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Abstract: Recently, a new data-driven approach has been proposed for synthesizing the family
of stabilizing PID controllers where the proposed approach could not handle any type of
uncertainty in the plant model. This paper extends that results to plants with single uncertainty
or uncertain plants that can be approximated as plants with a dominant uncertain parameter. It
is shown that if an unknown plant with an uncertain parameter satisfies the certain inequalities
in terms of real and imaginary parts of the specified plants, then the family of robust stabilizing
PID controllers could be obtained using the frequency responses of only two plants corresponding
to extreme values of uncertain parameter. No mathematical model is needed and the resulted
controller is non-fragile toward its coefficients’ variations. In addition, an exact low frequency
band over which the plant data must be known with desired accuracy is sufficient for the
controller synthesis and beyond this band the plant data might be approximated. The simulation
results on harmonic drive system (HDS) subject to loss of actuator effectiveness show the
efficiency of the proposed approach.
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1. INTRODUCTION

Controller synthesis without knowing the plant mathemat-
ical model is the subject of many studies in the literature.
These approaches could be classified in two categories in
terms of the data used for synthesis. In the first category,
the available information is time domain data and the
second category is based on the frequency domain data.
Most of data-driven approaches such as adaptive, neural
networks and fuzzy methods use time domain information.
Various types of fuzzy PID controllers and their devel-
opments in achieving auto tuning adaptive and robust
capabilities have been reviewed by Malki (1999) and new
advancements can be found in ACM (2012) and Zhang
and Chang (2012). Tuning the PID coefficients using
neural networks is another approach that has been applied
by Emilia et al. (2007), Huang (2013) and Lee et al.
(2003). A good review of PID tuning techniques has been
presented by Bansal et al. (2012).

Data-driven controller design using only the frequency
response data is one of the current approaches in con-
trol literature. The Zigler-Nichols tuning approach that is
based on the critical frequency for PID synthesis usually
leads to good responses to load disturbances for systems
that can be approximated by a first order model with rel-
atively small delay; but for more complicated systems the
results are not satisfactory. A bunch of frequency domain
approaches such as phased locked loop (PLL) by Crowe
and Johnson (2001), linear quadratic control algorithm
by Kammer et al. (2000) and minimization of the sum of
square errors between the desired and measured specifica-
tions by Karimi et al. (2003) and Garcia et al. (2006) are

all iterative methods that use the Gauss-Newton algorithm
and lead to a local optimum of the criteria. Also, they
need many experiments on the real system and exact data
are needed on the whole range of frequency. Despite its
old history, this criteria has not lost its attraction for
researchers and over the years new features of frequency
response have been released; for example, see Zhou and
Hagiwara (2002). In fact, the controller design with
minimum knowledge of plant, i.e., the bode or Nyquist
diagrams, is the main motivation for control engineers to
use these approaches. The frequency response data can be
obtained from input-output data using Fourier analysis
(Pinelton and Schokens (2001)), virtual sine sweeping
(Taghirad (1997)), spectrum analyzer (Petersen and Pota
(2003)), network analyzer or using audio sine-wave genera-
tors and the sine function of function generators. Sweeping
function generators vary (or ”sweep”) their frequency lin-
early or exponentially (to give a log plot), and the output
amplitude of the swept sine-waves traces the magnitude
of the frequency response on an oscilloscope. A slower
way of frequency response achievement is through using
a fixed-frequency (non-sweeping) sine-wave generator and
measuring the output amplitudes at several frequencies
with constant input amplitude.

Recently, systematic controller design methods in the
frequency domain have been developed based on loop-
shaping using graphical tools such as bode or Nyquist
diagrams by Halikias et al. (2007) that use the concept of
quantitative feedback theory (QFT) proposed by Horowitz
(2001). Another frequency domain approach based on D-
decomposition has been proposed by Gryazina and Polyak
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(2006). The D-decomposition principle is based on dividing
a closed-loop polynomial to regions that have invariant
root number. These methods are intuitive and applicable
on plants that could be approximated by a low order model
and relatively small delay that has been mentioned by
Krajewsk et al. (2005) and Galdos et al. (2007).

Although the majority of frequency domain approaches
need the plant mathematical model, recently, some data-
driven approaches have been proposed. A new data-driven
approach in frequency domain has been proposed using a
version of Hermith-Behiler Theorem by Keel and Bhat-
tacharyya (2008) and Silva et al. (2002). This approach
is a systematic method to calculate the ”family” of stabi-
lizing PID controllers that satisfy nominal stability and
performance. The required data are just the frequency
response of nominal plant. This approach has also been
extended to simultaneous stabilization and fixed order
controllers by Parastvand et al. (2011) and Parastvand
and Khosrowjerdi (2013). It is however useful to know
the ”family” of stabilizing controllers.

The calculations presented by Keel and Bhattacharyya
(1997) show that H∞, H2, µ and l1 designs can lead
to fragile controllers or controllers that are sensitive to
variations in their coefficients. Controller implementation
is subject to the imprecision inherent in analog-digital
and digital-analog conversion, finite word length, and fi-
nite resolution measuring instruments and roundoff errors
in numerical computations. This means that any useful
design procedure should generate a controller which also
has sufficient room for readjustment of its coefficients. The
problem of fragility has also been discussed by Silva et al.
(2003) where they introduced an analytical approach to
obtain the admissible range of stabilizing PID coefficients.

Robust control which took shape in the 1980s and 1990s is
still the subject of many studies. For example see the works
by Guelton et al. (2012), Liu et al. (2012) and Szelitsky
et al. (2011). It is worth mentioning that the data-driven
approach proposed by Keel and Bhattacharyya (2008)
cannot handle any kind of uncertainties. In this paper,
the existing results on data-driven approach for PID con-
trollers in Keel and Bhattacharyya (2008) are extended to
uncertain systems with one dominant uncertain parame-
ter. Although in most cases the situations are usually more
complex than this, but plants with single or dominant
uncertain parameter have been the subject of many studies
in the literature. See, for example, Zhang et al. (2003),
Achemann et al. (2005), Weijnen and Grievink (2002),
Loslovich et al. (2010) and Cacuci (2003). The stability
properties of linear time-invariant(LTI), single-parameter
dependant systems have been assessed by Zhang et al.
(2003). In real applications, there are lots of plants that
have a single uncertainty or can be approximated by a
plant with one dominant uncertain parameter. Two of
these plants have been considered by (1), Achemann et al.
(2005) to analyze and control a wastewater process where
the dominant uncertain parameter is the maximum spe-
cific growth rate of biomass and (2), Reagan et al. (2005)
to analyze a chemical system. Plants with one dominant
uncertain parameter have also been analyzed by Weijnen
and Grievink (2002) and Loslovich et al. (2010). The
dominance of uncertain parameter in an uncertain plant
has been analytically discussed by Cacuci (2003) using

sensitivity and uncertainty analysis, where a complete list
of related works can be found in the references therein. It
should be noted that the proposed approach in this paper
can handle different control problems on the systems that
can be cast as a plant with single uncertainty such as (1),
robustness against loss of effectiveness in actuators and
sensors (for examples see Yee (2000), Xiaozheng et al.
(2010) and Xiao et al. (2012); (2), robustness against load
uncertainty that has been mentioned by Liu and Wang
(2008) and Yang and McCalley (2000); (3), some perfor-
mance achievements that can be translated to the problem
of simultaneously stabilizing. It has been shown by Keel
and Bhattacharyya (2008) that the problems ofH∞-norm
attainment on sensitivity and complementary sensitivity
functions and satisfying gain and phase margins can be
transformed to the problem of simultaneously stabilizing.
Solving the above problems illustrates the reasonable jus-
tification for the proposed approach in this paper.

In this paper, it is shown that if a plant with one dominant
uncertain parameter q satisfies the certain inequalities in
terms of real and imaginary parts of specified number of
plants then the family of robust stabilizing PID controllers
could be obtained using the frequency responses of only
two plants with extreme values of uncertain parameter,
i.e. P (s, qmin) and P (s, qmax). Here, the required data
are just the frequency responses of the plants P (s, qi),
i = {1, 2, ..., Q}, corresponding to a gridded values on the
range of q and there is no need to the plant mathematical
model.

The organization of this paper is as follows. In Section 2,
a review is presented on the technique proposed by Keel
and Bhattacharyya (2008) for calculating the family of
stabilizing PID controllers for nominal plants. The main
result of this paper, which extends the idea of Section 2 to
robust PID controller synthesis, is presented in Section 3.
The performance criteria have been addressed in Section 4.
The usefulness of this approach is illustrated by simulation
on harmonic drive system in Section 5. Concluding
remarks, discussion and open areas for more investigation
are mentioned in Section 6.

2. REVIEW OF EXISTING RESULTS

In this section, a review is presented on the problem
of achieving the family of stabilizing PID controllers for
nominal plant P (s) proposed by Keel and Bhattacharyya
(2008). First, some mathematical preliminaries are sum-
marized. The proofs of theorems and lemma can be found
in Keel and Bhattacharyya (2008). The required data are
only the frequency response of the plant P (jω) for ω ≥ 0.
The feedback system with PID controller is shown in Fig.
1. Consider a real rational function

P (s) =
A(s)

B(s)

where A(s) and B(s) are polynomials with real coefficients
and of degrees m and n, respectively. Assume that A(s)
and B(s) have no zero on jω axis. Let z+, p+ (z−,p−)
determine the number of open right half plane (RHP)
(open left half plane (LHP)) zeros and poles of P (s) . Also
let ∆∠P (jω) denotes the net change in phase of P (jω) as
ω runs from 0 to +∞. The (Hurwitz) signature of P (s) is
defined as
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Fig. 1. The feedback structure of plant with PID

σ(P ) = z− − z+ − (p− − p+) =
2

π
∆∠P (jω). (1)

Since P (s) has no pole and zero on jω axis, it can be
written

σ(P ) = −(n−m)− 2(z+ − p+) = −rp − 2(z+ − p+). (2)

The value of z+−p+ can be calculated from Bode diagram
of P (s). If P (s) be stable, then z+ can be obtained from
Equation (2). If P (s) be unstable, the frequency response
could not be achieved directly from the input-output
data of plant. Let K(s) be a known stabilizing controller
possibly of high order. Then the frequency response of
unstable plant P (s) can be obtained from

P (jω) =
H(jω)

K(jω)(1−K(jω))
(3)

where H(jω) is the frequency response of closed loop
transfer function.

Theorem 2.1.

z+ =
1

2
[−rp − rk − 2z+k − σ(H)] (4)

p+ =
1

2
[σ(P )− σ(H)− rk]− 2z+k (5)

where z+k and rk are the number of RHP zeros and relative
degree of K(s), respectively.

Let P (jω) = Pr(ω)+jPi(ω) where Pr(ω) and Pi(ω) denote
the real and imaginary parts of P (jω), respectively. Let
the real, distinct, finite zeros of Pi(ω) = 0 denote as
ω0, ω1, ..., ωl−1 such that 0 = ω0 < ω1 < ... < ωl−1. Now
consider the modified PID controller as

C(s) =
ki + kps+ kds

2

s(1 + sT )

where kp, ki and kd are the proportional, integral and
derivative coefficients of PID controller and T is a positive
constant.

Lemma 1. The feedback control system in Fig. 1 is inter-
nally stable if and only if the following conditions hold:

(1) There are no pole-zero cancelations in Re(s) ≥ 0
when the loop function L(s) is formed.

(2) σ(F̄ (s)) = rp + 2z+ +N , where F̄ (s) = F (s)P (−s).

write
F (ω) = F r(ω, ki, kd) + jωF i(ω, kp)

where

F r(ω, ki, kd) = (ki − kdω2)|P (jω)|2 − ω2TPr(ω) + ωPi(ω)

and

F i(ω, kp) = kp|P (jω)|2 + Pr(ω) + ωPi(ω).

Consider F i(ω, k
∗
p) = 0 and define

k∗p := g(ω) = −cosφ(ω) + ωT sinφ(ω)

|P (jω)|

=⇒ k∗p := g(ω) = −Pr(ω) + ωTPi(ω)

|P (jω)|2
(6)

and J = sgn[F i(∞−, kp)] where kminp < k∗p < kmaxp .

Theorem 2.2. Let ω1 < ω2 < ... < ωl−1 denote the distinct
frequencies of odd multiplicities which are solutions of
F i(ω, kp) = 0. Determine strings of integers

V = [v0, v1, v2, ..., vl]

where vt ∈ {−1, 1} such that: for n−m even:

[v0 − v1 + v2 + ...+ (−1)l−12vl−1 + (−1)lvl](−1)l−1J

= n−m+ 2z+ + 2 (7)

and for n−m odd:

[v0 − v1 + v2 + ...+ (−1)l−12vl−1](−1)l−1J

= n−m+ 2z+ + 2 (8)

and vl = sgn(F r(∞−, ki, kd)). Then for kp = k∗p, the
values of (ki, kd) corresponding to closed loop stability are
given by

F r(ωt, ki, kd)vt > 0

=⇒ (ki − kdωt2 −
ωt

2Pr − ωtPi
|P |2

)vt > 0 (9)

where vt’s are taken from strings satisfying Equations (7)
or (8) and ωt’s are taken from the Equation (6).

From the above Theorem the admissible values of (ki, kd)
can be determined. Next theorem shows how to calculate
the admissible range of kp.

Theorem 2.3. The necessary condition for PID stabilizing
is that there exists admissible range of kp in which the
function g(ω) has at least R distinct roots of odd multi-
plicities such that

R ≥ n−m+ 2z+ + 2

2
− 1 : if n−m even

R ≥ n−m+ 2z+ + 3

2
− 1 : if n−m odd.

(10)

The procedure for calculating the family of stabilizing PID
controllers is summarized in the following algorithm.

Algorithm 1: Calculating the family of stabilizing PID
controllers for nominal plant:

Required data: Frequency response or Bode diagram of the
nominal plant for ω ≥ 0.

(1) Determine the relative degree rp of P (s) from high
frequency slope of bode magnitude of P (jω).

(2) Determine z+ from (2) or (4).
(3) Plot the function g(ω) for ω ≥ 0 from Equation (6).
(4) Apply Theorem 2.3 and determine the admissible

range of kp.
(5) For kp = k∗p , solve (6) and obtain frequencies of odd

multiplicities as ω1 < ω1 < ... < ωl−1 .
(6) Let ω0 = 0 and ωl = ∞ . Determine v0, v1, ..., vl−1

from Equations (7) or (8).
(7) For kp = k∗p, determine the (ki, kd) values from

Equation (9).
(8) Change the value of kp and go to step 5 to obtain

another stabilizing PID controllers.

3. ROBUST PID SYNTHESIS : A DATA-DRIVEN
APPROACH

In this section, the main result of this paper is presented.
Consider an uncertain real rational plant P (s, q) as shown
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Fig. 2. The feedback structure of uncertain plant with PID

in the feedback structure of Fig. 2 where q ∈ [qmin, qmax]
is an uncertain parameter. The control objective is to
calculate the family of robust stabilizing PID controllers
for uncertain plant P (s, q). The required data is as follows:

• For stable plants: the frequency spectrum of P (jω, qδ),
δ = 1, 2, ..., Q for ω ≥ 0 where Q is the number of
samples on the gridded range of q.
• For unstable plants: the stabilizing controller K(s)

and frequency spectrum of P (jω, qδ) for ω ≥ 0.

Remark 2. The number of samples, i.e. Q, must be high
enough so that the set of frequency responses P (jω, qδ)
represents an approximation for frequency spectrum of
P (s, q).

The main idea of this section is based on the fact that
if by increasing the uncertain parameter q, g(ω) varies
monotonically, then the following three cases could be
verified.

• Case 1: The range of admissible kp for stabilizing the
uncertain plant P (s, q) is the common range of ad-
missible kp for two plants P (s, qmin) and P (s, qmax).

• Case 2: The inequalities corresponding to P (s, qmin)
and P (s, qmax) have the minimum and maximum
slope, not necessarily respectively.

• Case 3: The common space of the inequality (9) for
P (s, qmin) and P (s, qmax) is a polygon larger than
the convex region of admissible (ki, kd). A simple
approach to obtain the exact range of coefficients
might be vis choosing some test points and analyzing
the stability correspond to. This is needed just at inner
points of polygon near the vertexes.

An intuitive proof for the above three cases is provided in
the Appendix A.

Thus the key condition for calculating the PID coefficients
is the monotonic varying of g(ω) with increasing the
uncertain parameter q. This idea will be used in the next
theorem to find what kind of systems satisfy this condition.

Theorem 3.1. Let P (jω, qδ), δ = 1, 2, ..., Q be a set of
frequency spectrums of an uncertain LTI plant P (s, q)
where q ∈ [qmin, qmax] is an uncertain parameter. Then
the family of stabilizing PID controllers for uncertain plant
P (s, q) is a subset of common space between two sets of
stabilizing PID coefficients for P (s, qmin) and P (s, qmax)
if the following inequality satisfies for P (jω, qδ) = Pr+jPi
and ω ≥ 0

(P 2
i + P 2

r + ωPi + Pr)(Pr + ωPi) > 0 . (11)

Proof: From Case 2, if increasing the uncertain parameter
leads to monotonic varying the function g(ω), then the
family of stabilizing PID coefficients for uncertain plant
is a subset of common space between two sets of stabi-
lizing PID coefficients for P (s, qmin) and P (s, qmax). The

function g(ω) is monotonic if

dg(ω)

dq
> 0 or

dg(ω)

dq
< 0.

Without loss of generality, consider the case of monotonic

increasing in g(ω), i.e. dg(ω)dq > 0. Increasing the uncertain

parameter leads to increasing in g(ω) if the following
inequality holds

dPr (P 2
r −P 2

i + 2ωPrPi) + dPi (P 2
i ω−P 2

r ω+ 2PrPi) > 0 .
(12)

To obtain the solution, it is needed to apply some divisions
during solving the above differential inequality. These di-
visions might change the real rational symbol of inequality
(i.e. the symbol ’>’). For the sake of simplicity, the above
inequality will be solved as an equality, and at the end,
the effects of divisions on the real rational symbol of the
final results will be considered. Therefore, the following
equation must be solved

dPr (P 2
r − P 2

i + 2ωPrPi) + dPi (P 2
i ω − P 2

r ω + 2PrPi) = 0.
(13)

By dividing the above equation on

α := P 2
i ω − P 2

r ω + 2PrPi, (14)

it can be written
dPi
dPr

=
P 2
i − P 2

r − 2ωPrPi

P 2
i ω − P 2

r ω + 2PrPi
. (15)

Through change of variable as z = Pi

Pr
, the above equation

transforms to

Pr dz =
−z3ω − z2 − zω − 1

z2ω + 2z − ω
dPr . (16)

To obtain a homogeneous differential equation, both sides
of Equation (16) are devided by

β := Pr, (17)

and

γ :=
−z3ω − z2 − zω − 1

z2ω − ω + 2z
. (18)

As a result, the Equation (16) could be transformed to

z2ω + 2z − w
−z3ω − z2 − zω − 1

dz =
1

Pr
dPr

⇒ (
−2z

z2 + 1
+

−ω
−zω − 1

) dz =
1

Pr
dPr ⇒ ln(

−zω − 1

(z2 + 1)Pr
) = 0,

⇒ −zω − 1

(z2 + 1)Pr
= 1, (19)

and by substituting z = Pi

Pr
, one can write

P 2
i + P 2

r + ωPi + Pr = 0. (20)

Now the real rational symbol of above equation could be
obtained by considering the effect of divisions on (14), (17)
and (18), i.e. terms α, β and γ. Obviously the real rational
symbol of the resulted equation in (20) is dependent to the
sign of the multiplication of (αβγ). Then, it can be written{

If αβγ > 0 then P 2
i + P 2

r + ωPi + Pr < 0,
If αβγ < 0 then P 2

i + P 2
r + ωPi + Pr > 0 .

(21)

On the other side, from the multiplication of (αβγ) as

αβγ = (P 2
i ω − P 2

r ω + 2PrPi)Pr(
−z3ω − z2 − zω − 1

z2ω − ω + 2z
),

and by substitution z = Pi

Pr
it can be written{

for αβγ > 0 then − (Pr + ωPi) > 0,
for αβγ < 0 then − (Pr + ωPi) < 0 .

(22)
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The combination of two sets of inequalities in (21) and (22)
leads to (11). Similarly, the same results can be obtained

for dg(ω)
dq < 0 . 2

Remark 3. Thanks to Theorem 3.1, the class of systems
that proposed data-driven approach could deal with can be
defined. In fact, the class of systems that can be addressed
by the proposed approach of this paper must satisfy the
following conditions

I. The inequality (11) should be hold at each frequency
ω ≥ 0 for P (jω, qδ),

II. There should be a common range between admissible
kp for P (s, qmin) and P (s, qmax).

Remark 4. The frequency response data corresponding to
P (s, qmin) and P (s, qmax) could be recognized from the
set of frequency responses of uncertain plant P (jω, q). In
fact if the inequality (11) holds, then it could be deduced
that the uppermost and lowermost plots of g(ω) are cor-
responding to P (s, qmin) and P (s, qmax), not necessarily
respectively.

Remark 5. It worth mentioning that almost in every appli-
cation the set of ωt

′s can be found in the low frequencies.
This means that only an exact data of the low frequency
band is sufficient for controller synthesis and beyond this
band the plant information may be rough or approxi-
mated.

The procedure for calculating the family of stabilizing PID
controllers is summarized in the following algorithm.

Algorithm 2: Calculating the family of stabilizing PID
controllers for uncertain plant P (s, q) in which q ∈
[qmin, qmax] is an uncertain parameter

Required data: P (jω, qδ) for δ = 1, 2, ..., Q and ω ≥ 0.

(1) Check the inequality (11). If this inequality holds then
go to the next step.

(2) Determine the extreme plots of g(ω) correspond to
P (jω, qmin) and P (jω, qmax) using Remark 4.

(3) Apply Theorem 2.3 to obtain the common set of
admissible kp for two plants found in the previous
step.

(4) Using Steps 5-8 of Algorithm 2 determine the set of
(ki, kd) coefficients for P (jω, qmin) and P (jω, qmax).

(5) Calculate the common range of (ki, kd) coefficients
between P (jω, qmin) and P (jω, qmax).

(6) Calculate the exact family of admissible (ki, kd) using
the approach proposed in Case 3.

4. PERFORMANCE ACHIEVEMENT

Many performance achievement problems for plant P (s)
can be cast as the simultaneously stabilization of plant
and the family of real and complex plants. Some of
these performance achievement problems are listed in Keel
and Bhattacharyya (2008). For example the problem of
H∞-norm achievement on the complementary sensitivity
function is equivalent to simultaneously stabilizing the
plant P (s) and the family of real plants

PC(s) =
[
1 +

1

γ
ejθW (s)

]
P (s) : θ ∈ [0, 2π]

where γ is an arbitrary parameter and W (s) is the optional
weighting function. The above function represents a plant

Fig. 3. The feedback structure of plant faced to loss of
actuator effectiveness with PID

with an uncertain parameter θ. So the proposed approach
in this paper can be effectively applied here to obtain the
family of stabilizing plants that satisfy H∞-norm on the
complementary sensitivity function. The same criteria has
been used for satisfying desired gain and phase margins
and H∞-norm specification on the sensitivity function by
Keel and Bhattacharyya (2008).

Remark 6. Assume that P (s, q) be a plant with an uncer-
tain parameter q. Let PC(s, q, θ) be a plant with another
virtual uncertain parameter θ corresponding to above per-
formance specification parameters. If necessary conditions
of Theorem 3.1 satisfy for both P (s, q) and PC(s, q∗, θ)
where q∗ belongs to {qmin, qmax}, then the family of PID
controllers that achieve the above performance specifica-
tions for uncertain plant P (s, q) is the subset of stabilizing
PID coefficients for

PC(s, q, θ) : q = {qmin, qmax}, θ = {0, 2π}.

The approach can handle different control problems that
can be evaluated as a plant with an uncertain parame-
ter. For example, the problem of controller synthesis for
different types of electrical machines, such as, DC motor,
induction motor, synchronous motor, etc that are faced to
load uncertainty mentioned in Liu and Wang (2008) can
be cast as a plant with an uncertain parameter, in which
the uncertain parameter q is the uncertain load.

5. SIMULATION RESULTS

In this section, an example is presented to show the
usefulness of the proposed approach. In this example, the
problem of controller synthesis for a harmonic drive system
(HDS) faced to loss of actuator effectiveness has been
addressed. Loss of actuator effectiveness is an important
problem from practical point of view. See, for example,
Yee (2000) and Xiao et al. (2012). Fig. 3 might represent
the feedback structure of an uncertain plant with PID
controller faced to loss of actuator effectiveness where
q = L is the uncertain parameter corresponding to loss
of effectiveness and belongs to (0,1]. A similar case will
happen when there is a loss in sensor effectiveness. Thus,
using Algorithm 2, the family of robust PID controllers for
plants faced to loss of actuator/sensor effectiveness can be
calculated.

The frequency response of the HDS is shown in Fig. 4
that is calculated by Taghirad (1997) using virtual sine
sweeping (VSS). Here the control objectives are
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Fig. 4. The Bode diagram of HDS with L = 1

Fig. 5. The plot of function g(ω) for HDS with L = 1

(1) Calculating the family of stabilizing PIDs for nominal
plant, i.e P (s, L) where L = 1.

(2) Calculating the family of stabilizing PIDs that satisfy
H∞-norm on complementary sensitivity function for
nominal plant.

(3) Satisfying the previous performance criterion for the
HDS faced to loss of effectiveness in actuator, i.e. for
the plant P (s, L) where 0 < L ≤ 1.

First consider the case where there is not loss of actuator
effectiveness, i.e. L = 1. The corresponding function g(ω)
is shown in Fig. 5. So the admissible range of kp is
[−1,+∞). Calculating the (ki, kd) values for kp = 10 is
resulted to the following inequalities

ki > 0
ki < 722kd + 497.

The whole range of stabilizing PID coefficients is shown in
Fig. 6.

Now consider the problem of H∞-norm achievement on
the complementary sensitivity function. The range of
(ki, kd) that satisfies this performance criterion for kp = 10

Fig. 6. The whole family of stabilizing PID controllers for
HDS with L = 1

Fig. 7. Admissible ranges of ki − kd that satisfy stability
and performance for HDS with L = 1 and kp = 10
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Fig. 9. (ki, kd) values for kp = 10 of only stabilizing
controllers, controllers satisfy H∞ performance and
controllers satisfy H∞ performance at the presence of
loss of actuator effectiveness

Fig. 10. The family of robust PID controllers for HDS

is shown in Fig. 7. The whole range of (ki, kd) could be
obtained similarly.

Now, if the loss of actuator effectiveness happens, it
can be inferred from Section 3 that the HDS with this
phenomenon is an special case of a plant with an uncertain
parameter. Therefore, the proposed approach could be
applied for such systems. Figure 8 shows the effect of loss
of actuator effectiveness for L = {0.01, 0.4, 0.7, 1} on the
magnitude of Bode diagrams of HDS. Simulation results
show that the conditions of Remark 6 satisfy; thus the
robust PID controllers can be calculated by simultaneously
stabilizing of two plants P (s, Lmin) = P (s, 0.01) and
P (s, Lmax) = P (s, 1).

The range of (ki, kd) values for kp = 10 that achieve
to stability and performance in the presence of loss of
actuator effectiveness is shown in Fig. 9 and the whole
range is obtained in Fig. 10 by sweeping on kp. The step
responses of plant is shown in Fig. 11 when the value of
loss of actuator effectiveness is set to L = 0.1. As shown in
Fig. 11, the step response of robust PID controller applied

to HDS has the best transient response in comparison with
controllers that satisfies nominal stability and nominal
performance. The corresponding control inputs is shown
in Fig. 12.

Although the example provided here considers the gain
uncertainty which is rather a trivial case, but some argu-
ments and examples are provided by Parastvand (2010)
that imply this condition can be satisfied satisfied for a
large class of industrial processes.

6. CONCLUSION AND DISCUSSION

This paper provided an extension of a data driven con-
troller synthesis from nominal stability to robust stability
and performance. It is shown that for an unknown plant
with a single or dominant uncertain parameter, if some
smooth conditions hold, then the family of stabilizing PID
controllers corresponding to two plants with extreme val-
ues of uncertain parameter can guarantee robust stability
for all perturbed plants with any value of uncertainty
between those two extremes. The required data are the
specific number of frequency responses of plants corre-
sponding to the gridded values of uncertain parameter.
There is no need to exact frequency responses on the whole
frequencies, and only accurate data on the low frequency
band is sufficient in almost any application. Also it is illus-
trated that some control problems such as achieving the
performance specifications, robustness against loss of effec-
tiveness in actuator and load uncertainty can be charac-
terized as the problem of robust stabilizing of a plant with
an uncertain parameter. Another feature of the proposed
technique is the non-fragility of the obtained controller or
controller robustness because of existing a reliable band
for admissible PID coefficients. The proposed approach is
successfully simulated on harmonic drive system faced to
loss of effectiveness.

The presented method can easily be extended to model-
based synthesis. Some plants that are faced to parameters
variations can be approximated by plants with a domi-
nant uncertain parameter. From this point of view, the
proposed approach can be used for model-based uncertain
systems to calculate the family of robust stabilizing PID
controllers. Also, the proposed approach could be easily
extended to time-delay systems using some modifications
on the approach proposed in Keel and Bhattacharyya
(2008). The open areas of research under study are (a), the
design of such controllers for multivariable and nonlinear
plants, and (b), developing the proposed approach to other
structured and unstructured uncertainties.
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Appendix A

Here are the proof of three cases presented in Section 3.
The proof for Case 1 is obvious. For Case 2, we know that
the slope of inequalities of Equation (9) is equal to ω2

t .
The values of ωt for every q can be obtained from g(ω) for
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Fig. 11. Step responses of HDS system with PID

Fig. 12. Control inputs of HDS system with PID

k∗p. Now if by changing the q, g(ω) varies monotonically

then the maximum and minimum values of ω2
t would be

obtained for qmin and qmax in P (s, qmin) and P (s, qmax).
Then, the maximum and minimum slope of inequalities
in (9) correspond to P (s, qmin) and P (s, qmax). In Fig.
A.1, the plot of inequalities corresponding to Equation
(9) is shown for some values of uncertain parameter q for
a typical example. As shown in Fig. A.1, the admissible
values for (ki, kd) are a subset of inequalities obtained from
Equation (9) for P (s, qmin) and P (s, qmax). For Case 3,
let by monotonic varying in q, g(ω) varies monotonically.
This leads to monotonic varying in the slope of inequalities
(9). Now, if the values of y-intercepts vary in the same
manner, then the common space of inequalities (9) for
P (s, qδ), δ = 1, 2, , Q, is exactly equal to the common
space of just two plants P (s, qmin) and P (s, qmax). But
this is the case that can not be guaranteed. In the other
word, since the values of y-intercepts of the lines obtained
from (9) are different, the common space of the inequalities
(9) for P (s, qδ) is smaller than the common space of just
two plants P (s, qmin) and P (s, qmax). This can be seen

from Fig. A.1. In spite of the fact that two green triangles
belong to admissible range of (ki, kd) for P (s, qmin) and
P (s, qmax), but they do not belong to admissible range of
(ki, kd) for P (s, q). To obtain the exact family of stabilizing
PID coefficients, the shadowed region in Fig. A.1 must be
excluded. One simple approach to exclude the shadowed
regions is to choose some test points in these regions and
analyze the stability correspond to.
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