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Abstract: This paper develops the analysis of a special type of asymptotic stability, called 
componentwise asymptotic stability (CWAS), for discrete-time Bidirectional Associative Memory 
(BAM) neural networks with interval type parameters. Unlike the standard notion of asymptotic 
stability, that gives global information on the state-space vector, expressed in terms of arbitrary 
norms, CWAS allows an individual monitoring of each state-space variable approaching the 
equilibrium point. At conceptual level, CWAS brings a refinement in the stability theory by 
revealing the existence of positive invariant time-dependent rectangular sets with respect to the 
state space trajectories. Our results provide sufficient conditions for testing the CWAS of BAMs 
with interval type parameters relying on the Schur stability of a matrix which is adequately built 
from the intervals expressing the parameter uncertainties.  
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1. INTRODUCTION 

Consider the discrete-time bidirectional 
associative memory (BAM) neural network 
described by 

  (1) 

( )
( )

1 1 1 2 2 2 1

2 2 2 1 1 1 2

1 1 2 2
0 0 0 0 0

( 1) ( ) ( ) ,

( 1) ( ) ( ) ,

; ( ) , ( ) ,

t t t

t t t

t t t t+ +

+ = + +

+ = + +

∈ = =] ]

x A x W f x I

x A x W f x I

x x x x ,∈

where: 
1 1 1 1

1 2, , , mx x x
τ

 =  …x , 2 2 2 2
1 2, , , nx x x

τ
=  …x    

are the state-vectors (τ  denoting the vector 
transposition), 

1 1 1 1
1 2, , , mI I I

τ
 =  …I , 2 2 2 2

1 2, , , nI I I
τ

 =  …I   

are the input vectors and matrices  

{ }1 1 1
1 2diag , , , ma a a= …A 1 1 1

jiw =  , W , 

 

 

{ }2 2 2
1 1diag , , , na a a= …A 2 2 2

ijw =  , W  

have appropriate sizes. 

All the components of the activation functions 
1 : m m→\ \f
1 1 1 1

1 1( ) (f x

, 

1 1 1 1
2 2), ( ), , ( )m mf x f x

τ
 = …

2 2 2 2
2 2), ( ), , ( )n nf x f x

f x
2 : n n→\ \f
2 2 2 2

1 1( ) (f x

, 

, 
τ

 = …f x   

are globally Lipschitz continuous, i.e. for all 
1,i m= , 1,j = n 0, there exist  so that 1 2,i jL L >

1 1 1

2 2 2

0 ( ) ( ) | |

0 ( ) ( ) |

i i i

j j j

f f L

f f L

,

|,

ξ ζ ξ ζ

ξ ζ ξ ζ

≤ − ≤ −

≤ − ≤ −
 (2) 

for all ,ξ ζ ∈\ . 

In terms of neural networks, according to our 
hypotheses, the activation functions are assumed 
to be neither differentiable nor bounded. If f is 
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the generic notation for an activation function, 
our approach covers the following classes of 
functions: bipolar sigmoid 

[ ] [ ]( ) 1 exp( ) 1 exp( )f s s sλ λ= − − + − , 0λ > , 

piecewise saturation  

[ ]( ) | 1| | 1| 2f s s sλ λ= + − − , 0λ > ,  

linear ( ) , 0f s sλ λ= > , piecewise linear, etc. 

Recent papers, such as [2], [9], [12] and [17], 
provide sufficient conditions, formulated in 
algebraic terms, for the global (exponential) 
asymptotic stability of continuous-time BAMs. 
Work [12] also refers to the discrete-time case. 

Taking into consideration the nature of the 
mathematical problems discussed in this paper, 
the following notations are used in the 
remainder of our paper. O and 0 stand for the 
null square matrix and the null vector 
respectively, each of appropriate dimensions. 
For two matrices having the same sizes 

[ ]rsφ=Φ
≥Φ Θ

rs

, , matrix inequality 
 (Φ ) is understood componentwise, 

i.e. 

[ ] u v
rsθ ×= ∈\Θ

>Θ

rsφ θ≥  ( rs rsφ θ> ) for all 1,r = u  and 

1,s v= . Given a matrix [ ] u v
rsφ ×= ∈\Φ , denote 

by  the matrix whose entries are | || |Φ rsφ . 
These conventions apply in the case of vectors 
or vector functions too. 

For many problems encountered in practice it is 
important to consider that the entries of the 
matrices , , kA kW 1,2k = , defining the 
dynamics of BAM (1), are uncertain, in the 
sense of the matrix componentwise inequalities: 

  

{ }
{ }

{ }
{ }

1 1 1 1 1
1 2

1 1 1 1
1 2

2 2 2 2 2
1 2

2 2 2
1 2

diag , ,...,

diag , ,..., ,

diag , ,...,

diag , ,..., ,

m

m

n

n

a a a

a a a

a a a

a a a

= ≤

≤ =

= ≤

≤ =

A

A

A

A 2

≤

≤

A

A
 (3.i) 

1 1 1 1 1
1, 1,
1, 1,

2 2 2 2 2
1, 1,
1, 1,

,

.

ji jij n
i m i m

ij iji m i m

j n

j n

w

w

=
=

=
=

   = ≤ ≤ =   

   = ≤ ≤ =   

W W W

W W W
j n

w

w

=
=

=
=

(3.ii) 

Consequently, let us introduce the following 
classes of matrices: 

 

{ }
{ }
{ }
{ }

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

,

,

,

.

m m

n n

n m

m n

×

×

×

×

= ∈ ≤ ≤

= ∈ ≤ ≤

= ∈ ≤ ≤

= ∈ ≤ ≤

\

\

\

\

A A A A

A A A A

W W W W

W W W W

A

A

W

W

 (4) 

The family of BAMs generated by (1) for all 
k k∈A A , , k k∈W W 1,2k =

2

, is called 
Interval Bidirectional Associative Memory 
neural network, abbreviated as 
IBAM( 1 2 1, , ,A A W W ). 

This paper proves that the stability of a single 
test matrix guarantees a stronger stability 
property of IBAM( 1 2 1, , , 2A A W W ), called 
componentwise stability. Unlike the standard 
concepts of stability, that give global 
information on the state-space vector, expressed 
in terms of arbitrary norms, the componentwise 
stability allows an individual monitoring of each 
state-space variable. This type of stability was 
first studied by Voicu in [16] who applied the 
theory of flow-invariant time-dependent 
rectangular sets to define and characterize the 
componentwise asymptotic stability (CWAS) 
and the componentwise exponential asymptotic 
stability (CWEAS) for continuous-time linear 
systems. Further works extended the analysis of 
componentwise stability to continuous-time 
delay linear systems [6], 1-D and 2-D discrete-
time linear systems [7], interval matrix systems 
[13] and a class of Persidskii systems with 
uncertainties [14]. Despite the existence of these 
results, the componentwise stability of recurrent 
neural networks remained almost unexplored, 
except for a reduced number of recent papers 
[3]-[5] and [10]. 

Our paper develops a CWAS/CWEAS analysis 
of BAM (1) under the hypothesis of parameter 
uncertainties modeled by , 

, 

k k∈A A
k k∈W W 1,2k = . The concepts employed by 

our work are rigorously defined in Section 2. 
Section 3 provides the main results, consisting 
in sufficient criteria for the CWAS/CWEAS of 
BAMs with uncertainties. Section 4 creates a 
deeper insight into the particular case of BAMs 
with fixed parameters. A numerical example is 
considered in Section 5 to illustrate the validity 
of the theoretical results. A few final remarks 
are formulated in Section 6. 
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2. PREREQUISITES ON CWAS / CWEAS 

Assume that BAM (1) has a finite number of 

equilibrium points and let 1 2
e e e

ττ τ =  x x x  be 

one of these, i.e. ( )1 2 2 2
e e e= +x W f x

1 2
e +x I

1 1 +x A I

( )1 1W f

1  

and . 2 2 2
e e= +x A x

Definition 1. (a) Let  and  be two vector 

functions , , with 

positive components , 

1p
m] \

2p
2 :

( )p t >

1 : + →p n
+ →] \p

1 0i 1,i m= , 

, 2 ( ) 0jp t > 1,j n= +, t∈] , meeting 

 lim ( ) , 1,2k
t

t k
→∞

= =p 0 . (5) 

If for any  and any initial condition 0t +∈]
1 2

00 0
ττ τ 

 x x=x x , , , satisfying 1
0

m∈\ 2
0

n∈\x

0
k k

e− ≤x x 0( )k tp , 1,2k =

( )

, the corresponding 

solution to (1), 1 2 ( )t( )t t
ττ τ

 x 
=x x , 

, 0 0; , )t x( ) (k kt t=x x 1,2k = , meets the 

inequality ( )x x ( )k tp tk k
et − ≤ , +∀ ∈] 0t t≥, , 

1,2k =
ex

2p

, then we say that the equilibrium point 
 of BAM (1) is componentwise 

asymptotically stable with respect to  and 

, abbreviated as CWAS( ). 

1p
1 2,p p

(b) The equilibrium point  of BAM (1) is 

globally CWAS( ), or CWAS( ) in 

the large, abbreviated as GCWAS( ), if 

 is CWAS( c c ) for any scalar . 

ex
1 2,p p

1 2,p p

1,p p
1 2,p p

0c >

2

2

ex

(c) BAM (1) is said to be CWAS( ) if it 
has an equilibrium point  that is 

GCWAS( ). 

1 2,p p

ex
1 2,p p

(d) IBAM( 1 2 1, , ,A A W W
1 2, p

k k∈A k k∈W

) is said to be 

CWAS( ) if BAM (1) is CWAS( ) 

for all , W , 

p

A

1 2,p p

1,2=k .  

Remark 1. It can be proved that (a) if an 

equilibrium point 1 2
e e e

ττ τ= x x x
2


  of BAM (1) 

is CWAS( ), then it is also uniformly 

asymptotically stable in the sense of the standard 
definition, e.g. [11], pp. 107; (b) if an 

equilibrium point 

1,p p

1 2
e e e

ττ τ= x x x
2p


  of BAM (1) 

is GCWAS( ), then it is also uniformly 
asymptotically stable in the large in the sense of 
the standard definition, e.g. [11], pp. 108). 

1,p

1 1, 2 2

1 1 2

( ) ,

, ,

t t

m n

t tσ σ += =

∈ >

]

\ \

α α

α α α

( )k tp

p p

1,2k =

21, ,α α
1 2, ,σ α α

1 2, ,σ α α
21, ,α α

1 2, ,A W
21, ,α α

1 2
e e e

ττ τ= x x x
1 2, ,σ α α

1 2
e e e

ττ τ= x x x
1 2, ,σ α α

Until this point of our presentation the time-
dependence of the vector functions , ( )k tp

1,2k = , was considered arbitrary. If the CWAS 
property exists for the particular form of the 
vector functions 

 
2

( ) ,

(0,1), , ,

t

σ

∈

∈ ∈0 0α
 (6) 

>

then we refer to a special type of stability 
property called componentwise exponential 
asymptotic stability, abbreviated as CWEAS, 
and Definition 1 yields the following: 

Definition 2. If the hypotheses of Definition 1(a-
d) are fulfilled with , , given by (6), 
then we say that: (a) the equilibrium point  is 

CWEAS(
ex

σ ); (b) the equilibrium point 
 is globally CWEAS(ex ), abbreviated 

as GCWEAS( ); (c) BAM (1) is 

CWEAS(σ ); (d) the interval neural 

network IBAM( 1, 2A W ) is 
CWEAS(σ ).  

Remark 2. It can be proved that (a) if an 

equilibrium point  of BAM (1) 

is CWEAS( ), then it is also 
exponentially asymptotically stable in the 
classical sense (e.g. [11], pp. 107); (b) if an 

equilibrium point  of BAM (1) 

is GCWEAS( ), then it is also globally 
exponentially asymptotically stable in the 
classical sense (e.g. [11], pp. 108). 






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3. CWAS / CWEAS RESULTS FOR 
INTERVAL BAMS 

3.1. CWAS of an IBAM 

Theorem 1. IBAM( 1 2 1, , , 2A A W W ) is 

CWAS( ) if the following inequalities 
hold 

1 2,p p

    
1 1 1 2 2

2 2 2 1 1

ˆ ˆ( 1) ( ) ( )
ˆ ˆ( 1) ( ) ( )

t t

t t

+ ≥ +

+ ≥ +

p A p W L p

p A p W L p

2 ,

,1

t

t
t +∀ ∈] , (7) 

where matrices , , , ˆ kA ˆ kW kL 1,2k = , are 
defined by 

        

{ }
{ }
{ }
{ }

1 1 1 1
1 2

1 1 1

2 2 2 2
1 2

2 2 2

ˆ ˆ ˆ ˆdiag , , , ,

ˆ max | |,| | , 1, ,

ˆ ˆ ˆ ˆdiag , , , ,

ˆ max | |,| | , 1, ,

m

i i i

n

j j j

a a a

a a a i

a a a

a a a j

=

= =

=

= =

…

…

A

A

m

n

 

        
{ }

1 1

1 1

ˆ ˆ ,

ˆ max | |,| | ,

n m
ji

ji ji ji

w

w w w

× = ∈ 

=

\W

1
 (8) ≤ +

        
{ }

{ }
{ }

2 2

2 2 2

1 1 1 1
1 2

2 2 2 2
1 2

ˆ ˆ ,

ˆ max | |,| | ,

diag , , , ,

diag , , , .

m n
ij

ij ij ij

m m
m

n n
n

w

w w w

L L L

L L L

×

×

×

 = ∈ 

=

= ∈

= ∈

\

… \

… \

W

L

L

 

Proof: Given arbitrary k k∈A A , , k k∈W W
1,2k = , the dynamical behavior of the state-

space trajectories of BAM (1) in a vicinity of the 

equilibrium point 1 2
e e e

ττ τ= x x x 
  may be 

analyzed by means of the deviations 
, ( ) ( )k k

et t= −y x kx 1,2k = , that satisfy 

 

( )
( )

1 1 1 2 2 2

2 2 2 1 1 1

1 1 1 2 2
0 0 0 0

( 1) ( ) ( ) ,

( 1) ( ) ( ) ,

( ) , ( ) ,e e

t t

t t

t t

+ = +

+ = +

= − = −

y A y W g y

y A y W g y

y x x y x x2

t

t

.

 (9) 

where 

  (10) 
1 1 1 1 1 1 1

2 2 2 2 2 2 2

( ) ( ) ( ),

( ) ( ) ( )
e e

e e

= + −

= + −

g y f y x f x

g y f y x f x

Obviously,  is CWAS( ) for (1) if and 

only if 
ex

1 2,p p

e =y 0  is CWAS( ) for (9). The 

components , 

1,p p2

1
ig 1,i = m , and 2

jg , 1,j = n , of 

the activation functions  and, respectively, 

, are Lipschitz continuous and satisfy the 
following conditions derived from (2): 

1g
2g

   1 1 2 2) | |, 0 ( ) |i i j jg L g L0 ( |ξ ξ ξ≤ ≤ ≤ ≤ ξ , (11) 

for all ξ ∈\ . 

Assuming that for an arbitrary , the 
solution to (9) initiated so that 

0c >

0 0( ) ( )k kt c t≤y p , 1,2k = , satisfies 

( ) ( )k kt c t≤y p , 1,2k = , for a certain , and 

taking (11) into account, we get 
0t t≥

( )

{ }
{ }

1 1 1 2 2 2

1

1 1 1

2 2 2 2

1

1 1 2 2 2

1

( 1) ( ) ( )

max | |,| | ( )

max | |,| | ( )

ˆ ˆ( ) ( ) , 1, ,

n

i i i ij j j
j

i i i

n

ij ij j j
j

n

i i ij j j
j

y t a y t w g y t

a a y t

w w L y t

c a p t w L p t i m

=

=

=

+ ≤ +

+ ≤

 
≤ + = 

  

∑

∑

∑

 

≤

( )
{ }

{ }

2 2 2 1 1 1

1
2 2 2

1 1 1 1

1

2 2 1 1 1

1

( 1) ( ) ( )

max | |,| | ( )

max | |,| | ( )

ˆ ˆ( ) ( ) , 1, .

m

j j j ji i i
i

j j j

n

ji ji i i
j

n

j j ji i i
j

y t a y t w g y t

a a y t

w w L y t

c a p t w L p t j n

=

=

=

+ ≤ +

≤ +

+ ≤

 
≤ + = 

  

∑

∑

∑

≤

(12) 

If (7) is satisfied, it follows that 
( 1) ( 1k kt c t )+ ≤ +y p , 1,2k = ; through 

mathematical induction the fulfillment of 
( ) ( )k kt c t≤y p , 1,2k =

e

, is ensured for all 

, meaning that 0t t≥ =y

ex

0  is CWAS( ) 
for (9). Since this happens for all , the 
equilibrium point  of BAM (1) is 

GCWAS( ), showing that BAM (1) is 

1 2,c cp p
0c >

1 2,p p
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CWAS( ). This conclusion can be drawn 

for all BAMs described by (1) with 

1,p p2

k k∈A A , 
, k k∈W W 1,2

n

k =

m+→\

, which completes the proof. 

: +]p ( )t
ττ 

 p

1

2


=



O
L

∈Θ

1 2ˆ
ˆ

 
= + 
  

A W
A

ˆ kA

1 1

ˆ
ˆ

ˆ
ˆ

A O
O A

W L
=

Θ

2

(

Θ 1 2,p p

Θ

q

( )rλ Θ 1,r =

max ( )λ Θ

| (r max) |λ λ≤Θ q

max ( )rrθ λ≤ Θ

Ψ

max max( )λ λ≤

Θ

+\

max ( )λ σ<

, >γ 0

Θ
qγ ∈\

Remark 3. Let us introduce the augmented 
vector function 

 , 1 2( ) ( )t t τ=p p , (13) 

and the matrix  defined by ( ) (m n m n+ × +\ )

    (14) 

1 2

2 1

2

2

ˆ
ˆ

,

  
  
    

 
 
  

O W L
W O O

L

where matrices , , , ˆ kW kL 1,k = , given by 
(8). The sufficient condition (7) stated by 
Theorem 1 can be equivalently written as 

 1) ( ),t t t ++ ≥ ∀ ∈]Θp p ,  (15) 

Remark 3 suggests us to explore the role of 
matrix  (14) in ensuring the CWAS( ) 

of IBAM( 1 2 1, , , 2A A W W ). Let us first 
notice the special structure of the test matrix , 
which is nonnegative (all its elements are 
nonnegative). This remark motivates us to 
present some preparatory results. 

Lemma 1. Let  be a 
nonnegative square matrix and let us denote by 

[ ] q
rsθ ×= ∈\Θ

, , its eigenvalues. Then, Θ  has a 
real eigenvalue (simple or multiple), denoted by 

, which fulfils the dominance condition 
(Θ  for all 1,r = . Moreover, 

, 1,r q= . 

q

)

Proof: It results from ([13], Lemma 2.1) and 
from ([8], Corollary 8.1.20).  

Lemma 2: If  are nonnegative 
matrices satisfying , then 

, q q×∈\Θ Ψ

( )
≤Θ

Θ Ψ . 

Proof: It results from ([8], Theorem 8.1.18). 

Lemma 3: If  is a nonnegative 
matrix, then, for any 

[ ] q q
rsθ ×= ∈\

σ ∈ , with 
, there exists a positive vector 

, such that σ<Θγ γ . 

Proof: Since Θ  is nonnegative, for any 
σ +∈\ , ma ( )xλ σ<Θ , there exists an 

( ) 0ε ε σ= >  such that max ( )λ ε σ+ ≤Θ E , 

where [ ] q q
rse ×= ∈\E , with , 1rse = , 1,r s q=

q∈\γ > 0

. 

Thus, for the Perron eigenvector , γ , 
of the positive matrix ε+ >Θ E O

)
 we can write 

max( ) (ε λ ε σ< + = + ≤Θ Θ Θ EEγ γ γ γ . Note 
that when Θ  is irreducible, the existence of the 
Perron-Frobenius eigenvector , q∈\γ > 0γ , 
ensures the equality max ( )λ=Θ Θγ γ .  

We are now able to establish the following 
result. 

Theorem 2. If matrix  defined by (14) is 
Schur stable, then there exist two vector 
functions , 

Θ

( )k tp 1,=

1,

2k

2

, satisfying the 
conditions from Definition 1 so that 
IBAM( 1 2, ,A A W W ) is CWAS( ). 1 2,p p

Proof: Indeed, if Θ  is Schur stable, then the 
vector function 

 
1

0
( ) (0) ( 1 )

t
tt tζ

ζ
ζ

−

=
= + −∑Θ Θp p v −

0

 (16) 

(defined with  and adequate (0) >p ( ) 0ζ ≥v , 

ζ +∈] , such that 
0

lim (
t

t
tζ

ζ→∞ =
)ζ− =v 0∑Θ ), 

satisfies the algebraic inequality (15) and 
, ( )t >p 0 t +∀ ∈] lim

t→∞
1,p

, . The functions 

ensuring CWAS( ) result from the 
appropriate partitioning of p, according to (13). 

( )t =p 0

2p

3.2. CWEAS of an IBAM 

Theorem 3. IBAM( 1 2 1, , , 2A A W W ) is 
CWEAS( 1, ,σ 2α α ) if the following algebraic 
inequalities hold 

 
1 1 1 2 2 2

2 2 2 1 1

ˆ ˆ ,
ˆ ˆ .

σ

σ

≥ +

≥ +

A W L

A W L 1

α α α

α α α
 (17) 

Proof: It is a direct consequence of Theorem 1 
when the time-dependence of vector-functions 

, ( )k tp 1,2k = , is given by (6).  

Remark 4. The same as in Remark 3, let us 
notice that by introducing the augmented vector 
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1 2 m nττ τ + = ∈  \α α α , inequalities (17) may 

be written in the equivalent matrix-form 

 σ ≥ Θα α , (18) σ
where Θ  is given by (14).  

Similarly to Theorem 2, the following result is 
available for CWEAS. 

Theorem 4. If matrix Θ  defined by (14) is 
Schur stable, then there exist two positive 
vectors , , and 
a scalar 

1 1,m∈ >\α α 0
(0,1

2 2,n∈\ 0α α
)

>
σ ∈

1 2, ,

, so that 

IBAM( 1, 2A A W
1 2, ,σ

W ) is 
CWEAS( α α ). 

Proof: If matrix  is Schur stable, then Lemma 
3 ensures the existence of 

Θ
σ +∈\ , 

max ( ) 1λ σ< <Θ  and , 
satisfying inequality (18). The two positive 
vectors ensuring CWEAS(

, 0m n∈ >α α+\

1 2, ,σ α α ) result from 
the appropriate partitioning of α . ■ 

4. CWAS / CWEAS RESULTS FOR BAMS 
WITH FIXED PARAMETERS 

The generality of our results on CWAS/CWEAS 
of IBAMs includes the particular case of a BAM 
with fixed parameters (i.e. without 
uncertainties), obtained for k k k= =A A A , 

k k= =W W W k , 1,2k =

( )m n+ ×

, in (3). The 
CWAS/CWEAS approach relies on the 
replacement of the test matrix 

, built according to (14), by 
the test matrix Ω  defined as: 

( ) (m n m n+ × +∈\Θ )

)

1 
=



(m n+∈\

x

1 2

2 1 2

1 2 2

1 1 2

| | | |
| | | |

| | | | ,
| | | |

    
= +    
        
 

=  
  

Ω A O O W L O
O A W O O L

A W L
W L A

 (19) 

with matrices , kL 1,2k = , given by (8). 

Theorem 5. If matrix  defined by (19) is 
Schur stable, then 

Ω

(a) BAM (1) is CWAS( ) if the 
augmented vector function  given by (13) 
fulfills the difference inequality 

1 2,p p
( )tp

 ( 1) ( ),t t t ++ ≥ ∀ ∈]Ωp p ; (20) 

(b) BAM (1) is CWEAS( 1, ,σ 2α α ) if the scalar 

 and the vector 1 2 m nττ τ + = ∈  \αα α  

fulfill the algebraic inequality 

 σ ≥ Ωα α .  (21) 

Remark 5. The conditions | | , 1
ia <1 1,i m= , 

2| |ja 1< , 1,j = n , are necessary for matrix Ω  
defined by (19) to be Schur stable. It is worth 
noticing that such conditions are formulated as 
working hypotheses in most papers dealing with 
discrete-time BAMs.  

Remark 6. If BAM (1) is CWEAS( 1 2, ,σ α α ), 
then, for its unique equilibrium point 

1 2
e e e

ττ τ =  x x x  we can write 

 
0

0 0

0

0 0

0

0, , ,

( ; , ) ,

, ,

m n

e

t t
e

t

t t

t t

ε

ε

εσ

+
+

∞

−
∞

+

∀ > ∀ ∈ ∀ ∈

− ≤ ⇒

⇒ − ≤

t∀ ∈ ≥

] \

]

Α

Α

x

x x

x x x
 (22) 

where the vector norm ∞
Α  is defined by 

∞ ∞=Α Αx x , m n+∀ ∈ , with  \x

   { }1 1 2
1 1diag 1/ , , 1/ ,1/ , , 1/m n

2α α α α= … …Α . (23) 

This shows that for each concrete neural 
network the definition of exponential stability of 

, e.g. [11], pp.107, with respect to the norm e

∞
Α  is fulfilled in the particular case ( )δ ε ε= , 

0ε∀ > . Similarly, the definition of global 
exponential stability of , e.g. [11], pp.108, is 
satisfied for the particular case 

ex
1M = , 

0

0 0

0 0 0

0

, ,

( ; , ) ,

.

m n

t t
e e

t

t t M

t t

σ

+
+

−
∞ ∞

∀ ∈ ∀ ∈

− ≤ −

∀ ≥

] \
Α Α

x

x x x x x   (24) 

Remark 7. In terms of the matrix norms induced 
by the vector norms, the sufficient condition for 
BAM (1) to be CWEAS( 1, ,σ 2α α ) can be 
formulated as 

 1 1σ−
∞ ∞
= ≤ <ΑΩ ΑΩΑ , (25) 
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where matrix  is given by (23). This is a 
direct consequence of Theorem 5(b).  

Α

5. ILLUSTRATIVE EXAMPLE 

To offer the intuitive support of “visualizing” 
the CWEAS property, let us consider the BAM 
with  and  described by 2m = 1n =

  (26) 

( )
( )
( )

( )

1 1 2 2
1 1 1 1

1 1 2 2
2 2 1 1

2 2 1
1 1 1 1

1 1
2 2

( 1) 0.1 ( ) 0.5 ( ) ,

( 1) 0.2 ( ) 0.4 ( ) ,

( 1) 0.15 ( ) 0.2 ( )

0.3 ( ) , .

x t x t f x t

x t x t f x t

x t x t f x t

f x t t +

+ = − −

+ = +

+ = + −

− ∈Z

1

The activation functions  are 
considered of bipolar sigmoid type with 

1 1 2
1 2 1, , :f f f →\ \

1λ = , 
satisfying inequalities (2) with . 

The equilibrium point of (26) is 

1 1
1 2L L L= =

[0 0 0]e

2
1 1=
τ=x . 

By using the notations 

  (27) [ ] [ ]

[ ]

1 2

2 1

1 2

0.1 0 0.5, ,0 0.2 0.4

0.15 , 0.2 0.3 ,

1 0 , 1 ,0 1

− −  = =    

= = −

 = =  

A W

A W

L L









the concrete form of matrix  (19) is Ω

  . (28) 
1 2 2

1 1 2

0.1 0 0.5| | | | 0 0.2 0.4
| | | | 0.2 0.3 0.15

Ω
  = =     

A W L
W L A

Matrix  is Schur stable since its dominant 
eigenvalue (its spectral radius) is 

Ω

)max ( 0.6239λ Ω = . Inequality (21) is satisfied, 
as an equality, for max ( )σ λ Ω=

]
 and 

[0.9 0.943543 6 1 τ=α , the corresponding 
positive eigenvector with || || 1∞=α . Theorem 
5(b) shows that BAM (26) is 
CWEAS( 1, , 2σ α α ) with 1α  and 2α  resulting 
from the appropriate partitioning of vector α , 
namely [ ]61 0.9543 0.943 τ=α  and [ ]12 =α

1( )t =p

. 

The exponential type functions 1tσ α , 
2 2( )t =p tσ α , t +∈

1,p p

]
2

, ensure the fulfillment of 

the CWAS( ) condition or, equivalently, 

of the CWEAS( 1 2, ,σ α α

1 1
1 1

2 2
1 1

), ( )] [

( ), ( )],

t p t

p t p t

) condition. This 
property is graphically illustrated by the 
evolution of the discrete-time state trajectory 
plotted in Fig. 1, considered as a generic 
representation showing that the trajectories do 
not leave the time-dependent set defined by  

− ×

(0)I

 
1 1
2 2( ) [ ( ( ), ( )]

[ ,

t p p t p t

t +

= −

× − ∈

I

Z
×

 (29) 

once initialized inside . 

 

Fig. 1. Plots of a generic state trajectory of BAM 
(26) illustrating the intuitive meaning of the 

CWEAS property. 

In this example we deal with a BAM having 
fixed parameters in order to construct the 
intuitive image for the state-space trajectories 
meeting the CWEAS condition. When an IBAM 
is considered, such intuitive elements 
characterize each system belonging to the whole 
family and, therefore, the overall analysis 
requires a unique instrument. An instrument of 
this type is given by the main results of our 
paper referring to the stability test of the matrix 
Θ  (14). 

6. CONCLUSIONS 

This paper provides easy-to-apply algebraic 
criteria for exploring the componentwise 
(exponential) asymptotic stability of discrete-
time BAM neural networks with interval type 
parameters. These criteria are formulated in 
terms of Schur stability of a test matrix 
adequately built from the nonlinear system. 
Theorems 2 and 4 are the key elements of our 
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approach that gives a qualitative characterization 
of the dynamics at the level of the state vector 
components. This novel point of view refines 
the classical results in stability theory based on 
global information about the state vector, 
expressed in terms of arbitrary norms. 
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