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Abstract: The paper deals with the robust control of wind power systems that uses a variable 
speed fixed pitch horizontal axis wind turbine (HAWT), driving a permanent magnet synchronous 
generator (PMSG) connected to a isolated local grid. In such wind power systems, the control 
problem consists in maximizing the energy captured from the wind for varying wind speeds. The 
paper focuses on the HAWT – PMSG power system modelling and dynamical analysis of the 
linearized system in various operating points on the characteristic of optimal regimes. This 
analysis revealed that the system is resonant and the natural frequency as well as the damping 
factor of the complex conjugated pole pair varies significantly along the operating point. In those 
conditions, the Quantitative Feedback Theory (QFT) method was used to design a control system 
for the autonomous wind power system. The resulted robust control structure is validated by 
numerical simulation. 
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1. INTRODUCTION 

Wind energy is the most important among the 
renewable power sources, due to the increased 
growth rate of the installed production capacities 
as a direct result of energy sustainable 
development strategy. Wind power systems are 
grid connected or autonomous. Grid-connected 
wind power systems are based on a “mature” 
technology, representing up to 10-15% of the 
total electrical energy production in some 
European countries [6]. During the last years, 
the use of the multipole permanent magnet 
synchronous generators (PMSG) is more and 
more common in wind power systems  

 

technology, having the main advantage of direct 
coupling to the wind turbine rotor, resulting in 
an important simplification of the mechanical 
system. [2], [5], [7].  

The autonomous wind power systems are 
isolated power systems supplying local 
communities. In order to assure an uninterrupted 
energy supply, there are also other electrical 
energy sources: diesel generators, batteries 
and/or photovoltaic panels. A wind power 
system along with any of those sources 
(standard or renewable) form the so-called 
Hybrid Wind Power Systems (HWPS). 
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The main problem regarding wind power 
systems is the major discrepancy between the 
irregular character of the primary source (wind 
speed is a random, strongly non-stationary 
process, with turbulence and extreme variations, 
e.g. gusts) and the extremely exigent regulation 
demands regarding the electrical energy 
parameters (frequency, voltage, etc.). Thus, the 
wind energy conversion, at the parameters 
imposed by the energy market and the technical 
standards, is not possible without the essential 
contribution of automatic control.  

The design of a control structure for a power 
system is not a trivial task, due to the parameters 
uncertainty and the highly nonlinear systems 
model.  

Various robust control structures for grid 
connected wind power systems can be found in 
literature: sliding mode control [10], gain 
scheduling techniques [16], intelligent control 
[17].  

An approach to the design of a robust controller 
can be based on the Quantitative Feedback 
Theory (QFT) method, which is widely used in 
robust controller design for nonlinear systems 
with parameters uncertainty: flight control 
systems [12], elastic mechanic positioning 
systems, biotechnologies [11], hydraulic 
systems [9], etc. Recently, a QFT pitch control 
structure for a grid-connected wind power 
system was presented in [13]. 

The problems presented in the paper regarding 
the control of the HWPS, are sensibly more 
complex compared to grid-connected wind 
power systems. The paper deals with a wind 
power systems that uses a variable speed fixed 
pitch horizontal axis wind turbine (HAWT), 
driving a PMSG connected to the local grid 
through power electronics, as shown in Figure 1. 

 

Fig. 1. The HAWT – PMSG power system 

In such variable speed wind power systems, the 
control problem consists mainly in maximizing 
the energy captured from the wind for varying 
wind speeds. 

The contributions presented in the paper concern 
the HAWT – PMSG power system modelling, 
dynamical analysis and designing of a robust 
controller using the QFT method.  

The paper is structured as follows: the HAWT – 
PMSG power system modelling and dynamical 
analysis are presented in Section 2; the robust 
controller step by step design using the QFT 
method is presented in Section 3; Section 4 
presents the numerical simulations conducted in 
order to validate the proposed robust controller. 
Finally, some concluding remarks end this 
paper. 

2. SYSTEM MODELLING AND 
DYNAMICAL ANALYSIS 

2.1. Wind turbine mode 

The kinetic energy of the moving air masses 
(wind) is captured by the turbine and 
transformed into mechanical energy. If the wind 
energy is fully captured by the turbine rotor, the 
total power would be 3

t 0.5P a vπ ρ= ⋅ ⋅ ⋅ ⋅ , where 
ρ  is the air density, a is the section area of the 
wind turbine and v is the wind speed. In reality 
the wind turbine harvest from the wind a 
mechanical power, wP , smaller than the total 
power, tP , due to the non-zero wind speed 
behind the rotor. According to Rankine – Froude 
theory, the expressions of wP  is obtained as 
[14]: 

3
v p

1
2

P a v Cρ= ⋅ ⋅ ⋅ ⋅  (1) 

where pC  is the power coefficient defining the 
aerodynamic efficiency of the wind turbine 
rotor. This is a function of the tip speed ratio, λ , 
defined as the ratio between the peripheral speed 
of the blades and the wind speed: 

R
v
Ωλ ⋅

=  (2) 

where Ω  is the rotational speed of the blades 
(the rotational speed of the low-speed shaft) and 
R is the blade radius. 

The typical performance curve for a horizontal 
axis wind turbine is given in Figure 2. It 
presents a maximum for a well-determined tip 
speed, denoted by optλ . 
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The power characteristics for different wind 
speeds are given in Figure 3. For every wind 
speed they have a maximum. All these maxima 
determine a so-called Optimal Regimes 
Characteristic (ORC), as shown in Figure 3. 

 

Fig.2. Power coefficient versus tip speed 
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Fig.3. The optimal regime characteristics 

The wind turbine provides the shaft’s 
mechanical torque, according to the wind torque 
expression: 

( ) 3 2
w T0.5T C R vρ π λ= ⋅ ⋅ ⋅ ⋅ ⋅  (3) 

where ( )TC λ  is the torque coefficient, defined 
by:  

( ) ( )T pC Cλ λ λ=  (4) 

The torque coefficient is a designed parameter 
and the manufacturers of the wind turbine 
usually provide it. For the wind turbine 
considered in this paper, the torque coefficient is 
modelled as a 6th order polynomial regression 
[8]: 

( ) 2 3 4 5 6
T 0 1 2 3 4 5 6C a a a a a a aλ λ λ λ λ λ λ= + + + + + +  (5) 

with i , 0,6a i =  given in the Appendix. The 
torque coefficient described by Eq. (5) is plotted 
in Figure 4. 

 

Fig.4. The torque coefficient versus tip speed 

The operating point corresponding to optimal tip 
speed ( )7optλ =  lies on the descending portion 

of the torque coefficient, as it can be seen in 
Figure 4. 

The gearbox is considered to be rigid and 
without dynamic, with a gear ratio 10i = . 

2.2. PMSG model 

The PMSG is modelled in the d-q frame, 
discarding the zero component. The state space 
systems model is:  

( )

( )

d
d R d d q q

q
q R q q d d m

w m q d q d q

d
dt
d
dt

d
dt

iu R i L pL i

i
u R i L p L i

J T p i L L i i

ω

Φ ω

ω
Φ

= − − +

= − − − −

 = − − − 

 (6) 

where RR  - the rotor resistance, p - the pole pair 
number, d q,L L - the rotor inductances in the d-q 
axes, du  and qu - the d-q axes voltages, J - the 
moment of inertia and mΦ  - the permanent 
magnet flux. In grid-connected wind power 
systems the d-q axes voltages, du  and qu , are 
input variables. In autonomous wind power 
systems, when the PMSG is connected to a local 
grid, du  and qu  become output variables. In this 
case the PMSG’s model should also include the 
local grid equations. The voltages on the d-q 
axes, described by the local grid equations, are: 

d d d d
s s

q q q q

d
dt

u i i i
R L X

u i i i
       

= ⋅ + ⋅ + ⋅       
       

 (7) 
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where 
1

s1

s

d
0d

o LTX T
Lt

ω
ω

−
−  

= ⋅ =  − 
 (8) 

with sR  - the load resistance, sL  - the load 
inductance and T  - the Park transformation 
matrix [15]. 

Using (7) and (8), the model (6) can be written 
in the form:  

( ) ( ) ( )

( ) ( ) ( )

( )

d
d s s d q s q

q
q s s q d s d m

w em w d q d q m q

d
dt
d
dt

d
dt

iL L R R i p L L i

i
L L R R i p L L i p

J T T T p L L i i i

ω

ω Φ ω

Ω Φ

+ =− + + +

+ =− + − + +

 = − = − − − 

 (9) 

The dynamic of the power electronics being 
significantly more rapid than the HAWT – 
PMSG dynamic, was neglected. Thus, the input 
variable sR  represents the equivalent load 
resistance at generator’s terminals. 

2.3. Dynamical analysis of the wind power 
system 

In order to maximize the power extracted from 
the wind, the tip speed ratio should be kept 
around its optimal value, optλ . Though, the wind 
power systems is controlled in close loop, in 
such way that the shaft speed tracks the speed 
reference refΩ , calculated from (2), according 
to the measured wind speed v : 

optref v
R
λ

Ω =  (10) 
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Fig.5. The operating points 

The nonlinear HAWT – PMSG power system 
model (9) was linearized in three operating 
points defined by the wind speed v (4; 7 and 10 
m/s) and the load resistance sR  ( 14.6; 25.9; 38 
ohm) in such manner that they lie on the ORC. 
The operating points are presented in Fig. 5. 

The pole distribution and step response of the 
HAWT – PMSG system, linearized in the 
above-mentioned operating points, are shown in 
Figure 6 and 7, respectively. 

The linearized HAWT- PMSG system has a pole 
distribution strongly dependent on the operating 
point. When the operating points are considered 
on the ORC, the linearized HAWT – PMSG 
system is resonant, and the natural frequency, as 
well as the damping factor of the complex 
conjugated pole pair, varies significantly along 
the ORC. 
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Fig.7. The linearised HAWT – PMSG step response 

3. STEP BY STEP CONTROLLER 
DESIGN 

The QFT design technique is based on the 
frequency domain shaping of the open – loop 
transfer function [4]. The uncertainties in the 
plant gain and phase are represented as a 
template on the Nichols chart and used to define 
regions in the frequency domain where the open 
– loop frequency response must lie in order to 
satisfy the performance and stability 
specifications. 

The QFT design method employs a two-degree 
freedom control structure, using a compensator 
( )C s  and a prefilter ( )F s , as shown in Figure 8. 

( )F s ( )C s ( )P s
refy y+

−

 

Fig.8. Two degree freedom structure 

The tracking control structure synthesis – 
according to the QFT design method steps [12] 
– is presented next. The tracking control loop 
aims to maintain the operating points of the 
autonomous wind power system on the ORC. 

1. System formulation. The HAWT – PMSG 
power system model is represented by a series 
of linear time invariant (LTI) transfer functions 
in various points of the operating range. The 
operating range is determined by the wind 
speed. We consider the bounds of the operating 
regime defined by the starting wind speed 
( s 3m/sv = ) and the nominal wind speed 
( n 10m/sv = ). The nonlinear HAWT – PMSG 
power system model (9) was linearized in the 
above defined 3 operating points (Figure 5). 

After neglecting the irrelevant time constant, the 
resulting transfer function describing the system 
proprieties around the three operating points is: 

( )p 2 2 2 1
kH s

T s T sζ
=

⋅ + ⋅ +
 (11) 

The operating points and parameters values are 
presented in Table 1. 

Table 1. Operating points 

Wind 
speed 

Load 
resistance

k T ζ  

4 m/s 14,6 Ω 3,88 0,0751 0,6147 
7 m/s 25,9 Ω 4,52 0,0456 0,2440 

10 m/s 38 Ω 4,69 0,0326 0,1512 

 

In order to facilitate the QFT design method, the 
linear LTI model (11) is approximated by: 

( )p 2 2 2 1
kH s

T s T sζ
=

⋅ + ⋅ +
 (12) 

where 0.8ζ =  is a constant. The Bode 
characteristics of the LTI wind power system 
models defined by (11) are bounded by the 
transfer function (12), as shown in Figure 9. The 
variation ranges for k and T in Eq. (11) are:  

[ ]3,5 16 ; [0.015 0.085]k T= ÷ = ÷  (13) 
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Fig.9. Bounding of the LTI power system models 
Bode characteristic 

2. Performance design specifications. The 
performance specifications impose the desired 
dynamic and steady-state performance of the 
closed-loop system. The tracking specification 
defines the acceptable variations domain of the 
closed loop tracking response due to parameter 
uncertainty and disturbances and it is usually 
defined in the time domain: 

( ) ( ) ( )L Uy t y t y t≤ ≤  (14) 
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where ( )y t denotes the system tracking step 
response;  ( )Ly t  and ( )Uy t  denote the lower 
and respectively the upper tracking bounds for 
step response. Since QFT is a frequency-domain 
design method, the time-domain tracking 
specifications must be transformed into the 
frequency domain. 

For the considered HAWT – PMSG power 
system the tracking performance is defined by 
the nominal transfer function: 

( )
2
n

T 2 2
n n2

H s
s s

ω
ζω ω

=
+ +

 (15) 

where nω  and ζ  determine the nominal regime 
system performance. It was adopted: n 20ω =  
and 0.9ζ = .  

The upper and lower tracking bounds are 
defined by: 

( )
( )

( ) ( )( )( )

2
0

TU 2 2
0 0

1 2 3
TL

1 2 3

2

s a
aH s

s
a a aH s

s a s a s a

ω

ζω ω

+
=

+ +

⋅ ⋅
=

+ + +

 (16) 

where n1.2 ;a ω= 1 n0.5 ;a ω=  2 n1.5a ω=  and 
3 n2a ω= .  
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Fig.10. Tracking bounds step response 

The tracking bounds in time domain (step 
response) and in frequency domain are 
presented in Fig. 10 and Fig.11, respectively. 

The robust stability specification assures the 
closed loop stability, regardless of the plant 
parameters variation in the considered 
uncertainty region and it is defined as follows: 

( ) ( )
( ) ( ) B1

C j P j
C j P j
ω ω

α
ω ω

≤
+

 (17) 
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Fig.11. Bode characteristic of the tracking bounds 

Usually, B 2dBα <  so B 1.2 1.6dBα = ≅  is chosen. 

3. Templates and computation of bounds. The 
trial frequency array used in the QFT design 
method is: 

[1 5 10 20 40 100] rad/secω =  (18) 

The plant templates at these frequency points 
and the variation ranges (13) for k and T are 
computed with the QFT toolbox in Matlab® and 
presented in Figure 12. 
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Fig.12. Plant templates 
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Fig.13. Tracking bounds 

The tracking and the robust stability margin 
bounds in the Nichols plane are computed with 
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the QFT toolbox in Matlab® on the basis of the 
performance specifications and the plant 
templates.  

The tracking bounds are presented in Figure 13. 
The robust stability margin bounds, also 
computed with the QFT toolbox in Matlab®, are 
presented in Fig. 14. 
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Fig.14. Robust stability margin bounds 

4. Loop shaping controller design. At this point, 
the intersection between tracking response and 
robust stability bounds is computed and plotted 
along with the open loop transfer function 
( ) ( ) ( )L j C j P jω ω ω= ⋅ . The open loop 

frequency response must lie on or above the 
bounds at each of the trial frequency (Figure 
15). 

-350 -300 -250 -200 -150 -100 -50 0

-30

-20

-10

0

10

20

30

40

50

60

70

Phase [deg]

M
ag

ni
tu

di
ne

 [
dB

]

Open loop frequency response

 

Fig.15. Open loop frequency response 
with controller 

If this condition is satisfied for the considered 
nominal plant, then the condition is satisfied for 
all plants described by the uncertainty [4]. 

The controller ( )C s  has an initial expression 
and the design is performed in a very transparent 
and interactive manner by adding gains or 
dynamic elements to the nominal plant 
frequency response in order to change the shape 

of the open loop transfer function in such 
manner that the boundaries are satisfied at any 
trial frequencies. After performing those 
adjustments, the final open loop frequency 
response obtained for the HAWT – PMSG 
power system is presented in Figure 15. The 
controller’s transfer function expression, 
obtained with this procedure, is:  

( ) ( )( )( )
( )( )

6.84 62.5 10.06 9.93
1265 5.24

s s s
C s

s s s
+ + +

=
+ +

 (19) 

5. Prefilter design. The loop shaping of the open 
loop frequency response ensures that the closed 
loop response fulfils the stability performances 
in the frequency domain. The prefilter ( )F s  
(Figure 8) is designed to shape the output of the 
system to satisfy the tracking specifications. The 
prefilter shaping is carried out using a Bode 
characteristic and it is done in the same 
interactive manner. The prefilter transfer 
function thus obtained is: 

( ) ( )( )
5478.55

343.7 15.94
F s

s s
=

+ +
 (20) 

6. Verification of stability and robust tracking 
conditions. Firstly, the robust stability 
specification (17) of the closed loop system is 
verified. The closed loop system Bode 
characteristic is presented in Figure 16 and it 
can be seen that the robust stability performance 
is satisfied (for B 1.6 dBα = ). 
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Fig. 16. The robust stability condition 

In order to verify the tracking performances, the 
closed loop frequency response of the HAWT – 
PMSG power system without the prefilter is 
determined (Figure 17). 

The closed loop response without prefilter 
satisfies the stability performances in the 
frequency domain – the response bandwidth 
(solid line) is smaller than the bandwidth 
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defined by the upper and lower limit stability 
specifications (dotted line) – but the robust 
tracking specification are not satisfied. The 
closed loop response with the designed prefilter 
is presented in Figure 18. We observe that after 
inserting the designed prefilter, the close loop 
response satisfies both stability and robust 
tracking performances, thus a successful design 
is achieved. 
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Fig.18. Close loop response with prefilter 

4. NUMERICAL SIMULATION RESULTS 

The robust control structure designed using the 
QFT design method was numerically simulated 
in Matlab/SIMULINK®. The HAWT – PMSG 
power system was implemented using the 

nonlinear model presented in (9). The robust 
tracking control block scheme is presented in 
Figure 19. 

The aim of the robust control scheme is to 
maximize the energy captured from wind, for 
varying wind conditions, thus maintaining the 
tip speed at optimal value ( )opt 7λ = . The speed 

reference refΩ  is calculated based on the 
measured v , according to (10). 

The first numerical simulation scheme 
conducted to validate the robust controller used 
as the input signal a determinist speed reference 
covering in steps the operating range 
corresponding to wind speeds from 3 m/sv =  
to 11 m/sv = . The simulation results are 
presented in Figure 20. 
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Fig.20. Shaft speed versus reference speed 

The signal presented in Figure 21 represents a 
realistic wind profile, modelled as a non-
stationary stochastic process in [3] and used as 
the input to the simulation. 

The wind profile covers a speed range between 
4 11m/s÷ , which represents the range between 
wind turbine starting speed and nominal speed. 
This is the speed range that covers most of the 
wind turbine’s operating time. 
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Fig.19. – PMSG power system robust control bloc scheme 
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Fig.21. The wind profile 

The effectiveness of the robust tracking control 
scheme can be seen in Figure 22. The controller 
ensures maximum energy caption from wind, for 
wind speed varying from 4 to 11 m/s. The tip 
speed is maintained around its optimal value 
( )7optλ =  with some minor dynamical errors 

due to the turbulence component. 
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Fig.22. Tip speed evolution 
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Fig.23. Dymanic evolution of operating point 
around the ORC 

The robust tracking control scheme maintains 
the operating point around the ORC for wind 
speeds varying from 4 to 11 m/s, thus ensures 
the maximum energy conversion. 

5. CONCLUDING REMARKS 

The control of autonomous wind power systems 
is a very difficult task. The analyzed 
autonomous wind power system uses a 
permanent magnet synchronous generator, along 
with alternative electrical (batteries) and 
photovoltaic source, representing a typical for 
supplying small isolated grids. 

A first contribution in the paper is the HAWT – 
PMSG power system’s nonlinear model. The 
analysis of the linearized model in various 
operating points on the ORC revealed that the 
system is resonant and the natural frequency as 
well as the damping factor of the complex 
conjugated pole pair varies significantly along 
the operating point. In those conditions, the QFT 
method was used to design a control system for 
the autonomous wind power system. The 
numerical simulations conducted in 
Matlab/SIMULINK® proved the effectiveness of 
the proposed control structure. 
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7. APPENDIX 

PMSG parameters: 

R 3,3ΩR = ; 

d q 0.04156 HL L= = ; 
20.042kgmJ = ; 

m 0.4382 WbΦ = ; 
3p = ; 

Wind turbine parameters: 
31.25kg/mρ = ; 

2.5mtR = ; 
2

T 0.005kgmJ =  

0 1 2
-4 -5

3 4
-5 -7

5 6

0.0061; 0.0013; 0.0081;

9.7477.10 ; 6.5416 10 ;

1.3027 10 ; 4.54 10 .

a a a

a a

a a

= = − =

= − = − ⋅

= ⋅ = − ⋅

 

 

 


