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Abstract: This paper presents two novel fast converging robust controllers for Caputo derivative based 
fractional-order nonlinear systems. These fractional-order systems are high-relative-degree with model 
uncertainties and external disturbances. First, a new fractional-order model is derived from the original 
model based on block transformation strategy. Employing the block transformation technique makes the high-
relative-degree systems versatile for sliding mode controllers design. In the second step, two different nonlinear 
sliding manifolds are proposed to reach a short time convergence. Subsequently, appropriate nonlinear 
sliding mode control laws are developed to assure the robustness and fast converging behaviors. It is 
worthy to notify that the mentioned sliding manifolds guarantee the fractional-order system last state 
convergence, and the other states convergence can be assured by control gains of the block 
transformation. The stability of closed-loop system for both controllers is achieved by the fractional-
order stability theorems. Finally, two comprehensive numerical simulations are carried out to indicate the 
superiority and effectiveness of the suggested robust controllers. 
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1. INTRODUCTION 

Fractional calculus idea was established in the 17th century 
which discusses about non-integer integrations and 
derivatives. The basic ideas in this field are generalizations of 
the common ideas in integer calculus. The fractional calculus 
has been taken into account as an exclusive theoretical 
subject with no practical applications for nearly 300 years 
(Podlubny, 1999). Nowadays, researchers have been 
interested in the application of fractional calculus in various 
branches of science such as thermal systems modelling 
(Gabano and Poinot, 2011), electromechanical systems (Jesus 
and Tenreiro Machado, 2012) and biological systems (Petras 
and Magin, 2011). Also, designing fractional-order 
controllers is another interesting application. 

Sliding mode control is a famous nonlinear control technique 
which presents high precision and robust behaviour against 
model uncertainties and external disturbances (Edwards and 
Spurgeon, 1998). In the conventional sliding mode control, 
an arbitrary linear manifold is considered as a sliding surface 
and a control law is planned in such a way that the system 
state trajectories reach this manifold. In last three decades, 
this technique is employed for different integer-order systems 
such as: robot manipulators (Islam and Liu, 2011), DC-DC 
boost converters (Wai and Shih, 2011), electrical motors (Chi 
and Xu, 2009), and so on. In addition, nowadays the sliding 
mode control is applied for governing the fractional-order 
systems (Tavazoei and Haeri, 2008; Hosseinnia et al., 2010; 

Aghababa, 2012a; Yin, 2013; Djari et al., 2014; Shoja-
Majidabad et al., 2014a). However, the main drawback of 
sliding mode scheme is that the closed-loop system errors 
cannot reach equilibrium point in a finite time, while 
accomplishing fast time convergence is more worthwhile in 
practice. In recent years, a new control strategy called 
nonlinear or terminal sliding-mode control is proposed to 
reach a faster convergence with high precision tracking. This 
technique utilizes a nonlinear sliding manifold instead of the 
linear one. Successively, various application examples of 
nonlinear sliding mode control have been developed for 
integer-order systems in literature (Zhihong and O'Day, 1999; 
Yu et al., 2005; Hui and Li, 2009; Chang et al., 2008; Feng et 
al., 2002; Jin, 2009). Unfortunately, most of the nonlinear 
sliding mode controllers are developed only for second-order 
(two-relative-degree) systems (Chiu, 2012). Besides, majority 
of the mentioned works are designed for integer-order 
systems and a few works does exist for fractional-order ones 
(Aghababa, 2012b, 2013).  

Inspired by the above discussions, enlarging the application 
of nonlinear sliding mode controllers on fractional-order 
systems seems more significant. In this paper, two new 
fractional-order nonlinear sliding mode controllers are 
combined with block transformation technique for fast 
governing the Caputo derivative based systems. Initially, the 
block transformation technique is applied to arrange the 
system dynamics in new coordinates, and then the sliding 
mode controllers are designed. Both methods employ a 
nonlinear integral manifold (a sign function for the first 
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controller and a fractional power for the second one). The fast 
converging behaviour is obtained using the proposed 
nonlinear sliding surfaces and the block transformation 
technique control gains. Employing the block transformation 
technique makes the suggested controllers versatile for 
higher-order applications. In addition, the influences of 
model uncertainties and external disturbances are fully taken 
into account. Also asymptotic stability of the closed-loop 
system is proofed using fractional-order nonlinear stability 
theorems. Generally, this paper presents the following main 
contributions: (1) Applying the block transformation 
technique for fractional-order systems. (2) Designing fast 
converging nonlinear sliding mode controllers for fractional-
order systems. 

 The rest of this paper is organized as follows: Some 
fractional calculus preliminaries are presented in Section 2. In 
Section 3, a Caputo derivative based uncertain fractional-
order system dynamics and their block transformations are 
expressed. Designing the conventional fractional-order 
sliding mode technique and two new nonlinear sliding mode 
controllers are discussed in Sections 4 and 5. In Sections 6, 
the efficiency of proposed controllers is highlighted through 
two numerical simulations. Finally, this paper terminates 
with some conclusions in Section 7.   

2. FRACTIONAL CALCULUS 

The main definitions, properties and theorems of applied 
fractional calculus are expressed in this section. 

Definition 1 (Li and Deng, 2007): The fractional integration 
of function )(tf  with respect to t  can be given as follows: 





 
 d

t

f
tfDtfI

t

tt  





0 1,0,0
)(

)(

)(

1
)()(  

where )(  is the Gamma function. 

Definition 2 (Li and Deng, 2007): The  -th order Caputo 

fractional derivative of ( ],0[)( tCtf m ) function )(tf  can 

be described by 
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where  mm  1 , Nm . 

Definition 3 (Li and Deng, 2007): The Riemann-Liouville 
(RL) fractional derivative of  -th order of function )(tf  is 

defined as follows: 
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where  mm  1 , Nm . 

Property 1 (Li and Deng, 2007): If ),0[)(  mCtf , 

mm  1  and Nm , then 

(a)  )()(,0,0 tftfDD ttC   holds for 1m . 

(b)
 

)()(,0,0 tftfDD ttRL  .  

Property 2 (Shoja-Majidabad et al., 2014b): If 

],0[)( 1 TCts   for some 0T , )2,1()1,0(  ii  and 
]1,0(21  , then  

)()()( 211221
,0,0,0,0,0 tsDtsDDtsDD tCtCtCtCtC

   

Theorem 1 (Li et al., 2009, 2010): Let 0x  be an 
equilibrium point for the non-autonomous fractional-order 
system 

))(,()(,0 txtftxD tC                                                             (1) 

where ))(,( txtf  satisfies the Lipschitz condition with 

Lipschitz constant  0l  and )1,0( . Assume that there 

exists a Lyapunov function ))(,( txtV  satisfying  

xtxtVx
a

21 ))(,(   , )())(,( 3 txtxtV
dt

d
 . 

where 1 , 2 , 3  and a  are positive constants. Then the 

equilibrium point of the system (1), 0x , is asymptotically 
stable.  

3. SYSTEM DESCRIPTION AND BLOCK 
TRANSFORMATION 

In this section, a canonical fractional-order system dynamic 
model and its block transformation is presented.  

Consider a class of Caputo derivative based fractional-order 
dynamical system with model uncertainty and external 
disturbance as follows:  
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where )1,0(  is the order of system, T
nxxxX ],,,[ 21   

is the state vector, ),( tXf  is a known nonlinear function of 

X  and t , ),( tXf  describes the model uncertainty term 

which is unknown, and )(tu  is the system control input.  

Assumption 1: The uncertainty term ),( tXf  is assumed to 

be bounded as  

ftC tXfD   ),(1
,0 , 

where f  is a given and positive constant. 

Assumption 2: The external disturbance )(td  is supposed to 

be bounded by 

dtC tdD   )(1
,0                                                                 (3) 

where d  is a known and positive constant. 

Step 1: Let’s define first new variable as follows: 

)()()( 111 txtxtz d                                                           (4) 
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where )(1 tx d  is the first state desired signal. By taking DC  

derivative from both sides of (4) and using (2), we can get 

)()()()()( 22111 txtxtxDtxDtzD ddCCC               (5) 

To stabilize equation (5) dynamic, the first virtual control 
input can be selected as  

)()()()( 21122 tztzbtxtx d                                            (6) 

where 1b  is a positive constant, and )(2 tz  is a new variable 

which is necessary for next block calculation of the block 
transformation technique. Hence, the first state closed-loop 
dynamic will be as 

)()()( 2111 tztzbtzDC                                                 (7) 

Step 2: From (6) the new variable )(2 tz  can be obtained as 

)()()()( 11222 tzbtxtxtz d                                            (8) 

In this stage, by taking DC  derivative from (8) along the 

equations (3) and (7), results in 

),()()()( 212332 zzgtxtxtzD dC  , 

where ))()(())()((),( 21111111212 tztzbbtzbzgDzzg C    

 and 0)( 11 zg .  

Choosing the second virtual control input )(3 tz  as 

)()(),()()( 32221233 tztzbzzgtxtx d                          (9) 

results the following dynamic 

)()()( 3222 tztzbtzDC                                                (10) 

where 2b  is a positive constant.  

Step 3: From (9) the new variable )(3 tz  can be attained as 

)(),()()()( 22212333 tzbzzgtxtxtz d                         (11) 

By applying the derivative DC  on (11) and using the 

equations (3), (7) and (10), one can get  

),,()()()( 3213443 zzzgtxtxtzD dC  , 

where )((())(),((),,( 1111222113213 tzbbbtzbzzgDzzzg C    

))()(())()(())( 32223222 tztzbbtztzbtz  .  

Selecting the third virtual control input )(4 tz  in the form of  

)()(),,()()( 433321344 tztzbzzzgtxtx d                     (12) 

yields the following dynamic 

)()()( 4333 tztzbtzDC  . 

This procedure can be proceed for the variables 

154 ,...,, nzzz .  

At the last step, after calculating )(tzD nC
 , the original 

system (3) can be represented in the new coordinates 
( nzzz ,...,, 21 ) as 
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where ),...,,( 21 nn zzzg  is a linear function of the transformed  

new variables, and is calculable by the following recursive 
equation: 
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In (13), the coefficients 0,,, 121 nbbb   are called control 

gains and are crucial for tuning the new state convergence. 
For more details see the following remark. 

Remark 3: For the system (13) that is constrained to 
0)( tzn  by a control law, the system dynamics reduce to 
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it is evident that the above linear system is stable and ensures 
that 0)(lim 


tzi

t
, Also the convergence rate of states 

121 ,...,, nzzz  is adjustable by the coefficients 

121  nbbb  .  

From the equations (6), (9) and the reduced model (14), zero 
convergence of the transformed states ( 0)( tzi ) yields the 

original system states convergence to the desired values 
( )()( txtx idi  ). 

4. CONVENTIONAL SLIDING MODE CONTROLLER 
DESIGN 

Consider the conventional sliding surface as follows:  
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The system equations (3) can be substituted into (16), 
yielding the simplified expression 







1

1
1 )()()()(

n

i
iindCnCC tectxDtxDtsD  , 

and completely  

)()(

)()(),(),()(
1

1
1

tutd

tectxDtXftXftsD
n

i
iindCC



 







 

Now selecting the control law 
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will provide the system states )(tX  asymptotic decaying into 

the sliding surface 0)( ts . In (17),    is known as 

proportional gain of the fractional exponential reaching law   

)))(sgn()()(()( )1( tstsDtsD dfC    .  

By taking fractional derivative )1( DC  from both sides of 

the fractional exponential reaching law or assuming 1 , 
the conventional reaching law will be as 

))(sgn()()()( tststs df    which is common in 

integer calculus (Bandyopadhyay et al., 2009). Figure 1 
shows the sliding surface convergence regime based on 
discussed reaching laws. 

 

Fig. 1. Sliding surface )(ts  convergence regime. 

5. NONLINEAR SLIDING MODE CONTROLLER 
DESIGN 

In this section, two novel nonlinear sliding surfaces are 
suggested, and proper control laws are designed to provide 
the closed-loop system stability and fast convergence. 

5.1. Sign Integral Nonlinear Sliding Mode 

For the transformed system (13), let define the sign integral 
terminal sliding surface as follows:  
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where 1  is a positive constant which can increase or 

decrease sliding variable reaching time and overshoot. Figure 
2 presents the variable )(tzn  convergence regime 

approximately (short lines with t1  or t1  ramp).  

 

Fig. 2. New variable )(tzn  convergence regime. 
 

Taking DC  derivative from the previous equation yields 
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Employing the Caputo derivative definition 
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By substituting the transformed system dynamics (13) in 
(19), one can get 
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Theorem 2: Consider the transformed fractional-order 
system (12), choosing the robust block controller as 
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will result the system trajectories convergence to the sliding 
surface )(ts  in a short time. Where 01   is known as 

proportional gain of the fractional exponential reaching law. 
Proof: Choosing the Lyapunov candidate in the form of 

)()( tstV   and evaluating its time derivative, results   
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From Property 2, one can obtain  
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Applying the control law (21), yields 
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Using )()())(sgn( tststs  , one can get )()( 1 tstV  . 

Hence, the states of the system will converge to 0)( ts  

asymptotically. 

On the sliding surface ( 0)( ts ), to show that the sliding 

motion transpires in a short time, we have 
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reacht  is tuneable by declaring a proper value for 1 . 

5.2. Fractional Integral Nonlinear Sliding Mode 

Consider the second nonlinear sliding manifold as follows: 
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where p  and q  are both positive odd integers which should 

satisfy pq . In (22), 2  is a positive constant which can 

increase or decrease sliding variable reaching time and 
overshoot.  

Applying DC  derivative on the previous equation, results 

in  
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Now, by applying the Caputo derivative definition, one can 
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Theorem 3: Consider the transformed fractional-order 
system (13), if the system controlled by the robust control 
law (24), the system states will converge to the sliding 
surface  in a short time.  

)))(sgn()(

)(()(

),,,()(),()(

2
)1()1(

2

21

ts

tsDtzD

zzzgtxDtXftu

df

pq
n

nnndC


 











                 (24) 

where 02   is known as proportional gain of the fractional 

exponential reaching law. 

Proof: By defining the Lyapunov function as )()( tstV   

and evaluating its time derivative and using (23), one can 
write  
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Inserting the second control law (24) in (25), results in 
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Hence we can get 

)()( 2 tstV  , 

which guarantees the system states asymptotically 
convergence to 0)( ts .  

On the sliding surface ( 0)( ts ), the dynamic of )(tzn  can 

be expressed in the following form   

0)()( 1
2   tzDtz pq

nn  . 

Taking time derivative from the above equation, gives us 

0)()( 2  tztz pq
nn                                                            (26) 

The solution of (26) for the reaching time reacht  is given by 

)1(

)0(

2

)1(

pq

z
t

pq
n

reach 





 , which shows that the sliding motion 

occurs in a finite time, and this time is tuneable by choosing 
proper parameters ( 2  and pq ).  

Remark 5: In order to have a smooth control signal and hold 

the continuously differentiable condition ( 1C ), the function 
)sgn(  in the sliding surface (18) and control laws (21), (24) 

can be modified in the following forms: 
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


)(

)(
))(sgn(

tz

tz
tz

n

n
n ,                                                     (27) 




)(

)(
))(sgn(

ts

ts
ts , 

where 0,   and should be enough small. 

Remark 6: It is worthwhile to notify that the actual state ix  

is a function of transformed state iz  and the other states 

121 ,...,, izzz , then only fast convergence of iz  will not result 

ix  convergence, and the other transformed states are related 

in this process. Therefore, performance of actual states 
( nxxx ,...,, 21 ) should be checked instead of the transformed 

states ( nzzz ,...,, 21 ) in the controller parameters tuning ( i , 

ib ,  ,   , pq ).  

6. SIMULATION RESULTS 

In this section, two numerical simulations are performed to 
show the usefulness and efficiency of the suggested nonlinear 
sliding mode controllers. The first case study is a gyro system 
and the second one is Arneodo system. Numerical 
simulations are performed using MATLAB toolbox called 
Ninteger (Valério, 2005). 

6.1. Fractional-order Gyro System 

The dynamic model of fractional-order gyro system with 
model uncertainties and external disturbances is expressed as 
follows: 




















)()(),()sin()25sin(5.35

)sin(05.05.0
)(sin

))cos(1(
100)(

1

1
3
22

1
3

2
1

2

21

tutdtXfxt

xxx
x

x
txD

xxD

C

C





 

where 1x  represent the rotation angle,  2x  is rotation 

velocity,  
)(sin

))cos(1(
100

1
3

2
1

x

x
 is the nonlinear resilience term,  

25.0 x  and 3
205.0 x  are linear and nonlinear damping terms, 

and )25sin(5.35 t  is the parametric excitation.  

In this case the fractional-order and uncertainty terms are 
considered as 98.0  and  )(),( tdtXf  

)2sin(1.0)2cos(25.0 2 txt   for the simulation. The initial 

conditions of the system is selected as: 1)0(1 x  and 

1)0(2 x . Also common value parameters between two 

strategies (18)-(21) and (22)-(24) are given as: 

10,5.1,7 12121  b  

Also the distinctive value parameters are selected as:  
01.0   for (21), and  02.0 , 31pq  for (24). 

The system state trajectories ( 1x , 2x ), control signal, states 

of block transformation ( 1z , 2z ) and sliding surface are 

shown in Figure 3. The right hand sides figures are belong to 
the controller with sign integral sliding manifold (18), and the 
responses of controller with fractional integral sliding 
manifold (22) are depicted in the left hand side. Figure 3, 
confirms that the system states, sliding manifold and 
transformed states are converged to zero in a short time. By 
comparing the Figures 3(a)-(e) with (c)-(g), it can be seen 
that the convergence speed of the actual and transformed 
states is different which testifies the idea of Remark 6.  
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Fig. 3. Responses of system state trajectories ( 1x , 2x ), 

control signal, block transformation states ( 1z , 2z ) and 

sliding surface. a-b-c-d: The control law (21) with sign 
integral sliding manifold (18). e-f-g-h: The control law (24) 
with fractional integral sliding manifold (22). 

6.2. Fractional-order Arneodo System 

The performances of proposed controllers are tested on the 
fractional-order Arneodo system in this section. The dynamic 
equations of the uncertain system are presented as: 


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The initial conditions and uncertainty term are selected as 
2)0(1 x , 5.1)0(2 x , 3)0(3 x  and )(),( tdtXf   

)sin(15.0)cos(1.0 3 txt  . The similar parameters of both 

controllers are declared as: 

4,2,5.1,4,98.0 212121  bb  

Besides, the distinctive value parameters considered as:  
01.0   for (18)-(21), and 02.0 , 51pq  for 

(22)-(24).  

Figure 4 indicates the system state trajectories ( , , ), 
control signal, states of block transformation ( , , ) and 
sliding surface. From Figure 4(a) and (e), it is evident that the 
chaotic behaviour of the system has been suppressed and 
system states converge to zero for both controllers. Also fast 
convergence of the sliding surface is clear from Figure 4(d) 
and (h). 
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Fig. 4. Responses of system state trajectories ( 1x , 2x , 3x ), 

control signal, block transformation states ( 1z , 2z , 3z ) and 

sliding surface. a-b-c-d: The control law (21) with sign 
integral sliding manifold (18). e-f-g-h: The control law (24) 
with fractional integral sliding manifold (22). 
 

Existence of ))(sgn( tzn  function in the sliding manifold (18), 

is main cause of control law (21) chattering. Although, 
replacing ))(sgn( tzn  by the non-chatter function (27) is a 

simple remedy for mentioned problem, but using the non-
chatter function will cause small tracking error which is 
evident from Figures 3(a) and 4(a). Meanwhile, the 
mentioned problem is not much prominent in the sliding 
surface (22) and control law (24). 

7. CONCLUSIONS 

In this paper, the problem of designing fast converging robust 
controllers for a Caputo derivative based nonlinear fractional-
order uncertain system is investigated. This fractional-order 
system have high-relative-degree with model uncertainties 
and external disturbances. We proposed two novel types of 
nonlinear sliding surfaces in order to have a fast zero 
convergence. Hence, two new nonlinear fractional-order 
sliding mode controllers are suggested. The suggested 
controllers guarantee the fractional-order system last state 
convergence, and the other states convergence are assured by 
control gains of the block transformation. The asymptotic 
stability of the proposed control schemes is proved using the 
fractional-order stability theorems. Computer simulations 
reveal the performance of presented robust controllers in a 
short time convergence for uncertain fractional-order gyro 
and Arneodo systems. 
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