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Abstract: This paper presents two novel fast converging robust controllers for Caputo derivative based
fractional-order nonlinear systems. These fractional-order systems are high-relative-degree with model
uncertainties and external disturbances. First, a new fractional-order model is derived from the original
model based on block transformation strategy. Employing the block transformation technique makes the high-
relative-degree systems versatile for sliding mode controllers design. In the second step, two different nonlinear
sliding manifolds are proposed to reach a short time convergence. Subsequently, appropriate nonlinear
sliding mode control laws are developed to assure the robustness and fast converging behaviors. It is
worthy to notify that the mentioned sliding manifolds guarantee the fractional-order system last state
convergence, and the other states convergence can be assured by control gains of the block
transformation. The stability of closed-loop system for both controllers is achieved by the fractional-
order stability theorems. Finally, two comprehensive numerical simulations are carried out to indicate the
superiority and effectiveness of the suggested robust controllers.

Keywords: Fractional-order system, Block transformation strategy, Nonlinear sliding mode control, Fast

Printed in Romania

convergence.

1. INTRODUCTION

Fractional calculus idea was established in the 17th century
which discusses about non-integer integrations and
derivatives. The basic ideas in this field are generalizations of
the common ideas in integer calculus. The fractional calculus
has been taken into account as an exclusive theoretical
subject with no practical applications for nearly 300 years
(Podlubny, 1999). Nowadays, researchers have been
interested in the application of fractional calculus in various
branches of science such as thermal systems modelling
(Gabano and Poinot, 2011), electromechanical systems (Jesus
and Tenreiro Machado, 2012) and biological systems (Petras
and Magin, 2011). Also, designing fractional-order
controllers is another interesting application.

Sliding mode control is a famous nonlinear control technique
which presents high precision and robust behaviour against
model uncertainties and external disturbances (Edwards and
Spurgeon, 1998). In the conventional sliding mode control,
an arbitrary linear manifold is considered as a sliding surface
and a control law is planned in such a way that the system
state trajectories reach this manifold. In last three decades,
this technique is employed for different integer-order systems
such as: robot manipulators (Islam and Liu, 2011), DC-DC
boost converters (Wai and Shih, 2011), electrical motors (Chi
and Xu, 2009), and so on. In addition, nowadays the sliding
mode control is applied for governing the fractional-order
systems (Tavazoei and Haeri, 2008; Hosseinnia et al., 2010;

Aghababa, 2012a; Yin, 2013; Djari et al., 2014; Shoja-
Majidabad et al., 2014a). However, the main drawback of
sliding mode scheme is that the closed-loop system errors
cannot reach equilibrium point in a finite time, while
accomplishing fast time convergence is more worthwhile in
practice. In recent years, a new control strategy called
nonlinear or terminal sliding-mode control is proposed to
reach a faster convergence with high precision tracking. This
technique utilizes a nonlinear sliding manifold instead of the
linear one. Successively, various application examples of
nonlinear sliding mode control have been developed for
integer-order systems in literature (Zhihong and O'Day, 1999;
Yu et al., 2005; Hui and Li, 2009; Chang et al., 2008; Feng et
al., 2002; Jin, 2009). Unfortunately, most of the nonlinear
sliding mode controllers are developed only for second-order
(two-relative-degree) systems (Chiu, 2012). Besides, majority
of the mentioned works are designed for integer-order
systems and a few works does exist for fractional-order ones
(Aghababa, 2012b, 2013).

Inspired by the above discussions, enlarging the application
of nonlinear sliding mode controllers on fractional-order
systems seems more significant. In this paper, two new
fractional-order nonlinear sliding mode controllers are
combined with block transformation technique for fast
governing the Caputo derivative based systems. Initially, the
block transformation technique is applied to arrange the
system dynamics in new coordinates, and then the sliding
mode controllers are designed. Both methods employ a
nonlinear integral manifold (a sign function for the first
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controller and a fractional power for the second one). The fast
converging behaviour is obtained using the proposed
nonlinear sliding surfaces and the block transformation
technique control gains. Employing the block transformation
technique makes the suggested controllers versatile for
higher-order applications. In addition, the influences of
model uncertainties and external disturbances are fully taken
into account. Also asymptotic stability of the closed-loop
system is proofed using fractional-order nonlinear stability
theorems. Generally, this paper presents the following main
contributions: (1) Applying the block transformation
technique for fractional-order systems. (2) Designing fast
converging nonlinear sliding mode controllers for fractional-
order systems.

The rest of this paper is organized as follows: Some
fractional calculus preliminaries are presented in Section 2. In
Section 3, a Caputo derivative based uncertain fractional-
order system dynamics and their block transformations are
expressed. Designing the conventional fractional-order
sliding mode technique and two new nonlinear sliding mode
controllers are discussed in Sections 4 and 5. In Sections 6,
the efficiency of proposed controllers is highlighted through
two numerical simulations. Finally, this paper terminates
with some conclusions in Section 7.

2. FRACTIONAL CALCULUS

The main definitions, properties and theorems of applied
fractional calculus are expressed in this section.

Definition 1 (Li and Deng, 2007): The fractional integration
of function f(t) with respect to t can be given as follows:

1 bt (o)
T(a) Jo (t—7)*

lor f(t)=Dgy f ()=

where T'(:) is the Gamma function.

Definition 2 (Li and Deng, 2007): The « -th order Caputo
fractional derivative of ( f(t) e C™[0,t]) function f(t) can
be described by

1 t f(m)(r}

F(m—oc} b (t_T)lfmﬂx

e DG f(t) =Dy " /D" f(t) =
where m-1<a<m, meN.

Definition 3 (Li and Deng, 2007): The Riemann-Liouville
(RL) fractional derivative of « -th order of function f(t) is

defined as follows:
rL DG (1) = D™D (™ f (1)

_ 1 d™ et (o)
- r(m _ a) dtm 0 (t _ T)l—m+a

where m-1<a<m, meN.

Property 1 (Li and Deng, 2007): If f(t)eC™[0,),
m-l<a<m and meN , then
(@) ¢Dg Doy f(t)= f(t) holdsfor m=1.

(b) rDg Dot f(t)=f(1).

Property 2 (Shoja-Majidabad et al.,, 2014b): If
s(t)eCY[0,T] for some T>0, & e(01) (i=12) and
oy +a, €(0]1], then

¢ Doic Dot s(t)=c Dg; ¢ Dois(t)=c Doz “s(t)

Theorem 1 (Li et al., 2009, 2010): Let x=0 be an
equilibrium point for the non-autonomous fractional-order
system

¢ Dgx(t) = f(t, (1) 1)

where f(t,x(t)) satisfies the Lipschitz condition with
Lipschitz constant 1>0 and « <(0,1) . Assume that there
exists a Lyapunov function V (t, x(t)) satisfying

] <V (LX) < ], V(X0 < a0

where o, a,, a3 and a are positive constants. Then the
equilibrium point of the system (1), x =0, is asymptotically
stable.

3. SYSTEM DESCRIPTION AND BLOCK
TRANSFORMATION

In this section, a canonical fractional-order system dynamic
model and its block transformation is presented.

Consider a class of Caputo derivative based fractional-order
dynamical system with model uncertainty and external
disturbance as follows:

c D% (1) = X, (t)
D) =x,0) i=23..,n-1 )
c DX, (1) = (X, 1)+ Af (X, t)+d(t)+u(t)

where « €(0,1) is the order of system, X = [xl,xz,...,xn]T
is the state vector, f(X,t) is a known nonlinear function of
X and t, Af(X,t) describes the model uncertainty term
which is unknown, and u(t) is the system control input.
Assumption 1: The uncertainty term Af (X,t) is assumed to
be bounded as

¢ Do “Af (X, 1) <7¢,

where y; is a given and positive constant.

Assumption 2: The external disturbance d(t) is supposed to
be bounded by

| DB d )] <74 3)

where y4 is a known and positive constant.
Step 1: Let’s define first new variable as follows:

3 (t) = % (1) — X4q (1) 4
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where x4 (t) is the first state desired signal. By taking - D*
derivative from both sides of (4) and using (2), we can get

c Dz (1)=c D% (t)—c D“Xqq (t) = X, (t) — Xpq (1) )

To stabilize equation (5) dynamic, the first virtual control
input can be selected as

Xa (1) = Xaq () = byz, (1) + 25 (1) (6)

where b, is a positive constant, and z,(t) is a new variable

which is necessary for next block calculation of the block
transformation technique. Hence, the first state closed-loop
dynamic will be as

c D2y (t) = bz (t) + 2, (t) )
Step 2: From (6) the new variable z,(t) can be obtained as
Z5(t) = Xa(t) = Xaq (1) + 0y 2, () (8)

In this stage, by taking - D“ derivative from (8) along the
equations (3) and (7), results in

c DUz, (1) = X5(t) — Xaq (1) + 92(21, 2,) ,

where g,(21,2,)=cD“(9:(z;) + byz; (1)) = by (=byz, (1) + 2, (1))
and g,(z;) =0.

Choosing the second virtual control input z5(t) as
X3(t) = Xaq (t) — 92(21, 25) — b2, (t) + 25(t) 9)
results the following dynamic
c D9z, (t) = —b, 2, (t) + Z5(t)

where b, is a positive constant.

(10)

Step 3: From (9) the new variable z5(t) can be attained as
Z3(t) = X5(t) — Xgq (1) + 92(21,25) + 0,2, (1) (11)

By applying the derivative .D“ on (11) and using the
equations (3), (7) and (10), one can get

cD%Z5(t) = X4 (1) — X4q (V) + 93(21, 25, 25)

where 93(21,25,23)=c D (91(21, 2,) + b, 2, (1)) = by (—by (—by 24 (t)
+2, (1)) + (=byz, (1) + Z5(1)) + by (—=byz, (1) + Z5(1)) -

Selecting the third virtual control input z,(t) in the form of

Xg (1) = Xqq (1) — 93(21, 22, Z3) — byz5(t) + 24 (1) (12)
yields the following dynamic

c Dz5(t) = —byz5(t) + 2, (1) .

This procedure can be proceed for the variables
24, 25,..., Zn*l'

At the last step, after calculating .D%z,(t), the original

system (3) can be represented in the new coordinates
(74,25,...,2,) a&s

c D2 (1) =—byz (1) + 2, (1)
c D%z (t) =-biz;(t) + 7,4 (t) ,i=23..,n-1
c D%z, (t) = (X, t) + Af (X, t)—c D X,q (1) +

gn(zlv22""vzn)+d(t)+u(t)

(13)

where g,(z,2,,...,z,) is a linear function of the transformed

new variables, and is calculable by the following recursive
equation:

gj+l(zl’22’.“’Zj+1):CDa(gj(Zl!221"'12')+bj2j(t))
0(z)=0 ,j=12,...,n-1

In (13), the coefficients by,b,,---,b,_; >0 are called control

gains and are crucial for tuning the new state convergence.
For more details see the following remark.

Remark 3: For the system (13) that is constrained to
z,(t) =0 by a control law, the system dynamics reduce to

c D z;(t) = bz, (1) + 2,(t)
c D%z (t) =-bz;(t) + 7,4 (t) ,i=23..,n-1
C Dazn—l(t) =0y 12,4 (1)

(14)

it is evident that the above linear system is stable and ensures
that limz(t)=0, Also the convergence rate of states
t—>oo

2,2y, Zyq IS coefficients

b <b, <---<b,_;.

adjustable by the

From the equations (6), (9) and the reduced model (14), zero
convergence of the transformed states (z;(t) » 0) yields the

original system states convergence to the desired values

(% (t) > xig (1))

4. CONVENTIONAL SLIDING MODE CONTROLLER
DESIGN

Consider the conventional sliding surface as follows:

n-1
s(t) =&y (1) + Y _ciei(t) (15)
i=1

where  g;(t) = X;(t) = Xjg (1), ¢ D“Xjg (t) = X4 (t)  and

C;,Cy,...,C,_q are selected in such a way that all roots of the
polynomial P(s)=s""+c, ;"2

of S-plane.

+---4¢; bein the left half

Now, by taking - D* from (15), one can obtain

n-1
cDs(t)=cD& (1) + > cic D¢ (1)
i=1

(16)
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The system equations (3) can be substituted into (16),
yielding the simplified expression

n-1

¢ Ds(t)=c D X, (t)=c D“Xpg (1) + D Cieiua(t)
i=1

and completely

n-1

cDUs(t) = (X, 1)+ AF (X, 1)=c D Xng (1) + D Ci€i,a (1)
i=1
+d(t) +u(t)

Now selecting the control law

n-1
t :_f X,t Da n t - iCi+ t
u(t) = —f (X, )+cD*Xyq (t) E“ W (t) -

—D T (s(t) + (74 +74)500(S(1))) , 7>0

will provide the system states X (t) asymptotic decaying into
the sliding surface s(t)=0. In (17), 7 is known as
proportional gain of the fractional exponential reaching law

cDs(t) = =D (s(t) + (¢ +74)5In(S(1))) -

By taking fractional derivative ¢D®% from both sides of

the fractional exponential reaching law or assuming « =1,
the  conventional reaching law  will be as
S(t) =—ns(t) — (¥¢ +74)s9n(s(t)) which is common in
integer calculus (Bandyopadhyay et al., 2009). Figure 1
shows the sliding surface convergence regime based on
discussed reaching laws.

s(0)
s(0)e™ # s +70)
) l chattering bound
s(t) 0 T
_(J’f‘"}’d) 5() >0
s =5 +1 , ~
+91i1& 5(8) <0
A
t

Fig. 1. Sliding surface s(t) convergence regime.

5. NONLINEAR SLIDING MODE CONTROLLER
DESIGN

In this section, two novel nonlinear sliding surfaces are
suggested, and proper control laws are designed to provide
the closed-loop system stability and fast convergence.

5.1. Sign Integral Nonlinear Sliding Mode

For the transformed system (13), let define the sign integral
terminal sliding surface as follows:

S(0) = 2(0)+ 4 [ 5902, ()7
~ 2, () + 4D sgn(z, (1)

where 4, is a positive constant which can increase or

decrease sliding variable reaching time and overshoot. Figure
2 presents the wvariable z,(t) convergence regime

approximately (short lines with +4;t or —4;t ramp).

(18)

Zﬂ (0)
— At
)0 VANPN
20 \4& fv chattering

t

Fig. 2. New variable z,(t) convergence regime.

Taking - D“ derivative from the previous equation yields

¢ D?s(t)=c Dz, (t) + ,c D*D " sgn(z, (1)) .

Employing the Caputo derivative definition
cD%s(t) = D" )Ds(t), results in
¢ Ds(t)=c Dz, (t) + 4D~ sgn(z, (1)) (19)

By substituting the transformed system dynamics (13) in
(19), one can get
cD¥s(t) = (X, 1) + Af (X, )= D“%oq (1) + 95 (22,2, Z,)
+ 4D sgn(z,, (1)) + d () + u(t)
(20)

Theorem 2: Consider the transformed fractional-order
system (12), choosing the robust block controller as
u(t) =—f(X,t)+c D %q (1) — 94 (21, 25,7, 2)

— 4D~ sgn(z, (1)) - D4 (s (t)

+ (7 +74)s9n(s(t)))

(21)

will result the system trajectories convergence to the sliding
surface s(t) in a short time. Where 7, >0 is known as

proportional gain of the fractional exponential reaching law.
Proof: Choosing the Lyapunov candidate in the form of

V() =|s(t)| and evaluating its time derivative, results
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V (t) = sgn(s())s(t)
From Property 2, one can obtain
V(t) = sgn(s(t))c D" . Ds(t) .
Using (20), we have
V () =sgn(s(t))c DX (f (X, ) + Af (X, 1)—c D“X,q (1)
+0n (21,25, 2) + 4D sgn(z, (1) +d (1) + u(t))
Applying the control law (21), yields
V(1) =sgn(s(t)c D™ (Af (X,1) +d (1) - D™ (s (t)
+(7¢ +74)s9n(s(1))))
=sgn(s(t))(c D' (Af (X, t) +d (1) — ()
+(7¢ +74)sgn(s(1)))
Using sgn(s(t))s(t) =|s(t)|, one can get V (t) < —rs(t)|.
Hence, the states of the system will converge to s(t)=0
asymptotically.

On the sliding surface (s(t)=0), to show that the sliding
motion transpires in a short time, we have

2y (t) + 4D~ sgn(z, (1)) = 0,
taking time derivative, results in

2, (t) + 4, 59n(z, (1)) = 0,

EAGLAC ISR
|2, (1) dt
then, the reaching time can be calculated in the following
z,(0
form tyeach =| ) :
Zl

t,each 1S tuneable by declaring a proper value for 4, . o

5.2. Fractional Integral Nonlinear Sliding Mode

Consider the second nonlinear sliding manifold as follows:

t
s(t) =z, (t) + 4, jo 29 (r)dr =z, () + L,D 2P () (22)

where p and q are both positive odd integers which should
satisfy g/p. In (22), A, is a positive constant which can
increase or decrease sliding variable reaching time and
overshoot.

Applying - D* derivative on the previous equation, results
in

o D%s(t)=c D%z, (t) + ;,D " Dz9P(t) .

Now, by applying the Caputo derivative definition, one can
get

c D¥s(t) = (X, 1) + AF (X, )= D Xy (1) + 94 (20, 22,7+, Z)
+ 2D~ 29/P (£) + d (1) + u(t)
(23)
Theorem 3: Consider the transformed fractional-order
system (13), if the system controlled by the robust control

law (24), the system states will converge to the sliding
surface &(t} in a short time.

u(t) = — (X, )+ D %q (V) — 95 (24, 25, -+, Z)
— 2,D7 28/ (1) — D09 (3,5(1)
+(r¢ +74)s9n(s(t)))

(24)

where 7, >0 is known as proportional gain of the fractional
exponential reaching law.

Proof: By defining the Lyapunov function as V (t) =|s(t)|

and evaluating its time derivative and using (23), one can
write

V (t) =sgn(s(t))c D (£ (X, 1) + Af (X, t)—c D¥Xq (1) (25)
+ 00212, . 23) + D D 2YP (1) + d (1) + u(t))
Inserting the second control law (24) in (25), results in
V() =sgn(s(t))c D™ (Af (X, 1) +d (1) - D9 (3,5(t)
+ (7t +74)s9n(s())))
=sgn(s(t))(c D' (Af (X, t) +d (1) ~ 7,5()
+(7¢ +74)89n(s(1)))
Hence we can get
V(1) < -mfs(t)]

which guarantees the
convergence to s(t) =0.

system states asymptotically

On the sliding surface (s(t) =0), the dynamic of z,(t) can
be expressed in the following form

z,(t)+ 4,D129/P(t) =0.

Taking time derivative from the above equation, gives us

2, (t) + 4,29YP(t) =0

The solution of (26) for the reaching time t,..o, iS given by
) |Zn (O)|(17CI/ P)

t L ML
= 4,1-q/p)
occurs in a finite time, and this time is tuneable by choosing

proper parameters ( 4, and q/p).

(26)

, Which shows that the sliding motion

Remark 5: In order to have a smooth control signal and hold

the continuously differentiable condition (C!), the function
sgn(e) in the sliding surface (18) and control laws (21), (24)

can be modified in the following forms:
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z,(t)

san(in () =128 (27)
””““”ngﬂig’

where 6, ¢ >0 and should be enough small.

Remark 6: It is worthwhile to notify that the actual state x;
is a function of transformed state z; and the other states
),2,,..., Z;_1 , then only fast convergence of z; will not result
X; convergence, and the other transformed states are related

in this process. Therefore, performance of actual states
( Xy, X9,..., X, ) should be checked instead of the transformed

states (z;,2,,...,Z,) in the controller parameters tuning ( 4;,
b, 5, ,a/p)

6. SIMULATION RESULTS

In this section, two numerical simulations are performed to
show the usefulness and efficiency of the suggested nonlinear
sliding mode controllers. The first case study is a gyro system
and the second one is Arneodo system. Numerical
simulations are performed using MATLAB toolbox called
Ninteger (Valério, 2005).

6.1. Fractional-order Gyro System

The dynamic model of fractional-order gyro system with
model uncertainties and external disturbances is expressed as
follows:

c D% =%,

(1 cos(x,))?
sin®(x,)

+ 35.5sin(25t) sin(x; ) + Af (X, t) +d(t) +u(t)

o D%x, (t) = -100 —0.5x, —0.05x3 +sin(x,)

where x; represent the rotation angle, x, is rotation
2
100(1 cos(xy))

sin®(x,)

velocity, is the nonlinear resilience term,

0.5x, and 0.05x3 are linear and nonlinear damping terms,
and 35.5sin(25t) is the parametric excitation.

In this case the fractional-order and uncertainty terms are
considered as a=0.98 and Af (X, 1) +d(t) =
0.25co0s(27t)x, +0.1sin(2t) for the simulation. The initial
conditions of the system is selected as: x;(0)=1 and
X,(0)=-1. Also common value parameters between two
strategies (18)-(21) and (22)-(24) are given as:

L= =1, m=n,=15 b =10

Also the distinctive value parameters are selected as:
8 =¢=0.01 for (21),and £=0.02, q/p=1/3 for (24).

The system state trajectories (x;, X, ), control signal, states
of block transformation (z;,z,) and sliding surface are

shown in Figure 3. The right hand sides figures are belong to
the controller with sign integral sliding manifold (18), and the
responses of controller with fractional integral sliding
manifold (22) are depicted in the left hand side. Figure 3,
confirms that the system states, sliding manifold and
transformed states are converged to zero in a short time. By
comparing the Figures 3(a)-(e) with (c)-(g), it can be seen
that the convergence speed of the actual and transformed
states is different which testifies the idea of Remark 6.

1

0.5
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7,0
A0)

z(@)
|
|
|
|
|
|
|
|
|
|
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t (sec)

(©)
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Fig. 3. Responses of system state trajectories (X, , X5 ),

fractional-order Arneodo system in this section. The dynamic

equations of the uncertain system are presented as:

The performances of proposed controllers are tested on the

sliding surface. a-b-c-d: The control law (21) with sign
integral sliding manifold (18). e-f-g-h: The control law (24)

control signal, block transformation states ( z; , z, ) and
with fractional integral sliding manifold (22).

6.2. Fractional-order Arneodo System

=X,

(04
cD%x

:X3

a
c DX,

5.5%; + X7 —3.5X, — X3 + Af (X, ) +d (t) +u(t)

c D¥x(t)

u(®)

10

50

t (sec)

(f)
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The initial conditions and uncertainty term are selected as
x(0)=2, x,(00=15, x3(0)=-3 and Af(X,t)+d(t)
=0.1cos(t)x; —0.15sin(t) . The similar parameters of both
controllers are declared as:

@=098, A=Ay =4 1,=n,=15 b =2 b,=4

Besides, the distinctive value parameters considered as:
6=¢=001 for (18)-(21), and ¢£=0.02, q/p=1/5 for
(22)-(24).

Figure 4 indicates the system state trajectories (x;, &3, X3),

control signal, states of block transformation (z4, z,, 25) and
sliding surface. From Figure 4(a) and (e), it is evident that the
chaotic behaviour of the system has been suppressed and
system states converge to zero for both controllers. Also fast
convergence of the sliding surface is clear from Figure 4(d)
and (h).

X (9
S—(]

X(t)

u(t)

z,(9
z,(1)
EAQ)

Z(t)

10

s(t)

10

X, (1)
— %)
X5(9)

X(®)

10
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t (sec)
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25
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15

i I
I I
I I
I I
! !
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I I
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I I
| |
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Fig. 4. Responses of system state trajectories ( X; , X, , X3),
control signal, block transformation states (z,, z,, z; ) and

sliding surface. a-b-c-d: The control law (21) with sign
integral sliding manifold (18). e-f-g-h: The control law (24)
with fractional integral sliding manifold (22).

Existence of sgn(z,(t)) function in the sliding manifold (18),

is main cause of control law (21) chattering. Although,
replacing sgn(z,(t)) by the non-chatter function (27) is a
simple remedy for mentioned problem, but using the non-
chatter function will cause small tracking error which is
evident from Figures 3(a) and 4(a). Meanwhile, the
mentioned problem is not much prominent in the sliding
surface (22) and control law (24).

7. CONCLUSIONS

In this paper, the problem of designing fast converging robust
controllers for a Caputo derivative based nonlinear fractional-
order uncertain system is investigated. This fractional-order
system have high-relative-degree with model uncertainties
and external disturbances. We proposed two novel types of
nonlinear sliding surfaces in order to have a fast zero
convergence. Hence, two new nonlinear fractional-order
sliding mode controllers are suggested. The suggested
controllers guarantee the fractional-order system last state
convergence, and the other states convergence are assured by
control gains of the block transformation. The asymptotic
stability of the proposed control schemes is proved using the
fractional-order stability theorems. Computer simulations
reveal the performance of presented robust controllers in a
short time convergence for uncertain fractional-order gyro
and Arneodo systems.
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