze workloads and virtual 
machines, while preserving scalability of large scale 
distributed systems. 

As future work we intend to continue in this research 
direction in order to further optimize the snapshot and 
transfer algorithms, as well as the modules of the framework. 
Of course, further testing using more complex scenarios and 
a thin integration with other existing Cloud infrastructures 
would also help us to further improve our solution. 
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