
CEAI, Vol. 6, No. 4, pp. 21-28, 2004 Printed in Romania 

 

 

 
 
 
 
 
 
 

ABOUT THE VARIABLE CAUSALITY DYNAMICAL SYSTEMS 
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Abstract:  This paper deals with dynamical systems which models physical objects whose causal 
input-output ordering is changing during their evolution. Such a system is named Variable 
Causality Dynamical System (VCDS). VCDS are controlled from outside by a new input called 
causal ordering signal sharing the same set of state variables. In VCDS, all the variables, except 
the causal ordering signal, are gathered in two forms of so called global variables as current 
global variable and desired global variable. In this paper, different approaches of the causality 
concept are analyzed and there are proposed formal definitions for covariance and causality 
properties of variables and relations irrespective of the time domain. Two examples of VCDS are 
presented here, one is described by a nonlinear algebraic existence relation and the other by a 
proper linear differential equation 
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1. INTRODUCTION 

As it is presented in [1], the causality concept is 
a very general one and it still is not precisely 
defined. Causality is a subject of debates in very 
different scientific communities from 
philosophy, biology, till technical and social 
sciences. The structure of the so-called causal 
theories and some fundamental forms of 
scientific inference are developed in [2]. 
According to this approach, a causal law is a 
statement that a change in the value of one 
variable is sufficient to produce a change in the 
value of another, without the operation of 
intermediate causes.  

There are several different conceptions of cause 
as Positivist and Essentialists theories of 
causation, [3] which stresses the observations of 
regularities considering high correlations  

 

demonstrate or are synonymous with causation. 
Another approach the Essentialists theories of 
causation, where it is considered that cause 
should only be used to refer to variables that 
explain phenomena.  

In the conception Stuart-Mill, [3], three main 
factors determine an inference to be causal: a) 
Cause has to precede the effect, b) The cause 
and effect have to be related c) Other 
explanations of the cause-effect relationship 
have to be eliminated. Several methods of causal 
inference analysis, in [3] are mentioned. There 
are many ways of knowing and different 
cultures uses different expectations and norms 
about causality, so much of the research process 
centers around what are the true causal or 
independent variables [4]. One important 
direction of modeling that rise the problem of 
causality is that of the bond graphs, [5], [6], [7]. 
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 The so called hybrid bond graph augment 
traditional bond graph by a variable causality 
switching element to facilitate models with 
mixed continuous/discrete, hybrid behavior. 

An investigation of causal state theory and 
graphical causal models with applications in 
computational mechanics and the so-called ε-
machines is developed in [8]. The problem of 
variable causality applied to power electronic 
converters is analyzed in [9]. In [10] it is argued 
that a regularity notion of causality can only be 
meaningfully defined for systems with linear 
interactions among their variables, with 
particular reference to the problem of causal 
inference in complex genetic systems. A new 
approach of dynamical systems conceived by 
Willems [11], [12], ignores the input-output 
causal ordering. It defines the so called the 
behavioral approach of dynamical systems 
formed by the triptych with the behavior of the 
system in the center, the behavioral equations 
and latent variables as side notions. 

In our approach [1], the covariance and causality 
relations are defined in abstract space,  
irrespective of the time domain. To raise debates 
on them in the following the main aspects of this 
approach are retaken. Many applications on 
walking robots of the VCDS approach are 
developed including simulations in Mathlab 
environment proving the efficiency of this 
approach. 

2. CAUSAL VARIABLES AND 
CAUSALITY RELATIONS 

The fundamental notion in mathematical 
modeling of objects (physical or abstract) is that 
of variable. A variable V is the triple 

{ ,V , ,=V v V } V∈ ⊆v V ,  (1) 

where:V named variable universe, is a set 
endowed with a well defined mathematical 
structure; V named variable domain, is a subset 
of V ; v  named the variable instant, is the 
generic element of V . The variable V is finite 
dimensional of the order p  if it exists a one-to-
one application p→V R . Let ( )i jV ,VR be a 
binary relation on the Cartesian product V ×Vi j , 
called a relation between the variable iV and 

jV , ( ) V ×Vi j i j i jV ,V ⊆ ⊆ ×R V V . (2) 

Such a relation, as a crisp relation, can be 
expressed by its membership function 
(characteristic function), 

1 if ( )
( , )

0 otherwise
i j i j

R i j
(v ,v ) V ,V

v v
∈µ = 



R
 (3) 

A relation can be described by an equation 
defined as an equilibrium condition [13], on an 
equating space E  

, : V ×V1 i j 2 i j 1 2 i jf (v ,v )= f (v ,v ) f , f →E . (4) 

If the equation space E is a finite m -
dimensional linear space, then the equilibrium 
condition (4) can be expressed as an equation  

( , ) 0i jR v v =  , (5) 

where ( , ) ( , ) , ) 0i j 1 i j 2 i jR v v f v v f (v v= − =  
: V ×Vi jR →E .The equilibrium equation (5) is 

called the existence equation for the relation (2), 
if each pair ( )i j i j(v ,v ) V ,V∈ R  verifies equation 
(2) and any solution i j(v ,v ) of ( , ) 0i jR v v = , 
belongs to ( )i jV ,VR . In such a case, there is the 
equivalence 

( ) ( , ) 0i j i jV ,V R v v⇔ =R  (6) 

Such a relation is an m -order relation, which 
involves m  restrictions on its variables. A 
relation ( )i jV ,VR  is well defined if its projection 
on each variable universe equals to the 
corresponding variable domain, 

{ ( ) / } Vi j i iPr V ,V =R V  (7) 

{ ( ) / } Vi j j jPr V ,V =R V  (8) 

where 

{ ( ) / } { V , V , ( , ) 1 }i j i i i j j i jPr V ,V v v v v= ∈ ∃ ∈ µ =RR V

 (9) 

{ ( ) / } { V , V , ( , ) 1 }i j j j j i i i jPr V ,V v v v v= ∈ ∃ ∈ µ =RR V

 (10) 

are the projection of R  on the universes iV , jV  
respectively. Two variables, i jV ,V  are covariant 
variables if there is a nonempty set of index 
A ∋ α  and a nonempty set variables 

{ }A AGα α∈=G , { ,G ,G gα α α α= G }  (11) 

called the set of intermediate variables, such a 
way for each intermediate variable Gα  there are 
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two families of functions 
iX α

αF , 
jX α

αF  called  

covering functions of the relation 

α αX{ } , G V
i i i i i i

iX x x xf f :α α α α α
α α α

∈ ⊆= →F X , (12) 

α αX{ } , G V
j j j j j j

jX x x xf f :α α α α α
α α α

∈ ⊆= →F X  (13) 

so that each family cover the relation 

g )
i

i xv f (α
α

α= , 
αX

G ) V
i

i i

ix
x

f (α
α

α
α

∈

=∪  (14) 

g )
j

j xv f (α
α

α= , 
αX

G ) V
j

j j

jx
x

f (α
α

α
α

∈

=∪ . (15) 

The two families 
iX α

αF , 
jX α

αF  are called parameter 

families of functions. The triple { , , }
i jx xf fα α
α αα  is 

called an instant of the covariant variables i jV ,V  
and relations (14), (15) express one parametric 
representation of the two covariant variables. 
The parametric representation (14), (15) may be 
expressed also as 

g , )i i iv f ( xα α
α=   (16) 

g , )j j jv f ( xα α
α= , (17) 

where ixα , jxα are instants of the new variables, 

{ , X , }i i i iX xα α α α= X ,  (18) 

{ , X , }j j j jX xα α α α= X  (19) 

called state variables. The covering conditions 
on the families of parametric functions ,

i jx xf fα α
α α  

will assure each variable iV and jV to be 
completely involved in the covariance, namely 

V , ( , G , )
i i

i i x Xv A g f α α
α α

α α∀ ∈ ∃ α ∈ ∈ ∈ F  (20) 

( ) g , )
i

i i ixv f g f ( xα
α α α

α α= =  (21) 

V , ( , G , )
j j

j j x Xv A g f α α
α α

α α∀ ∈ ∃ α ∈ ∈ ∈ F  (22) 

( ) g , )
j

j j jxv f g f ( xα
α α α

α α= = . (23) 

So, for each pair ( )i j i j(v ,v ) V ,V∈ R , and each 

family 
iX α

αF  or 
jX α

αF , it exists a function whose 

graphic to contain this pair i j(v ,v ) . These 

families are labeled by the variables i jX , Xα α , 
which become state variables. If relations (20), 
(21) are true it is not necessary (22), (23) to be 

true too and vice-versa. One instant { , , }
i jx xf fα α
α αα  

of two covariant variables i jV ,V  defines a 
relation, called covariance relation, 

( ) V ×V
i j

i j i j i jX X V ,Vα α
α ⊆ ⊆ ×R V V  (24) 

( ) {( , ), ( ), ( ), G )
i j i j

i j i j i jX X x xV ,V v v v f g v f g gα α α α
α α α

α α α α= = = ∀ ∈R

whose membership function is,  

( , ) 1 iff ( )
i jX Xi j

i j i j i jX Xv v (v ,v ) V ,Vα α α
α α

αµ = ∈R R  (25) 

Because the relation ( )
i j

i jX X V ,Vα α
αR could be 

different of V ×Vi j , reflects the covariant 
character of the two variables. Two variables 

i jV ,V are well covariant if for any instant 

{ , , }
i jx xf fα α
α αα  the set of correlated pairs 

( )
i j

i jX X V ,Vα α
αR is the same, which denoted 

( )ij i jV ,VR  

( ) ( ) , { , , }
i j i j

i j ij i jX X x xV ,V V ,V f fα α α α
α α α= ∀ αR R  (26) 

Between two well covariant variables, i jV ,V  it 
exists a nonempty binary relation  

( ) V ×Vij i j i j i jV ,V ⊆ ⊆ ×R V V  (27) 

but does not exist a function type dependency 
between them. The covariance relation (26) can 
be expressed by an equilibrium equation 

( , ) 0, ( , ) V ×Vij i j i j i j i jR v v v v= ∈ ⊆ ×V V  (28) 

but has no physical meaning to withdraw from it 
the function type dependencies, ( )i i jv f v=  or 

( )j j iv f v= . Two variables i jV ,V  are called 
independent variables if it is not possible to 
establish a covariance relation between them.  
The variables i jV ,V  are independent if one of 
the three conditions takes place: 

A = ∅  or  A = ∅G  (29) 

,
iX Aα

α = ∅ ∀α ∈F   (30) 

,
jX Aα

α = ∅ ∀α ∈F  (31) 

Two any variables i jV ,V which could be 
covariant but for which a covariance relation is 
not established yet are called uncharacterized 
variables. Uncharacterized variables are 
considered to be independent variables. Two 
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covariant variables i jV ,V  characterized by 

, , ,
i j

A X XA α α
α αF FG are called causal variables if 

{ , } , ,1 2 1A ij ji= α α α = α =2  (32) 

{G ,G } {G ,G } {V , V }
1 2A ij ji i jα α= = =G  (33) 

,
i jX Xα α

α α≠ ∅ ≠ ∅F F . (34) 

The parametric representation (16), (17) takes 
the following two explicit forms (35), (36) and 
(39), (40). 

For 1 ijα = α =  

, ) , 1ij ij ij ij
i i i i i i iv f (v x x X Xα= ∈ =   (35) 

, ) , 1ij ij ij ij
j j i j j j jv f (v x x X Xα= ∈ = , (36) 

which illustrates the so called causality i jV V→  

where ,ij ij
i jx x  are the state instants of the 

respectively variables V , Vi j  in this causality 
ordering. The state variables are, 

{ , X , } { ,X , }1 1 1 1 ij ij ij ij
i i i i i i i iX x x Xα α α α= = =X X ,  (37) 

{ , X , } { ,X , }1 1 1 1 ij ij ij ij
j j j j j j j jX x x Xα α α α= = =X X  (38) 

For  2 jiα = α =  

, ) , X X2ji ji ji ji
i i j i i i iv f (v x x α= ∈ =   (39) 

, ) , X X2ji ji ji ji
j j j j j j jv f (v x x α= ∈ = , (40) 

which illustrates the so called causality j iV V→  

where ,ji ji
i jx x  are the state instants of the 

respectively variables ,i jV V  in this causality 
ordering. The  state variables are, 

{ ,X , } { ,X , }2 2 2 2 ji ji ji ji
i i i i i i i iX x x Xα α α α= = =X X ,  (41) 

{ ,X , } { ,X , }2 2 2 2 ji ji ji ji
j j j j j j j jX x x Xα α α α= = =X X  (42) 

Each state instant specify a function from the 
sets 

iX α
αF ,

jX α
αF . 

As state variables internally characterize 
variables involved in a causal relation, the state 
variables attached to a variable must be the same 
irrespective of the causality ordering, so 

{ , X , }ij ji
i i i i i iX X X x= = = X  (43) 

{ ,X , }ij ji
j j j j j jX X X x= = = X  (44) 

and the parametric equations (35), (36), (39), 
(40) take the following specific forms depending 
on the causality ordering. For the causality 
ordering i jV V→ , (35), (36) become 

, ) ,ij
i i i i i iv f (v x x X= ∈   (45) 

, ) ,ij
j j i j j jv f (v x x X= ∈ ,  (46) 

where iv acts as cause or input and jv is an effect 
of the cause iv . This effect jv depends on the 
instant jx of the state variable jX  attached to it. 

For the causality ordering j iV V→ , (39), (40) 
become 

, ) ,ji
i i j i i iv f (v x x X= ∈   (47) 

, ) ,ji
j j j j j jv f (v x x X= ∈  , (48) 

where jv acts as cause or input and iv is an effect 
of the cause jv . This effect iv depends on the 
instant ix of the state variable iX  attached to it. 
Equations (46), (47) are input-state-output 
equations and relations (45) (48) are transition 
state equations. Any binary relation between two 
causal variables is called a causal relation. . For 
n -ary relations, 

( , ..., ) ( )1 2 nV V V V=R R , = { , ..., }1 2 nV V V V  (49) 

In addition, n  variables , ...,1 2 nV V V  are 
covariant, independent or causal if any two 
variables of them have the above-defined 
properties. 

3. CAUSAL ORDERING IN DYNAMICAL 
SYSTEMS 

Several definitions of the system notion there 
are well known from any System Theory 
textbook [14], [15], [16]. According to the 
definition issued from thermodynamics, "a 
system is a part (a fragment) of the universe for 
which one inside and one outside can be 
delimited from behavioral point of view",[17]. 

The mathematical model of a physical system is 
a pair {V , }=S R where = { }i i=1:nV V is a set of 
variables and ( )V=R R  is a causal relation 
between them. If ip  is the order of the variable 

iV , then there are n
iip p

=
= ∑ 1 scalar components 

of the variables involved in system. 
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Suppose that the relation R  is of the order m . 
The system acts as a restriction among its 
variables and delimits its inside. All the other 
variables and relations different of V  and R , 
denoted V  and R  belong to the outside of the 
system denoted by = { , }VS R . This is the so-
called an un-oriented system and it is similar to 
the model of Willems in his behavioral approach 
of systems [11], [12], [13].  

As the model represents a physical system, the 
relation R , called also the existence relation, is 
true as far as the physical system exists. 

At this stage, looking at the un-oriented system 
S , we can observe only the instants of the 
variables = }i i=1:nv { v . 

One instant v  is a realization of the physical 
system and it verifies the existence relation R . 
The un-oriented system looks like an isolated 
one from the universe it belongs to, so any 
variable W ∈ S is independent with respect to 
any variable { }i i=1:nV of S . 

But, any physical system whose model is S , as 
a part of the universe, is not isolated one, it has 
changes of energy, material and information 
with the outside. Let kW  be a variable from the 
outside of S , { , W , }k k k kW w= ∈ SW . 

A variable kW ∈ S  is assigned to a variable 
iV ∈ S , { ,V ,i i i iV v= ∈ SV } ,denoted k iW V→ , if 

k i=W V  W Vk i⊆ , i kv w= , that means the 
instant iv  takes the value of the instant kw . 
Through this assignment process, a new variable 

jU ∈ ∩S S is created, 

= { , U , } { ,V , }r r r r k i iU u wU = V . (50) 

The variable jU is a cause for the system S or 
an input variable. The set of variables 
{ }k k=1,2,..W assigned to the system S , could be 
independent variables, which is not a necessary 
condition.  Let   

= { ,Y , }k k k kY y ∈ SY   (51) 

be a variable from outside. If k j=Y V , k jY V= , 

k jy v=  then the variable jV ∈ S is assigned to 
the outside world so it becomes an output of the 
system S .  

4. VARIABLE CAUSALITY 
DYNAMICAL SYSTEMS 

There are many physical systems where the 
causal ordering is controlled from outside 
expressed by a new variable { } Bq Q qβ β∈∈ = and 
where the terminal variables = { , ..., }1 2 nV V V V  are 
some times inputs, and other times they are 
outputs. Let = { , ..., }1 2 nX X X X be the state 
variables attached to each terminal variable in 
such a way to reestablish the univocity of the 
selected variables as being outputs with respect 
to the variables selected as to be inputs. They 
are internal variables. 

In the case of VCDS description, there are no 
explicitly defined input and output variables. All 
the variables, the terminal variables 

= { , ..., }1 2 nV V V V and the internal variables 
= { , ..., }1 2 nX X X X , satisfy the existence 

relation of the system named System Existence 
Relation (SER) ( , ..., ) ( )1 2 nV V V V=R R . 

As the system exist, the SER is true according to 
the causality ordering, defined as a new variable, 
available at that time instant. Particularly let we 
consider that any variable, written without time 
index ( , )t k , is interpreted, depending of the 
context, as being its value at the current 
continuous time or discrete time. Let we denote 
by 

= { , ..., , ..., }1 2 n 1 2 nV V V , X X Xξ  (52) 

the current value of the so called global variable 
of the system and denote by 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ= { , ..., , , ..., }1 2 n 1 2 nV V V X X Xξ  (53) 

the desired value of the global variable. The 
VCDS evolution equation is of the form, 

ˆ( , )f qξ = ξ  (54) 

For algebraic dynamical systems, the equation 
(22) takes the form, 

ˆ( , , )t t t tf q+εξ = ξ ξ  (55) 

5. NONLINEAR VCDS SYSTEM WITH 
FOUR PAIRS OF STATES 

Let us consider a sytem about it is known having 
a causal relation ( , )ij i jV VR as in Fig.1 
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In the causality ordering i jV V→  the causal 
relation can be covered by two functions, so the 
label set iX  contains two elements, let we 
denote them as ,1

j js s2  so X = { , }1
j j j jx s s∈ 2 . 

Also, for the causality ordering j iV V→ the 
causal relation can be covered by two functions, 
so the label set Xi contains two elements, let we 
denote them as ,1

i is s2  so X = { , }1
i i i ix s s∈ 2 . 

 
 
 
 
 
 
 
 
 
 
 

Fig 1. Example of a nonlinear VCDS with 4 pairs of 
ststes. 

For the causality ordering i jV V→ , 1 ijα = α = , 
the state transition equation, whose solution is 
the state ix  is given by ,  

( , ) , X { , }ij 1 2
i i i i i i i iv f v x x s s= ∈ =  (56) 

and the input-state-output equation is  

( , ) , X { , }ij 1 2
j j i j j j j jv f v x x s s= ∈ = ,  (57) 

For the causality ordering j iV V→ , 

2 jiα = α = , the state transition equation, whose 
solution is the state jx  is given by  

( , ) , X { , }ji 1 2
j j j j j j j jv f v x x s s= ∈ =  (58) 

and the input-state-output equation is 

( , ) , X = { , }ji 1 2
i i j i i i i iv f v x x s s= ∈   (59) 

In this example, for any terminal pair ( , )i jv v  
there is a unique state pair 
( , ) X Xi j i jx x ∈ × which completely characterises 
the VCDS behaviour. As a whole there are four 
such a state pairs.  

Explicite expression of VCDS 

The actual and desired global variables are  

= { , , , }i j i jV V X Xξ  ˆ ˆ ˆ ˆ ˆ={ , , , }i j i jV V X Xξ  

and the VCDS evolution equation is 

ˆ( , )f qξ = ξ , 

where, the expression of f  is , as follows: 

For the causality ordering i jV V→ , q ij=  

ˆi iv v= , ˆj jx x= , ( , ) , X { , }ij 1 2
j j i j j j j jv f v x x s s= ∈ =  

, [ , )& ( , ]&

, [ )& ( ]&

1 0 1 1 0 2 2
i i i i j j i i i j j

i 2 2 3 1 2 3 2
i i i i j j i i i j j

s v v v x s v v v x s
x

s v v ,v x s v v ,v x s

    ∈ = ∨ ∈ =    = 
   ∈ = ∨ ∈ =    

For the causality ordering j iV V→ , q ji=  

ˆj jv v= , ˆi ix x= , ( , ) , X { , }ji 1 2
i i j i i i i iv f v x x s s= ∈ =  

, ( , ]& [ )&

, ( ]& [ )&

1 0 1 1 0 2 2
j j j j i i j j j i i

j 2 1 3 1 2 3 2
j j j j i i j j j i i

s v v v x s v v ,v x s
x

s v v ,v x s v v ,v x s

    ∈ = ∨ ∈ =    = 
   ∈ = ∨ ∈ =    

 

6. LINEAR DIFFERENTIAL VCDS 
SYSTEM WITH COMMON STATE 
VARIABLES 

Let us consider a proper linear differential 
system of the second order, with ,i jV V as 
terminal variables, described by a causal relation 
defined by the equilibrium equation, 

0j j j i i ia v a v a v b v b v b v+ + − + + =2 1 0 2 1 0�� � �� � ,
0, 0a b≠ ≠2 2 . 

For the causality ordering i jV V→ , q = 0 , ˆi iv v= , 
a state realization is, 

ˆ( )1 i
a a

x x x b b v
a a

= − ⋅ + + − ⋅1 1
1 2 1 2

2 2
�

ˆ( ) i
a a

x x b b v
a a

= − ⋅ + − ⋅0 0
2 1 0 2

2 2
�  

ˆj ii
b

v x v
a a

= ⋅ + ⋅2
1

2 2

1
⇔ ˆ 0j ia v b v x− + =2 2 1  

ˆij ij
ix A x B v= ⋅ + ⋅� , ˆij ij

j iv C x D v= ⋅ + ⋅  

[ ]Tx x x= 1 2 , ={ ,X ,X x X } , X= 2X = R  

1

2ij

0

2

a- 1
a

A
a

-
a

 
 
 =
 
 
 

0

1

2ij

2

ab b
a

B
a

b b
a

 − 
 =
 

− 
 

1 2

0
0 2

[ ]ij

2
C

a
=

1 0 ij bD
a

= 2

2
 

For the causality ordering j iV V→ , q = 1 , ˆj jv v=  
state realization is, 

ˆ( )1 j
b b

x x x a a v
b b

= − + − −1 1
1 2 1 2

2 2
�

vi=fi
ji(vj,si

1) 

(si
2, sj

1) 

vi 

vj
0 

vj
1 

vj
2  

vj
3  

vi
3 

vi=fi
ji(vj,si

2) 

vj  

vi
2 vi

1 vi
0  

R(Vi ,Vj) 

vj=fj
ij(vi,sj

1) 

vj=fj
ij(vi,sj

2) 

(si
2, sj

2) 

(si
1, sj

1) 

(si
1, sj

2) 
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Consider the actual and desired global variable 
defined for terminal variables only, 

= { , }i jV Vξ T= [ ]i jv ,vξ ,  ˆ ˆ ˆ= { , }i jV Vξ , Tˆ ˆ ˆ=[ ]i jv ,vξ   

The VCDS is, 
ˆ( ) ( )x A q x B q= ⋅ + ⋅ξ� ,  ˆ( ) ( )H q x G qξ = ⋅ + ⋅ξ  

( ) ( ) ij jiA q q A q A= − ⋅ + ⋅1 ,  
( ) ( ) ij jiB q q B q B= − ⋅ + ⋅1  

( )
( )

q
b

H q
b

q
a

 − ⋅ 
 =
 

− 
 

2

2

2

1 0

1 0
 ( )

2

2

2

a
1- q q

b
G q =

1(1- q) q
a

 ⋅ 
 
 

⋅ 
 

 

Generally for an un-oriented differential system 
whose existence relation  

( ) ( ) 0 , 0, 0,
n n

k k
k j k i n n

k k
a v b v a b

= =
⋅ − ⋅ = ≠ ≠∑ ∑

1 1
 

contains only two terminal variables ,i jV V , two 
causal ordering can be established. For each of 
them the above existence relation is realized by 
state equations, considering a common state 
variable n -dimensional vector x . 

For the causality ordering i jV V→ , 0q = , ˆi iv v= , 
a state realization is of the form, 

ij ij
iˆx A x B v= ⋅ + ⋅� , ij ij

j iˆv C x D v= ⋅ + ⋅  

and for the causality ordering j iV V→ , 1q = , 
ˆj jv v= , a state realization is of the form, 

ji ji
jˆx A x B v= ⋅ + ⋅� ,  ji ji

i jˆv C x D v= ⋅ + ⋅  

The VCDS state equations have now the are, 
ˆ( ) ( )x A q x B q= ⋅ + ⋅ξ�  , ˆ( ) ( )H q x G qξ = ⋅ + ⋅ξ  

( ) ( ) ij jiA q q A q A= − ⋅ + ⋅1 , 
( ) ( ) ij jiB q q B q B= − ⋅ + ⋅1  

( )
( )

ji

ij

q C
H q

q C

 ⋅
=  

− ⋅  1
, ( )

( )

ji

ij

q q D
G q

q D q

 − ⋅
=  

− ⋅  

1

1
 

 

Example. Let the Existence Relation be 

. . 0j j j i i iv v v v v v⋅ + ⋅ + − − ⋅ − =16 1 6 0 2�� � �� �  

This involves two causal orderings characterized 
by the following transfer functions and state 
equations,  

V .( ) :
V .

i
ij

j

(s) s sH s
(s) s s

+ +
= =

+ +

2

2
0 2 1

16 1 6 1
 

-0.1 -0.125
0.5 0

ijA  
=  

 
, T[0.25 0]ijB = , 

[0.025 0.4688]ijC = 0.0625ijD =  

V .( ) :
V .

j
ji

i

(s) s sH s
(s) s s

+ +
= =

+ +

2

2
16 1 6 1

0 2 1
 

-0.2 -0.25
4 0

jiA  
=  

 
; T[2 0]jiB = ; 

[-0.8 -1.875]jiC = ; 16jiD = . 

The responses of the corresponding VCDS to 
step desired global variable ξ̂  and pulse 
variation of the causality ordering variable 

( )q q t=  is represented in Fig.2. for the actual 
global variables ξ . 

The evolution of the shared state variables is 
illustrated in Fig.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Step response of terminal variables. 
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Fig 3. State variables evolution. 

7. CONCLUSIONS 

This paper deals with dynamical systems which 
models physical objects whose causal input-
output ordering is changing during their 
evolution. Such a system is named Variable 
Causality Dynamical System (VCDS).  

VCDS are controlled from outside by a new 
input called causal ordering signal sharing the 
same set of state variables. In VCDS, all the 
variables, except the causal ordering signal, are 
gathered in two forms of so called global 
variables as current global variable and desired 
global variable. There are proposed formal 
definitions for covariance and causality 
properties of variables and relations irrespective 
of the time domain.  

Applications in walking robots of the VCDS 
approach developed including simulations in 
Mathlab environment prove the advantages of 
this approach. 
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