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Abstract: This paper deals with stochastic state and parameter estimation for the biotechnological 
processes. The lipase producing process using Candida rugosa yeast is taking into consideration. 
As is well known from the literature the state variables and the parameters that characterize the 
proper biotechnological process are not accessible to the direct measurement and they are 
affected by noise. In the paper the authors advance the use of two stochastic estimators (the 
Extended Kalman and H∞ Filters) to estimate state variables and parameters of the 
biotechnological processes. 
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1. INTRODUCTION 

The complexity of the bioprocesses makes their 
control problem very difficult. The usual 
modelling procedures, based on kinetic 
enzymatic schemes, lead to nonlinear state 
models, with a large number of parameters [6]. 
Moreover, the state variables that characterize 
the proper biotechnological process are not 
accessible to the direct measurement. In the 
basic configuration, the bioreactor has a number 
of control loops only for the physical and 
chemical variables of the culture environment 
(temperature, stirring, aeration, pH etc.). Other 
important variables like biomass concentration, 
enzyme concentration etc. are measured taking a 
number of samples and analyzing in the 

laboratory. Many times the numbers of samples 
is limited, the analysis is done with difficulty or 
the culture environment from bioreactor could 
contaminate [1]. 

In general the biotechnological processes are 
strongly affected by noise. There are many 
factors, such as the substrate composition, the 
primary operations performed before the 
bioreactor process (bioreactor washing, substrate 
preparation, bioreactor stirilizing and the 
inoculum preparation) that induce a high level of 
uncertainty in process modelling [3]. All these 
factors cannot be mathematically modelled and 
they contribute to the unknowing of the process 
initial state and to the difficulty of the process 
parameter identification with bad results in the 
process simulation. 
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These facts have determined the development of 
some specific techniques to estimate the 
parameters and provide the state observers 
synthesis [4]. State estimation theory was 
developed for linear systems and many solutions 
can be envisaged, according to the nature of the 
system. When nonlinear systems are considered, 
the estimation problem is more complicated. 
Traditionally used approaches are either an 
approximation or an extension of linear 
algorithms or specific nonlinear algorithms. The 
problem with the first method is that 
convergence is not guaranteed and the second 
only applies to one class of systems, which can 
be mathematically complicated [7].   

The structure of the paper is as follows: the 
second section deals with the process model (the 
lipase producing process using Candida rugosa 
yeast); the third section deals with the 
implementation of the Extended Kalman Filter 
for state and parameter estimation, the fourth 
section presents the Extended H∞ state and 
parameter estimator, section 5 presents a study 
regarding the robustness of the solutions 
proposed in the paper and the last section is 
dedicated to the conclusions. 

2. THE MODEL OF THE LIPASE 
PRODUCING PROCESS 

Lipase is an enzyme which is produced in batch 
or fed-batch bioreactors [15]. The lipase is 
obtained using Candida rugosa yeast. The yeast 
growth takes place in a proper environment 
where the substrate consumed by the biomass is 
the oleic acid. The biosynthesis process of the 
lipase is very complex and strongly nonlinear. It 
contains four phases which do appear 
simultaneously: the liquid phase, the organic 
phase, the cellular phase and the gaseous phase.  

The process is given by the following equations: 

1
1( )dS S X F

dt
η= − +   (1)  

2
1 2 2( ) ( ) ( )dS S S Y S

dt
η µ= − ⋅ +  (2) 

2( )dX S X
dt

µ=  (3) 

1 2( , , ) ( ) ( )in
p ex in in

dL S X L S L
dt

ν µ ν µ= − −  (4) 

( )ex
ex in

dL L X
dt

ν=  (5) 

2( ( ) )erC a S b Xµ= +  (6) 

where S1 is the substrate consumed for the 
biomass growth, S2 is the intracellular substrate, 
X represents the biomass, Lin is the intracellular 
enzyme and Lex is the extracellular enzyme. The 
last equation is algebraic and expresses the 
specific outflow rate of CO2, which depends on 
biomass. The parameter Y is the production 
coefficient “biomass/substrate”. The reaction 
rates are given by the equations (7) – (10): 
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In industrial conditions the lipase production can 
be analyzed considering a part of the external 
lipase (the liquid lipase – La). 
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Fig. 1.  The substrate (S1) concentration 

The model simulations have been made using 
the following values of the parameters and the 
results are presented in figures 1-5: 

η*=0.21h-1, KM1=0.11g/l, µ*=0.25h-1, F=0(g/l)h-1, 
KM2=0.25g/l, νp

*=123u/mg, KP=0.26g/l, 
Ki=22.2g/g, νex

*=4.09h-1, Kex=19.5u/mg, 
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Y=1.16g/g, a=0.018mol/g, b=0.0002(mol/g)h-1
, 

Ka1=0.5 and Ka2=0.19g/l [15]. 

 

 

 

 

 

Fig. 2.  The substrate (S2) concentration 

 

 

 

 

 

Fig. 3.  The biomass (X) concentration 

 

 

 

 

 

 

 

 

Fig. 4. The specific growth rate (µ) evolution 

 

 

 

 

 

 

 

 

Fig. 5. The specific absorption rate (η) evolution 

3. THE KALMAN STATE AND 
PARAMETER ESTIMATOR 

3.1. The Kalman Filter 

Let us consider the linear stochastic system 
described by the equations: 

1( ) ( ) ( ) ( )x t Ax t Bu t D w t= + +  (12) 

2 2( ) ( ) ( )y t C x t D v t= +  (13) 

1( ) ( )z t C x t=  (14) 

where nx R∈  is the state vector, my R∈  is the 
measurements vector and pz R∈  is the 
estimated signals vector; w(t) and v(t) are 
vectors of process and measurement noise. The 
process noise and the measurement noise are 
assumed to be white, uncorrelated and with 
normal probability distribution [8]. 

The estimator equation is: 

[ ]2ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )x t Ax t Bu t K y t C x t= + + −  (15) 

The design of the Kalman filter consists in the 
calculus of the gain matrix K which minimizes 
the mean square of the estimation error: 

2 2

0 0

ˆ ( )
t t

E x x d e dτ τ τ= − =∫ ∫  (16) 

The solution is 
T 1
2K PC R−=  (17) 

where the symmetric square matrix P is 
generated by the Riccati equation: 

T T 1
2 2 1P PA AP PC R C P D Q−= + − +  (18) 

In equation (18) Q represents the process noise 
covariance and R is the measurement noise 
covariance. 

3.2. The Extended Kalman Filter 

Let us consider the nonlinear system described 
by the equations: 

1( ) ( ( ), ( )) ( )x t f x t u t D w t= +  (19) 

2( ) ( ( )) ( )y t h x t D v t= +  (20) 

In the case of the nonlinear systems the 
Extended Kalman Filter is used. It uses the 
equations of the linear filter, where the matrices 
A, B and C2 are obtained by linearizing the 
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nonlinear system around each functioning point 
[12]:  

ˆ( , )ˆ( )
ˆ

f x uA x
x

∂
=

∂
; 

ˆ( , )ˆ( ) f x uB x
u

∂
=

∂
; 

2
ˆ( )ˆ( )

ˆ
h xC x

x
∂

=
∂

 

The estimator equation is: 

[ ]ˆ ˆ ˆ( ) ( ( ), ( )) ( ) ( ( ))x t f x t u t K y t h x t= + −  (21) 

3.3. The Extended Kalman Filter for the state 
estimation of the biotechnological processes 

Let us consider the general state space model of 
a biotechnological process [4]: 

1( ) ( ) ( )t K D F Q D w tξ ϕ ξ ξ= − + − +  (22) 

1 2 2 ( )C D v tξ ξ= +  (23) 

where ξ represents the state vector, D – the 
dilution rate, K – the matrix of the production 
coefficients, ϕ - the reaction rates, F – the input 
flow, Q - the output gaseous flow and ξ1 
represents the vector of the measured states. 

A general class of state observers is given by 
equation: 

1 1

ˆ( ) ˆ ˆ ˆ ˆ( ) ( )( )d t K D F Q
dt
ξ ϕ ξ ξ ξ ξ ξ= − + − +Ω −  

 (24) 

Observation: Ω  and ξ  are specific notations in 
the field of biotechnological processes (Ω  - the 
gain matrix and ξ  - the state vector). In the 
same field the standard notations, K and x, have 
another significance: K – the matrix of the 
production coefficients and x – the viable 
biomass concentration. 

The estimation error is defined as follows: 

ˆe ξ ξ= −  (25) 

The dynamics of the estimation error is given by 
the equation 

2
ˆ ˆ ˆ( ) ( ) ( ) ( )e t K e D e C eϕ ξ ϕ ξ ξ = + − − ⋅ −Ω ⋅ 

 (26) 

It can be noticed that 0e = is an equilibrium 
point of the model (26). The linear 
approximation around the value 0e =  is given 
by equation: 

2
ˆ ˆ( ) ( ) ( )e t A C eξ ξ = −Ω ⋅   (27) 

where 

ˆ

( )ˆ( ) nA K D I
ξ ξ

ϕ ξξ
ξ =

 ∂
= − ⋅ ∂ 

 (28) 

In the case of the lipase producing process using 
Candida rugosa yeast the measured variable is 
the biomass X and the variables S1, S2 and X are 
estimated. This is due to the fact that the control 
algorithms need the knowledge of the two 
substrates at every moment. The equations of 
the estimator are the following: 

1
1 1

ˆ ˆ ˆ ˆ( ) ( )dS S X F X X
dt

η ω= − + + −   (29)  

2
1 2 2 2

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )dS S S Y S X X
dt
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 (30) 

2 3

ˆ ˆ ˆ ˆ( ) ( )dX S X X X
dt

µ ω= + −  (31) 

where T
1 2 3[ ]ω ω ωΩ =  is obtained using 

equations (17) and (18) around each functioning 
point. 

The matrices used for the filter implementation 
are: 
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The simulation results are presented in figures 
(6) – (8). 

Fig. 6. The substrate S1 concentration               
(model and estimation) 

Fig. 7. The substrate S2 concentration               
(model and estimation) 

3.4. The Extended Kalman Filter for the state 
and parameter estimation 

In the case of the process parameter estimation, 
they can be modeled as integrators driven by the 
white noise and augmented to the system states. 
So that the parameters need to be estimated are 
added to the state vector of the system [2], [11]. 
The new state vector is:  

( ) ( ) ( )1x t x t tθ =    (32) 

where ( )1x t  represents the process states and 
( )tθ  the process parameters which will be 

estimated. The function ( ),f x t  becomes: 

( ) ( ), , , 0f x t f x u θ =   ; 1

0
0

xD
D

Dθ

 
=  
 

  

 (33) 

Taking into account the partition of the state 
vector, the matrix A from the equation (32) has 
the following form: 

1

ˆ ˆˆ ˆ( , , ) ( , , )
ˆˆ

0 0

f x u f x u
A x

θ θ
θ

 ∂ ∂
 = ∂ ∂ 
  

 (34) 

Fig. 8. The biomass X concentration                 
(model and estimation) 

3.5. The Extended Kalman Filter for the state 
and parameter estimation of the 
biotechnological processes 

In the case of biotechnological processes we 
assume that the vector ( )ϕ ξ  of reaction rates is 
partially unknown and is written as follows [4]: 

( ) ( ) ( )Hϕ ξ ξ θ ξ=  (35) 

where ( )H ξ  is a M r×  matrix of known 
functions of the state and ( )θ ξ  a vector of 
unknown functions of ξ , with ( )dim ( ) rθ ξ = . 

With this definition, the general state space 
model of a biotechnological process is rewritten: 

( ) ( )KH D F Qξ ξ θ ξ ξ= − + −  (36) 
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The state observer is given by the equation: 

1

2

ˆ ˆ ˆ( ) ( )
ˆ 0

ˆ ˆ( , ) ˆ
ˆ ˆ( , )

KH t D F Qd
dt

ξ ξ θ ξ
θ

ξ θ
ξ ξ

ξ θ

   − + −
= +   

    
 Ω

 + −   Ω  

 (37) 

In the case of the lipase producing process using 
Candida rugosa yeast the vector θ(t) of the 
parameters that must be estimated is: 

[ ]T( ) ( ) ( )t t tθ η µ=   (38) 

In this case the measured variables are S1 and X 
and the variables S1, X, η and µ are estimated. 

The matrices used for the filter implementation 
are: 

( ) [ ]T1( ) ( ) ( ) ( )x t S t X t t tη µ= ; 

ˆˆ0 0
ˆˆ0 0

0 0 0 0
0 0 0 0

X
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η

µ
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 
  

; 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

D

 
 
 =
 
 
 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

P P P P
P P P P

P
P P P P
P P P P

 
 
 =
 
 
 

; 

[ ]2 1 1 0 0C = . 

The simulation results are presented in figures 
(9) – (12). 

Fig. 9. The substrate S1 concentration               
(model and estimation) 

Fig. 10. The biomass X evolution                      
(model and estimation) 

Fig. 11. The specific absorption rate                  
(model and estimation) 

Fig. 12. The specific growth rate                       
(model and estimation) 
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4. THE H∞ STATE AND PARAMETER 
ESTIMATOR 

4.1. The H∞ Filter 

Considering the linear stochastic system 
described by the equations (12)-(14), the 
filtering problem is to determine an estimation 
ˆ( )z t of ( )z t  using the measures of variable y at 

the moment t. The H∞ Filter must minimize the 
cost function [13]: 

[ )
( )

2

2
22

2
0,

2

sup , 0 0
w L

z
J x

w
γ

∈ ∞
= < =  (39) 

for a known value of  0γ >  and 
ˆ( ) ( ) ( )z t z t z t= − . 

The gain of H∞ Filter is similar to the one of 
Kalman Filter, when γ  has a big value. As long 
as γ  decreases, the filter converges to the 
optimal H∞ Filter [9].  

The estimator equation is: 

[ ]2ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )x t Ax t Bu t K y t C x t= + + −  (40) 

where K  is the filter gain: 
T 1

2K P C R−= ⋅ ⋅  (41) 

In equation (41) P is the solution of H∞ Riccati 
equation: 

(
)

T 2 T
1 1

1 T
2 2 1

P P A A P P C C

C R C P D Q

γ −

−

= ⋅ + ⋅ + ⋅ ⋅ ⋅ −

− ⋅ ⋅ ⋅ + ⋅
 (42) 

Fig. 13. The substrate S1 concentration               
(model and estimation) 

4.2. The Extended H∞ Filter for the state 
estimation of the biotechnological 
processes 

In this case the measured variable is the biomass 
X and the variables S1, S2 and X are estimated. 
For the filter implementation the matrices A, P, 
C2 and D1, presented in section 3.3, together 
with the matrix C1 and the variable γ, are used: 

[ ]1 1 1 1C = ; 0.01γ =  

The simulation results are presented in figures 
13 – 15. 

Fig. 14. The substrate S2 concentration              
(model and estimation) 

Fig. 15. The biomass (X) concentration               
(model and estimation) 

4.3. The Extended H∞ Filter for the state and 
parameter estimation of the 
biotechnological processes 

In this case the measured variables are S1 and X 
and the variables S1, X, η and µ are estimated. 
For the filter implementation the matrices A, P, 
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C2 and D1, presented in section 3.5, together 
with the matrix C1 and the variable γ, are used: 

[ ]1 1 1 1 1C = ; 0.01γ =  

The simulation results for the two parameters η 
and µ  are presented in figures 16 and 17. 

Fig. 16. The specific absorption rate (η)              
(model and estimation) 

Fig. 17. The specific growth rate (µ)                 
(model and estimation) 

5. THE ROBUSTNESS OF THE 
SOLUTIONS FOR STATE AND 
PARAMETER ESTIMATION 

The two stochastic estimation methods, Kalman 
and H∞, were tested form the robustness point 
of view. The parameter values of *η and *µ , 
that appear in η  and µ  equations, were 
modified with 10%. The simulation results are 
presented in figures 18 – 21. 

The figures 20 and 21 show the robustness 
properties of the H∞ Filter, unlike the Kalman 
Filter for that figures 18 and 19 clearly point out 
the lack of robustness. 

Fig. 18. The substrate 2S  concentration (model and 
estimation using Extended Kalman Filter) 

Fig. 19. The biomass X concentration (model and 
estimation using Extended Kalman Filter) 

Fig. 20. The substrate 2S  concentration (model and 
estimation using Extended H∞ Filter) 
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Fig. 21. The biomass X concentration (model and 
estimation using Extended H∞ Filter) 

6. CONCLUSIONS 

The following conclusions can be drawn from 
this study: 
- As is well known from the literature the state 

variables and the parameters that characterize 
the proper biosynthesis process are not 
accessible to the direct [5], [10]. This is why 
the authors advance the use of the stochastic 
estimators (Extended Kalman and H∞ 
Filters) to estimate the state variables and 
parameters of the biotechnological processes. 

- The results can be compared to those 
obtained using Extended Luenberger 
Observer in [15]. We consider that the 
stochastic estimators offer better filtering 
properties and the results are also better. 

- The Extended Kalman Filter does not 
guarantee the global convergence of the 
estimation error. Local stability can be 
proved, however, assuming some bounds on 
the nonlinearities [14]. 

- The Extended H∞ Filter assures filtering 
properties as Kalman Filter does and 
robustness properties with respect to the 
parameters uncertainties. 
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