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Abstract: Walking is one of the main human gaits of leg locomotion. Despite the simplicity with
which humans appear to walk, this gait is inherently complex with highly nonlinear dynamics.
Walking is made up of two distinct phases: single support phase (SSP) and double support phase
(DSP). Since single support phase accounts for a much larger share in a walking gait cycle; it
has been the most interesting topic of studies in this field. In SSP, one leg appears as the swing
(moving) leg and the other one will be stationary or stance leg; the swing leg is usually modelled
as a fixed double pendulum. The links of a double pendulum, in this case, will represent the
thigh and shank of a human leg and its joints, hip and knee, will connect the upper body to
thigh and then shank, respectively.
The main differences in this study, compared to the previous works, are assuming the double
pendulum is movable and considering the joint self-impact constraint in double pendulum
modeling at the knee joint. This constraint has an important role in realizing the practical
characteristics of a swing leg; in other words, imposing this constraint necessitates that the
shank link cannot assume the rotation angles which are greater than that of the thigh link.
Therefore, prominent objective of this research is to propose a nonlinear model-based control
method for a constrained (joint self-impact) movable double pendulum which models a more
realistic swing leg. Due to complex nonlinear terms in dynamics equations of the joint self-impact
swing leg, we propose to design the controller by taking advantage of the feedback linearization
control method, which is a benchmark method for complex nonlinear systems.
To achieve this goal, the available data of normal human gait will be taken as the desired
trajectories for the hip and knee joints and the origin of the double pendulum. The simulation
results of applying the proposed method to the constrained double pendulum demonstrate that
the swing leg tracks the normal human gait with a negligible and acceptable error.

Keywords: Leg locomotion, Self-impact joint constraint, Movable double pendulum, Feedback
linearization, Single support phase, Swing leg.

1. INTRODUCTION

Human locomotion is the ability of human to move from
one place to another. It is considered from three perspec-
tives of walking, jogging, and running gaits. Walking is
one of the main gaits of locomotion and happens more
frequently than the other ones. It is defined as subsequent
gait cycles; each walking gait cycle means the period from
initial contact of one foot to the following initial contact of
the same foot. Human locomotion has been an active re-
search field of study for many years Zhang and Zhu (2006).
Although the walking appear to be a simple exercise for

the human, this locomotion gait is inherently complex with
highly nonlinear dynamics, Rose et al. (2006), and has
received a particular attention in recent years.
Walking is made up of two main distinct phases: single
support phase (SSP), during which the walking advances
as an open kinematic chain; and double support phase
(DSP), during which the walking appears as a closed
kinematic loop. Since SSP assumes a much longer portion
of the gait cycle; this phase has been the main focus of
research study in this field, Ayyappa (1997).
In single support phase one leg acts as the swing (mov-
ing) leg and the other one will be stationary or stance
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leg, Ayyappa (1997). A thorough review of the relevant
literature reveals that the swing leg is frequently modelled
as a fixed double pendulum, Huang et al. (2007); Goswami
et al. (1997).
The body joints are the junctions of two or more system
organs. The relative motion of some of these organs are
restricted with respect to each other through the joint;
we refer to this type of joints as self-impact joints. Joint
self-impact phenomenon is a natural property of the body;
considering this phenomenon in modeling of the body can
exhibit a more realistic behavior of the system.
One particular and important example of this type of the
joints is the knee joint. A careful observation of walking
reveals that in a complete period of walking gait cycle,
joint self-impact phenomenon happens between shank and
thigh at knee joint in specific times. This means flexion and
extension of a leg has a specific angle range. A detailed
schematic of knee joint is depicted in Fig. 1 and the joint
self-impact is shown in Fig. 2, when shank and thigh are
aligned.
Recently, inclusion of joint self-impact phenomenon in sys-
tem modeling has been studied by a number of researchers
in the fields of dynamical systems and biomechanics. They
have pointed out that this phenomenon should be con-
sidered as a constraint in the governing equations, Singh
et al. (2008); Ono et al. (2000, 2001, 2004); Sangwan et al.
(2004); Mukherjee et al. (2007); Huang et al. (2007). This
is despite the fact that in most studies, modeling has been
carried out ignoring these constraints, Cross (2011); Miller
(2011); Couceiro et al. (2008, 2009, 2010, 2012).
In self-impact phenomenon, after the constraint is estab-
lished (the constraint setting stage), the members may
move together for some moments (the constrained motion
stage). The importance of investigating this type of dy-
namical systems, in our case a movable double pendulum
with joint self-impact constraint, is that the governing
dynamical equations should be modified due to the system
switch from the free motion state to a constrained one.
Moreover, designing a controller for this modified system
will be an interesting problem.
Due to discontinuity and nonlinearity of this phenomenon,
controlling of this system becomes very complicated and
will need advanced control methods; this has remained
undiscussed in the literature and will be the main focus
of this paper.
Many researches have been carried out for controlling the
swing leg without considering this constraint by various
control methods, Blum et al. (2007, 2010). In these stud-
ies, the swing leg has been modelled as a simple double
pendulum. On the other hand, there have been some
studies in which a linear proportional controller for a
robot walking on a smooth surface has been designed when
taking into account the constraint as a stopper, Ono et al.
(2000, 2001, 2004); Huang et al. (2007); Sangwan et al.
(2004); Mukherjee et al. (2007).
The control of swing leg, considering self-impact con-
straint, can be studied by two approaches. One of these
approaches is that the energy which is dissipated from
the system during the constraint establishment must be
compensated in each gait cycle. Ono et al. (2000, 2001,
2004); Huang et al. (2007), obtained the dissipated energy
due to joint self-impact stopper. In order to restore the
dissipated energy per cycle, they applied a torque to the

hip joint model; this torque was determined by a simple
proportional controller. This approach is appropriate for
regulation purposes and not for tracking control of the
(desired motion of the) swing leg during the gait cycle.
Also, in these studies, joint self-impact phenomenon was
considered as a constraint in the governing equations using
impulse and momentum approach, which is able to model
the constraint setting stage, but unable to model the
constrained motion stage.
The other approach is to use an advanced controller suit-
able for both regulation and tracking control problems of
the swing leg modeled by a movable double pendulum
including the self-impact constraint. To carry out this
objective, the available data of normal human gait will
be considered as the desired trajectories of the hip and
knee joints and the origin of the double pendulum, Ounpuu
(1994); McCaw (2001).

Fig. 1. Detailed schematics of knee joint

Fig. 2. Joint self-impact, when shank and thigh are aligned,
in a complete period of walking

In this paper, first, modelling of a swing leg (as both
fixed and movable double pendulums) considering joint
self-impact constraint will be presented. Next, the control
strategy for trajectory tracking control of the joint self-
impact system will be presented. The proposed control
method, due to the nonlinear nature of this phenomenon,
is feedback linearization approach. Finally, the simulation
results are reported and discussed.

2. MATHEMATICAL DESCRIPTION OF
DYNAMICAL MODELLING

As mentioned earlier, walking is made up of two main
distinct phases: SSP and DSP. According to the fact that
SSP accounts for a much larger share in a walking gait
cycle; this phase has been the main focus of research study
in this field. In SSP, one leg appears as the swing leg and



Control Engineering and Applied Informatics 101

the other one will be stationary. The swing leg is frequently
modelled as a simple unconstrained double pendulum. The
thigh and shank of a human leg will be represented by the
links of the double pendulum whose joints, hip and knee,
will connect the upper body to thigh and shank. The total
moments of the leg muscles applied to move thigh and
shank will be designated by two external (motor) torques
applied at the hip and knee joints. The governing equations
of this system will be presented in section 2.1.
The main differences in this study, compared to the previ-
ous works, are assuming the double pendulum is movable
and considering the joint self-impact constraint in double
pendulum modeling at the knee joint. Consequently, the
mathematical modeling will be presented for two distinct
cases: Case A: constrained fixed double pendulum and
Case B: constrained movable double pendulum. Case A
only deals with the second difference and Case B considers
both differences.
In section 2.2, the joint self-impact phenomenon is mod-
eled as a torsional spring-damper system. Then, to account
for both the constraint setting and the constrained motion
stages of the constraint, and to have them characterized
in a unified manner, a unit step (Heaviside) function will
be used for dynamical modelling of a constrained double
pendulum. In order to have continuous dynamic equations,
this function has to be substituted by using a suitable con-
tinuous approximation, for example an exponential func-
tion, which will be discussed in section 2.3. By using an-
other step function approximation for the systems physical
consistency, dynamics of a constrained double pendulum
will be presented in section 2.4. In section 2.5, the set of
the equations obtained in 2.4 will be rewritten in the state-
space form which will be used in order to design a feedback
linearization controller. This will complete the state-space
modeling of a constrained fixed double pendulum. For the
second case, the constrained movable double pendulum,
to avoid lengthy presentation of the modeling, dynamic
equations of the system will be derived based on Lagranges
method and presented in a compact form (section 2.6) and
then will be rewritten in the state space form (section 2.7).

2.1 Description of dynamical modelling of a swing leg as
a simple unconstrained double pendulum

Fig. 3 shows schematics of an unconstrained double
pendulum. In this figure, θ1 and θ2, denote the hip and
knee rotation angles with regard to the vertical axis,
respectively. τ1 and τ2 are the applied external (motors)
torques that move the thigh and shank links.

Fig. 3. Schematics of an unconstrained double pendulum

Dynamic equations of this system based on Lagranges
method can be derived as follows (Singh et al. (2008)):

(m1+3m2)l
2
1θ̈1

3 + m2l1l2θ̈2 cos(θ1−θ2)
2 +

m2l1l2θ̇
2
2 sin(θ1−θ2)
2

+ (m1+2m2)gl1 sin θ1
2 = τ1

(1)
m2l

2
2θ̈2
3 + m2l1l2θ̈1 cos(θ1−θ2)

2 − m2l1l2θ̇
2
1 sin(θ1−θ2)
2

+m2gl2 sin θ2
2 = τ2

(2)

where m1, m2 are thigh and shank masses, and l1, l2, are
thigh and shank lengths, respectively.

Case A. Dynamic modeling of a swing leg as a
constrained fixed double pendulum

2.2 Description of dynamical modelling of joint self-impact
in a constrained fiexed double pendulum

For an unconstrained double pendulum, θ2 may assume
any values regardless of the amount of θ1 rotation angle,
see Fig. 3. However, for genuine mammalian legs this
assumption is not valid and shank cannot assume the
rotation angles which are greater than that of thigh. This
discrepancy will be accounted for in system modeling by
considering a self-impact constraint at the knee joint which
will be activated when θ2 ≥ θ1, i.e, in this situation, unlike
the case for an unconstrained double pendulum, we will
have θ2 = θ1 for a constrained double pendulum.
Ono et al. (2000, 2001, 2004); Huang et al. (2007), consid-
ered the joint self-impact constraint as a stopper. On the
other hand, Singh et al. (2008); Chatterjee et al. (1995),
used a spring and damper between two colliding members
to model self-impact elastic and inelastic damper. The
latter is a much better choice since it models both stages
of the constraint setting and the constrained motion of the
joint self-impact phenomenon.
Fig. 4 shows a self-impact fixed double pendulum, Singh
et al. (2008).

Fig. 4. Schematics of a constrained fixed double pendulum.

In Chatterjee et al. (1995) modelling, which is known as
force-based method, McCaw (2001), the interaction force
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is described by a linear spring-damper element. The gen-
eral form of this model is:

Fn = cδ̇ + kδ (3)

where, c and k are the equivalent torsional damping and
stiffness coefficients, respectively. δ and δ̇ are rotation
angle and angular velocity, Singh et al. (2008).
In addition, the joint self-impact phenomenon should be
modeled by forces that are continually exerted between
members in the time period of the activation of the con-
straint. Singh et al. (2008), and Chatterjee et al. (1995),
used Heaviside step function in their modeling to represent
this constraint for its limited activation time. Therefore,
dynamical equations for joint self-impact fixed double
pendulum with torsional spring and damper as joint self-
impact modeling will be modified as follows:

(m1+3m2)l
2
1θ̈1

3 + m2l1l2θ̈2 cos(θ1−θ2)
2 +

m2l1l2θ̇
2
2 sin(θ1−θ2)
2 + (m1+2m2)gl1 sin θ1

2

+U (θ2 − θ1)
(
k (θ1 − θ2) + c

(
θ̇1 − θ̇2

))
= τ1

(4)

m2l
2
2θ̈2
3 + m2l1l2θ̈1 cos(θ1−θ2)

2

−m2l1l2θ̇
2
1 sin(θ1−θ2)
2 + m2gl2 sin θ2

2

+U (θ2 − θ1)
(
k (θ2 − θ1) + c

(
θ̇2 − θ̇1

))
= τ2

(5)

2.3 Approximation of Heaviside step function for continuous
modelling of joint self-impact constraint

In view of the fact that the step function creates discon-
tinuities at the beginning of self-impact constraint, direct
solution of equations with step function is not possible. To
resolve this issue, Singh et al. (2008), and Chatterjee et al.
(1995), first proposed to use the Fourier expansion (Har-
monic) of the response and replaced it in the governing
equations.
Since there is no harmonic forces in the joint self-impact
double pendulum, Fourier expansion can cause complex
nonlinear equations and substantial reduction in the accu-
racy of the solution. The key point is that the Heaviside
step function at the joint self-impact setting stage (when
θ2 = θ1) is not differentiable. To solve the system of
equations in a continuous domain, an approximation of
the Heaviside function in the form of a continuous function
is needed. The following is an example of a function that
can be used for the approximating the Heaviside function,
Singh et al. (2008):

U (θ2 − θ1) ≈ 1

2
(1 + tanh [r (θ2 − θ1)]) =

1

1 + e−2r(θ2−θ1)

(6)
By increasing r, the approximation to the step function
will be improved, Singh et al. (2008).

2.4 Physically consistent dynamical modelling of a swing
leg as a constrained double pendulum

Considering the spring and damper model for joint self-
impact constraint, equation (3), the joint self-impact con-
straint moment can be expressed as follows:

fwdT
1
ct = k (θ2 − θ1) +

(
θ̇2 − θ̇1

)
(7)

fwdT
2
ct = k (θ1 − θ2) +

(
θ̇1 − θ̇2

)
(8)

In general, for two rigid members undergoing self-impact
constraint, the contact moments should always be posi-
tive. The condition fwdT

1
ct > 0 is always satisfied in the

above model, if the self-impact constraint at its setting
stage is perfectly elastic. But since self-impact constraint
is a passive phenomenon and there is some loss of energy
involved at this stage, there can be a point where fwdT

1
ct

crosses 0 and becomes negative, which would imply local
adhesion; however, the two members should be moving
together (while the constraint is activated) or should be
moving away from each other at the end of the constraint
period of activation. Therefore, the constraint moment is
in a direction that opposes the members separation.
To correct this physically inconsistent situation, it is neces-
sary to ensure that the two members completely separate
from each other when fwdT

1
ct = 0.

By replacing the above approximation in the previous
equations and using approximation function for continuous
improvement and correcting the physically inconsistency
of the problem, the equations of motion of joint self-impact
fixed double pendulum can be written as, Singh et al.
(2008):

(m1+3m2)l
2
1θ̈1

3 + m2l1l2θ̈2 cos(θ1−θ2)
2

+
m2l1l2θ̇

2
2 sin(θ1−θ2)
2 + (m1+2m2)gl1 sin θ1

2

+
(k(θ1−θ2)+c(θ̇1−θ̇2))

(1+e−2r(θ2−θ1))
(
1+e−2r(k(θ2−θ1)+c(θ̇2−θ̇1))

) = τ1

(9)

m2l
2
2θ̈2
3 + m2l1l2θ̈1 cos(θ1−θ2)

2

−m2l1l2θ̇
2
1 sin(θ1−θ2)
2 + m2gl2 sin θ2

2
(k(θ2−θ1)+c(θ̇2−θ̇1))

(1+e−2r(θ2−θ1))
(
1+e−2r(k(θ2−θ1)+c(θ̇2−θ̇1))

) = τ2

(10)

The above dynamical equations can be rewritten in a
compact form as follows:

MA(q)q̈ + CA(q, q̇)q̇ +GA(q) + τfA(q, q̇) = τA (11)

where,

qA = [θ1, θ2]
T
,MA =

[
mA11

mA12

mA21
mA22

]
, τA =

[
τA1

τA2

]
CA =

[
cA11

cA12

cA21
cA22

]
, GA =

[
gA1

gA2

]
, τfA =

[
τfA1

τfA2

]
where the components mAij , cAij , gAi and τfAiwill be
presented in Appendix A.

2.5 State space representation of a swing leg as a constrained
fixed double pendulum

The set of dynamical equations of a swing leg modelled as
a constrained fixed double pendulum, equation (11), may
be represented as follows:

q̈ = νA = M−1
A {τA − (CA(q, q̇)q̇ +GA(q) + τfA(q, q̇))}

(12)
where νA is a 2× 1 vector. By defining the sate variables,{
xA1

= θ1 = q1, xA2
= θ̇1 = q̇1, xA3

= θ2 = q2, xA4
= θ̇2 = q̇2

,the state-space form of the dynamical equations may be
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developed as follows:

ẋA1
= xA2

ẋA2
= νA1

ẋA3
= xA4

ẋA4
= νA2

(13)

Also, the output variables are:

yA1
= xA1

(14)

yA2 = xA3 (15)

and the input control variables are:

uA1
= τA1

(16)

uA2 = τA2 (17)

The above model of a swing leg as a constrained fixed
double pendulum can be written, for further study, in a
compact affine form as:

ẋ = f(x) + g(x)u (18)

y = h(x) (19)

Case B. Dynamic modeling of a swing leg as a
constrained movable double pendulum

2.6 Dynamic modeling of a swing leg as a constrained
movable double pendulum

Fig. 5 shows schematics of a constrained movable double
pendulum.

Fig. 5. Schematics of a constrained movable double
pendulum

In this figure, θ1 and θ2, denote the hip and knee rotation
angles with regard to the vertical axis, respectively and
x and y denote the horizontal and vertical displacements
of the origin of the double pendulum, respectively. Also,
τB1

and τB2
are the applied external (motors) torques that

move the thigh and shank links, also fB1
and fB2

are the
applied external forces that move the origin of the double
pendulum. Dynamic equations of this system based on
Lagranges method can be derived in a compact form as
follows:

MB(q)q̈ + CB(q, q̇)q̇ +GB(q) + τfB(q, q̇) = τB (20)

where,

qB = [x, y, θ1, θ2]
T
,MB =

mB11
mB12

mB13
mB14

mB21
mB22

mB23
mB24

mB31
mB32

mB33
mB34

mB41
mB42

mB43
mB44

 ,
CB =

 cB11
cB12

cB13
cB14

cB21
cB22

cB23
cB24

cB31
cB32

cB33
cB34

cB41
cB42

cB43
cB44

 , GB =

 gB1

gB2

gB3

gB4

 , τB =

 fB1

fB2

τB1

τB2

 ,

τfB(θ, θ̇) =


0
0

(k(θ1−θ2)+c(θ̇1−θ̇2))
(1+e−2r(θ2−θ1))

(
1+e−2r(k(θ2−θ1)+c(θ̇2−θ̇1))

)
(k(θ2−θ1)+c(θ̇2−θ̇1))

(1+e−2r(θ2−θ1))
(
1+e−2r(k(θ2−θ1)+c(θ̇2−θ̇1))

)

 ,
where the components mBij , cBij and gBi will be presented
in Appendix B.

2.7 State space representation of a swing leg as a constrained
movable double pendulum

The set of dynamical equations of a swing leg modelled as
a constrained movable double pendulum, equation (20),
may be represented as follows:

q̈B = νB = M−1
B {τB − (CB(q, q̇)q̇ +GB(q) + τfB(q, q̇))}

(21)
where νB is a 4× 1 vector. By defining the sate variables,
xB1 = x = q1, xB2 = ẋ = q̇1, xB3 = y = q2,

xB4
= ẏ = q̇2, xB5

= θ1 = q3, xB6
= θ̇1 = q̇3,

xB7 = θ2 = q4, xB8 = θ̇2 = q̇4
the state-space form of the dynamical equations may be
developed as follows:

ẋB1
= xB2

ẋB2
= νB1

ẋB3
= xB4

ẋB4
= νB2

ẋB5
= xB6

ẋB6
= νB3

ẋB7
= xB8

ẋB8
= νB4

(22)

Also, the output variables are:

yB1 = xB1 (23)

yB2 = xB3 (24)

yB3
= xB5

(25)

yB4
= xB7

(26)

and the input control variables are:

uB1
= fB1

(27)

uB2
= fB2

(28)

uB3
= τB1

(29)

uB4
= τB2

(30)

The above model of a swing leg as a constrained movable
double pendulum can also be written in the compact affine
form of equations (18), (19).



104 Control Engineering and Applied Informatics

3. TRACKING CONTROL OF THE JOINT
SELF-IMPACT SYSTEM

To the best our knowledge, there has not been any publi-
cation on tracking control of any joint self-impact system.
However, there are a few articles on regulation problem
of the constrained double pendulum system by some re-
searchers, Ono et al. (2000, 2001, 2004); Huang et al.
(2007); Sangwan et al. (2004); Mukherjee et al. (2007),
and also by the authors, Bazargan-Lari et al. (2011).
For the tracking problem, the gait cycles of normal walking
taken from the available data, Ounpuu (1994); McCaw
(2001), should be assigned as the desired trajectories of the
thigh and knee joints of the constrained double pendulum.
Due to complex nonlinear terms in the system dynamics
equations of self-impact double pendulum, we propose
to design a nonlinear model-based controller by taking
advantage of the feedback linearization control method,
which is a well-known fundamental and prevailing method
for complex nonlinear systems.

3.1 Feedback linearization

By input-output linearization it is meant the generation
of a linear differential relation between the outputy and
a new input ν, Slotine et al. (1991). The general system
dynamical equations can be written in the affine form
equations (18), (19).
Given the nonlinear system in equation (18) and equation
(19), input-output linearization of the system is obtained
by first differentiating the output yi until all inputs appear.
Assume that ri is the smallest integer such that at least
one of the inputs appears in yrii , then,

yrii = Lrif hi +

m∑
j=1

LgjL
ri−1
f hiuj (31)

with LgjL
ri−1
f hi(x) 6= 0 for at least one output. Perform-

ing the above procedure for each output yi, yields: y
r1
1
· · ·
· · ·
yrmm

 =


Lr1f h1
· · ·
· · ·

Lrmf hm

+ E(x)u (32)

where, Lfh = ∇h.f , h : Rn → R is a smooth scalar
function, f : Rn → Rn is a smooth vector field on Rn and
the m×m matrix E(x) is systematically obtained during
taking the derivatives of the outputs. If, as assumed above,
the partial relative degrees (relative degree of a nonlinear
system is equal to required number of differentiation of
the output of a system to generate an explicit relationship
between the output y and input u) ri are all well defined,
then Ω is a finite neighborhood of x0. Furthermore, if E(x)
is invertible over the region Ω, then, input transformation
is:

u = E−1


ν1 − Lr1f h1
· · ·
· · ·

νm − Lrmf hm

 (33)

which yields m equations of the simple form

yrii = νi (34)

Since the input νi only affects the output yi as in equation
(34), it is called a decoupling control law, and the invertible

matrix E(x) is called the decoupling matrix of the system,
Slotine et al. (1991). The system of equations (18) and
(19) is then said to have relative degrees(r1, r2, . . . , rm)
at x0, and the scalar r = (r1 + r2 + · · ·+ rm) is called the
total relative degree of the system at x0.

3.2 Controller design

To apply the input-output feedback linearization proce-
dure, the outputs are differentiated until the inputs are all
appeared in the equations. For both cases A and B, we
have to take the second derivatives to see all the inputs.

Case A:

ÿAi = νAi =
2∑
j=1

hijτj −
2∑
j=1

hij(CAq̇ +GA + τfA)j

i = 1, 2

(35)

where, hAij =
(
M−1
A

)
ij

and (CAq̇ +GA + τfA)j shows the

jth component of the vector (CAq̇ +GA + τfA).

Case B:

ÿBi = νBi =
4∑
j=1

hijτj −
4∑
j=1

hij(CB q̇ +GB + τfB)j

i = 1, 2, 3, 4

(36)

where, hBij = M−1
Bij and (CB q̇ +GB + τfB)j shows the

jth component of the vector (CB q̇ +GB + τfB).
Comparing equation (32) with equations (12) and (21)
reveals that EA(x) = M−1

A , EB(x) = M−1
B . Since M−1

A

and M−1
B are positive definite, EA and EB will be non-

singular and therefore, they are invertible. As it can be
seen from the above equations, the total relative degree of
the both systems, is equal to 4 for case A and 8 for case
B, respectively. Therefore, both of them have no internal
dynamics, Slotine et al. (1991). Then, the control inputs
can be calculated from equation (33) as follows:
Case A:

uAi =
2∑
j=1

mAijνAj − hAij (CAq̇ +GA)j

i = 1, 2

(37)

Case B:

uBi =
4∑
j=1

mBijνBj − hBij (CB q̇ +GB)j

i = 1, 2, 3, 4

(38)

The above inputs transform the output equations to the
simple form of equation (34), and; therefore, the external
dynamics can be easily controlled by any linear technique.
The controller can be tuned, by applying four coefficients,
kAP1

, kAP2
, kAD1

, kAD1
, for case A and eight coefficients,

kBP1
, kBP2

, kBP3
, kBP4

, kBD1
, kBD2

, kBD3
, kBD4

for case B,
as the controller gains, in order to track the desired
trajectories. The decoupling control laws may be defined
as follows:
Case A:

νAi = ÿid − kAPiei − kADiνAi i = 1, 2 (39)

where, eAi = θAi − θAid, ėAi = θ̇Ai − θ̇Aid
Case B:

νBi = ÿid − kBPiei − kBDiνBi i = 1, 2, 3, 4 (40)
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where, eBi = θBi − θBid, ėBi = θ̇Bi − θ̇Bid
Applying the decoupling control law in the exactly lin-
earized equations of, equation (34), leads to the following
tracking error dynamics:
Case A:

ëAi = kADiėAi + kAPieAi = 0 i = 1, 2 (41)

Case B:

ëBi = kBDiėBi + kBPieBi = 0 i = 1, 2, 3, 4 (42)

By choosing positive values for the constants kAPi ,kADi ,kBPi
and kBDi , both of the above error dynamics are exponen-
tially stable.

4. SIMULATIONS AND DISCUSSION

Table 1 shows the parameters that are used to simulate
the locomotion of a swing leg as a self-impact double
pendulum. The anthropometric dimensions and masses
match the parameters presented in reference, McCaw
(2001).

Table 1. The parameters used to simulate
the leg locomotion as a self-impact double

pendulum

Parameter Description Value

m1,m2 Masses of thigh and shank links 0.1 kg
l1, l2 Lengths of thigh and shank links 0.55 m
c Damping coefficient 2.4 N · s/rad
k Stiffness coefficient 42 N/rad
r Accuracy of the approximating

function
10e5

4.1 The gait cycles of normal walking taken as the desired
joint angles of the hip and knee joints and the desired
horizontal and vertical displacements of the origin of the
double pendulum

For the tracking problem, the desired trajectories of
the thigh and knee joints and the origin of the double
pendulum, representing the swing leg during normal walk-
ing, should be taken from the available normal gait cycle
data, Ounpuu (1994); McCaw (2001).
The desired trajectories are presented in Figs. 6, 7, 8; the
period in which the joint self-impact phenomenon occurs
is highlighted in Fig. 6.
According to Fig. 6, joint self-impact phenomenon for joint
self-impact double pendulum system happens when the
knee rotation angle is greater than that of the hip.

Fig. 6. Human’s hip and knee normal gait cycles, (Ounpuu
(1994))

Fig. 7. Desired horizontal displacement of the origin of the
constrained movable double pendulum.

Fig. 8. Desired vertical displacement of the origin of the
constrained movable double pendulum.

Taking the time derivative of these curves, the desired
angular velocities of the hip and knee joints and the desired
horizontal and vertical velocities of the origin of the double
pendulum will be obtained, see Figs 9, 10.

Fig. 9. Human’s hip and knee desired angular velocities

Fig. 10. Desired horizontal and vertical velocities of the
origin of the constrained movable double pendulum
as a swing leg in normal walking
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4.2 The block diagram of the proposed controller

In this article, feedback linearization method is proposed
to be used for the trajectory tracking of a constrained
double pendulum. The block diagram of the proposed
controller is illustrated in Fig. 11.

Fig. 11. Controller block diagram

4.3 Self-impact double pendulum simulation results

Case A. Simulation results for a swing leg as a
constrained fixed double pendulum
The purpose of the this case is to simulate the tracking
control of the self-impact fixed double pendulum. Fig.
12 shows the hip joint desired and tracked trajectories,
which is well followed by the swing leg. Time history of
hip joint angle error is shown in Fig. 13. As already seen
in Fig. 6, the joint self-impact constraint is activated in
the time period of 1.38 to 1.52 sec. In this period, the
swing leg hip joint follows the desired trajectory with an
acceptable maximum error of about 0.007%. The same
results are established for knee joint in Figs. 14 and 15 and
the maximum error is about 0.013%. As seen in Figs. 12,
13, 14, 15, the performance of the controller is acceptable.
As it can be seen in the figures, when the constraint is
activated, the hip and knee joint angular velocity and
the applied torque of the motor suddenly changes in both
joints. Despite this sudden changes, the controller follows
the trajectories of thigh and knee joints accurately.
Fig. 16 shows the time history of the tracked angular
velocity of the hip joint together with its desired angular
velocity. As seen in the figure, in the time period of 1.38
to 1.52 sec, the swing leg is encountered with a sudden
change in its speed, which is caused by an increase in the
angular momentum of the link due to the establishment of
the constraint. The controller has matched the hip joint
speed to its desired value with the maximum error of
about 0.15%. For knee joint velocity, the maximum error
is about 0.035%. Figs. 18 and 19 represent the amount of
torques applied by the motors embedded in the hip and
knee joints, respectively. When joint self-impact constraint
is activated, the moment caused by the establishment of
the constraint is in the same direction of the motor torque
of the hip joint, which causes the motor to provide less
torque to track the path. These figures show the sudden
drop in the amount of torques.

Fig. 12. Hip joint desired and tracked trajectories

Fig. 13. Time history of error of the hip joint angle.

Fig. 14. Knee joint desired and tracked trajectories.

Fig. 15. Time history of error of the knee joint angle.
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Fig. 16. Time history of the hip joint desired and tracked
angular velocities.

Fig. 17. Time history of the knee joint desired and tracked
angular velocities.

Fig. 18. Time history of the hip joint applied torque.

Fig. 19. Time history of the knee joint applied torque.

Case B. Simulation results for a swing leg as a
constrained movable double pendulum
The purpose of the this case is to simulate the tracking con-
trol of the self-impact movable double pendulum. Figs. 20

and 21 show desired horizontal and vertical displacement
of the origin of the constrained movable double pendulum
and tracked trajectories, which are well followed by the
swing leg. moreover, Fig. 22 shows the hip joint desired
and tracked trajectories, which is well followed by the
swing leg. Time history of hip joint angle error is shown in
Fig. 23. In the period of activation of the constraint, Fig.
6, the swing leg hip joint follows the desired trajectory
with an acceptable maximum error of about 0.005%. The
same results are established for the knee joint in Figs 25
and 24 and the maximum error is about 0.0072%. As
seen in Figs. 20, 21,22, 23, 25, 24 the performance of
controller is acceptable. As it can be seen in the figures,
when the constraint is activated, horizontal and vertical
velocity of the origin of the constrained movable double
pendulum and the hip and knee joint angular velocity and
the applied torque of the motor suddenly changes in both
joints. Despite this sudden changes, the controller follows
the Desired trajectories accurately.
Figs. 26, 27 show the horizontal and vertical velocities of
the origin of the constrained movable double pendulum
with their desired velocties, respectively. Also, Figs. 28,
29 illustrate the time history of the desired and tracked
angular velocities of the hip and knee joints, respectively.
As seen in the figures, in the time period of 1.38 to 1.52
sec, the swing leg is encountered with a sudden change in
its speed, which is caused by an increase in the angular
momentum of the link due to the establishment of the
constraint. The controller has matched the joint’s speed
to their desired values with the maximum error of about
0.25%.
Figs. 30, 31, 32, 33 represent the amount of forces and
torques applied by the motors embedded in the hip and
knee joints, respectively. When joint self-impact constraint
is activated, the moment caused by the establishment of
the constraint is in the same direction of the motor torques
of the joints, which cause the motor to provide less torque
to track the path. These figures show the sudden drop in
the amount of torques.

Fig. 20. Horizontal displacement of the origin of the con-
strained movable double pendulum desired-tracked
trajectories.
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Fig. 21. Vertical displacement of the origin of the con-
strained movable double pendulum desired-tracked
trajectories.

Fig. 22. Hip joint desired and tracked trajectories.

Fig. 23. Time history of error of the hip joint angle.

Fig. 24. Knee joint desired and tracked trajectories.

Fig. 25. Time history of error of the knee joint angle.

Fig. 26. Desired and tracked horizontal velocity of the
origin of the constrained movable double pendulum.

Fig. 27. Desired and tracked vertical velocity of the origin
of the constrained movable double pendulum.

Fig. 28. Time history of the hip joint desired and tracked
angular velocities (Movable).
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Fig. 29. Time history of the knee joint desired and tracked
angular velocities (Movable).

Fig. 30. Time history of the applied horizontal force at the
origin of the constrained movable double pendulum.

Fig. 31. Time history of the applied vertical force at the
origin of the constrained movable double pendulum.

Fig. 32. Time history of the applied Hip joint torque
(movable).

Fig. 33. Time history of the applied Knee joint
torque(movable).

5. CONCLUSION

The objectives of this paper were to present a model-based
control method for trajectory tracking of both joint self-
impact constrained fixed and movable double pendulums
which model the swing leg in normal human walking. To
achieve the objectives, first, the dynamical equations of
motion of an unconstrained double pendulum were taken
and then developed and modified to account for the joint
self-impact constraint at the knee joint and also movable
origin of the double pendulum. Two approximations of
the Heaviside step function were applied to the equations
of motion in order to account for continuity and physical
consistency of the derived set of equations of motion. To
control these complicated systems, the available normal
gait cycle data were taken to generate the desired tra-
jectories of the thigh and knee joints and the horizontal
and vertical displacements of the origin of the double
pendulum. The control method used in this paper, due to
the nonlinear nature of the joint self-impact constrained
fixed and movable double pendulums, was feedback lin-
earization approach.
According to the simulation results, the normal gait cycle
data of the rotation angles of the hip and knee joints
and the horizontal and vertical displacements of the ori-
gin of the double pendulum were well followed by the
simulated constrained double pendulums. The joint self-
impact constraint was activated in the time period of 1.38
to 1.52 sec. In this period, even in the presence of the
sudden changes in the hip and knee kinematic variables
at the constraint activation stage, the swing leg (double
pendulum) kinematic variables tracked their desired values
with acceptable maximum errors.
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Appendix A. CASE A, COMPONENTS OF THE
MATRICES MA AND CA AND THE VECTORS GA

AND τFA

mA11
= m1+3m2

3 l21,mA12
= m2l1l2

2 cos(θ1 − θ2)
mA21

= m2l1l2
2 cos(θ1 − θ2),mA22

= m2

3 l
2
2

cA11
= 0, cA12

= m2l1l2
2 sin(θ1 − θ2)θ̇2

cA21
= −m2l1l2

2 sin(θ1 − θ2)θ̇1, cA22
= 0

gA1
=
m1 + 2m2

2
gl1 sin θ1, gA2

=
m2

2
gl2 sin θ2

τfA1 =

(
k (θ1 − θ2) + c

(
θ̇1 − θ̇2

))
(
1 + e−2r(θ2−θ1)

) (
1 + e−2r(k(θ2−θ1)+c(θ̇2−θ̇1))

)
τfA2 =

(
k (θ2 − θ1) + c

(
θ̇2 − θ̇1

))
(
1 + e−2r(θ2−θ1)

) (
1 + e−2r(k(θ2−θ1)+c(θ̇2−θ̇1))

)
Appendix B. CASE B, COMPONENTS OF THE

MATRICES MB AND CB AND THE VECTOR GB

mB11 = 0,mB12 = 0,mB13 = 1
2 l1 (m1 + 2m2) cos θ1

mB14
= 1

2m2l2 cos θ2,mB21
= 0,mB22

= m1 +m2

mB23 = 1
2 l1 (m1 + 2m2) sin θ1,mB24 = 1

2m2l2 sin θ2
mB31

= 1
2 l1 (m1 + 2m2) cos θ1,mB32

= 1
2 l1 (m1 + 2m2) sin θ1

mB33
= 1

4m1l1
2 + Ī1 +m2l1

2,mB34
= 1

2m2l1l2 cos (θ1 − θ2)
mB41 = 1

2m2l2 cos θ2,mB42 = 1
2m2l2 sin θ2

mB43
= 1

2m2l1l2 cos (θ1 − θ2) ,mB44
= 1

4m2l2
2 + Ī2

cB11
= 0, cB12

= 0, cB13
= − 1

2 (l1 (m1 + 2m2) sin θ1) θ̇1
cB14

= − 1
2 (m2l2 sin θ2) θ̇2, cB21

= 0, cB22
= 0

cB23 = 1
2 l1 ((m1 + 2m2) cos θ1) θ̇1, cB24 = 1

2 (m2l2 cos θ2) θ̇2
cB31

= 0, cB32
= 0, cB33

= 0, cB34
= 1

2 (m2l1l2 sin (θ1 − θ2)) θ̇2
cB41

= 0, cB42
= 0, cB43

= − 1
2 (m2l1l2 sin (θ1 − θ2)) θ̇1, cB44

= 0

gB1
= 1

2m2l2 cos θ2, gB2
= m1g +m2g,

gB3 = 1
2 (m1 + 2m2) gl1 sin θ1, gB4 = 1

2m2gl2 sin θ2


