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Abstract: Cellular neural networks (CNNs) are recurrent artificial neural networks. Due to their 
cyclic connections and to the neurons’ nonlinear activation functions, recurrent neural networks 
are nonlinear dynamic systems, which display stable and unstable fixed points, limit cycles and 
chaotic behaviour. Since the field of neural networks is still a young one, improving the stability 
conditions for such systems is an obvious and quasi-permanent task. This paper focuses on CNNs 
affected by time delays. We are interested to obtain sufficient conditions for the asymptotical 
stability of a cellular neural network with time delay feedback and zero control templates. For this 
purpose we shall use a method suggested by Malkin [8], where the “exact” Liapunov-Krasovskii 
functional will be constructed according the procedure proposed by Kharitonov [6] for stability 
analysis of uncertain linear time delay systems. 
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1. INTRODUCTION 

Cellular neural networks (CNNs), introduced in 
1988 [2], are artificial recurrent neural networks 
displaying a multidimensional array of cells and 
local interconnections among the cells. CNNs 
have been successfully applied to signal and 
image processing, shape extraction and edge 
detection. In such applications stability and 
other problems of dynamical behaviour of the 
CNN are equally important. These properties are 
necessary for the network to achieve its goal and 
have to be checked on the mathematical model.  

In the last ten years the research was oriented 
towards the dynamics of the networks affected 
by time delays due to the signal propagation at 
the synapses level of the biologic brain or the 
reacting lag in the case of the artificial neural 
network. These lags may introduce oscillations 
or may lead to instability of the network.  

We are interested to obtain sufficient conditions 
for the asymptotical stability of a cellular neural  

 

network with time delay feedback and zero 
control templates. For this purpose we shall use 
a method suggested by Malkin [8] (see also [1]), 
where the “exact” Liapunov-Krasovskii 
functional will be constructed according the 
procedure proposed by Kharitonov [6] for 
stability analysis of uncertain linear time delay 
systems.  

The sufficient conditions obtained here are 
independent of the delay parameter. 

2. THE MATHEMATICAL MODEL AND 
PROBLEM STATEMENT 

Consider a cellular neural network with time 
delay feedback and zero control templates 
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where j is the index for the cells of the nearest 
neighborhood N of the ith cell, ai is a positive 



 CONTROL ENGINEERING AND APPLIED INFORMATICS 

 
12

parameter, cij are synaptic weights (which can 
have an inhibitory effect if cij < 0, or an 
excitatory one if cij > 0), Ii is the bias and τj are 
positive delays.  

The nonlinearities for the cellular neural 
networks are of the bipolar ramp type: 
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what means they are bounded, monotonically 
increasing and globally Lipschitzian functions, 
with the Lipschitz constant Li = 1. 

Without loss of the generality, using a change of 
the coordinates, , one can shift the 
equilibrium point z

*
iii zzx −=

* to the origin so that system 
(1) can be written into the form: 
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where we denoted 

jzgzgf jjjjj ∀−+= ,)()()( **σσ  (4)

Using a method proposed by Malkin (1952), 
we assume that there exists ki > 0 such that the 
nonlinearities satisfy  
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and that for fi(xi) = kixi  the system 
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is exponentially stable. We underline that (5) is 
a normal condition taking into account the 
properties of the activation functions of CNN’s 
neurons. 

For instance, if gj(z) are given by (2) then since 
they are monotonically increasing and globally 
Lipschitzian with the Lipschitz constant Li = 1 
we shall have, taking also into account the above 
definition of fi that 
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Since ai > 0 we may take in (5) ki = 0, 0=ik , 

1=ik . In the following we continue the general 
study which is valid also for other functions than 
defined by (5). 

 
Denoting 
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system (6) may be written into the form 
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with the initial condition ),()( θϕθ =ix  for  
]0,[ τθ −∈ , where  j

j
ττ max= , ϕ ∈C ([-τ, 0], Rn). 

Consider now the perturbed system: 
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which can be written as 
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with  

( ) njbdiagC n
i

i
jj ,1,1 =⋅=∆  (14)

We are interested to find conditions such that 
the perturbed system (13) remains exponentially 
stable for all ( )iii kk ,−∈b , ni ,1=∀ . This is 
nothing more but robust stability of system (5) 
in the linear case. The idea of Malkin [1], [8] 
which will be described below will in fact give 
us more, the exponential stability of the 
nonlinear system (3) for which sufficient 
conditions will be obtained. In fact, ( )ii kk ,−  
represents the proper interval for the nonlinear 
functions fi attached to each cell of the network. 

3. MAIN RESULTS 

Given positive definite  matrices Pnn× 0, Pj, 
Rj, nj ,1=  let us define on C ([-τ, 0], Rn) the 
positive definite functional 
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(15) 

Since system (11) is exponentially stable, there 
exists a Liapunov-Krasovskii functional V(φ(⋅)) 
such that along the solutions of (11) we have the 
equality 
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The “exact” Liapunov-Krasovskii functional is 
of the form  

( )

( )

( )

[ ]∑ ∫

∫

∑∑ ∫

∑ ∫

= −

−

= = −

= −

+++++





















++−⋅

⋅






++

+






−−+

=⋅+

n

j i
jjj

T

i

n
i

i
jjk

n

k

n

j k
j

n
i

i

T

n

j i

n
i

i
ji

T

T

dtxPRtx

ddkdiagCU

Ckdiagtx

dtxkdiagCUtx

txUtxtxV

1

0

2

0

1121

1 1

0

12

1

0

1

)()()(

)(

)(

)()()(2

)()0()())((

τ

τ

τ

τ

θθθτθ

θθττθθ

θ

θθθτ

 

 (17) 

where, since the system (11) is exponentially 
stable, the matrix valued function  
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is well defined for all τ ∈ R; here K(t) is the 
fundamental matrix associated to the system 
(11) (see Kharitonov and Zhabko [6]). 

Following the steps in Kharitonov [6], the time 
derivative of Liapunov-Krasovskii functional 
along the solutions of the perturbed system (13) 
is 
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We assume that bi, ni ,1=  are such that the 
matrices ∆j, defined by (14), are constant and 
satisfy the condition 
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where Hj are definite positive matrices,  are 
given positive numbers and I is the identity 
matrix. 

jρ

For the derivative of the functional (17) along 
the trajectories of the perturbed system (13) one 
obtains the following upper bound: 
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where it is assumed that njHH jj ,0,1: ==
µ

.  

We have constructed a Liapunov - Krasovskii 
quadratic functional which is strictly positive 
definite and with the derivative along linear 
system’s solutions at least non-positive; this last 
property is preserved with respect to the 
uncertainties defined by (20) and this shows a 
possible robust exponential stability of the 
linearized system (6). But, as already mentioned, 
the idea of Malkin [1], [8] gives more - 
exponential stability of the nonlinear system (3). 
This will become clear from the short 
description of the method. Let bi(σ) be a 
nonlinear function  defined from (5): 
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Now, if the Liapunov function(al) and its 

derivative - both being quadratic forms - have 
good sign properties for all ( )iii kk ,−∈b , then for 

any fixed 0≠ix  one can obtain bi from (22) and 
for ( )ii kxb ,( ii k) −∈  the properties of the 
Liapunov function(al) do not change. 

Remark:  It is quite clear that the terms bi  may 
be even time varying what shows that f  may be 
time varying within the interval 

i

( )ii kk ,−  

provided they are integrable with respect to t 
(Integrability is necessary just to secure 
existence of the solution for the Cauchy problem 
in the Carathéodory sense). Also the Lipschitz 
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property has now to hold uniformly with respect 
to t. 

We are now in position to state the main 
mathematical result of the paper. 
Theorem: Let system (6) be exponentially 
stable. Then system (3) is exponentially stable 
for all nonlinearities of the form: 
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with bi(xi) defined by (22), if there exist definite 
positive matrices P0, Pj, Rj, nj ,1=  and a 
positive value µ, such that 
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Sketch of the proof: Indeed, for some constants 
δ > 0 and γ > 0 the functional V(ϕ) verifies the 
inequalities 

22 )()0( τϕγϕϕδ ≤≤V  (27) 
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The strictly positive lower bound of V (with δ  > 
0) is not valid in general since V(ϕ) is a positive 
definite quadratic functional on an infinite 
dimensional space and the spectrum of a 
positive operator does not meet in general the 
compacity assumption. In our case, however 
taking into account (17), the well delimitation of 
V from 0 i.e. δ  > 0 is secured. 

Along the solutions of the perturbed system 
(13) the derivative of the functional is 
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If  matrices ∆j, nj ,1=  depend on t and (or) on 
, )( jty τ− nj ,1=  but they satisfy inequalities 

(20), then there exists ε  > 0 such that  
 

)()(~ ϕεϕ WW ≥  (29)

Here also the lower bound on W may not be 
strictly positive in general but, if one takes into 
account (21) the delimitation of W from 0 is 
again secured. 

~

~

Conditions (27) and (29) imply that the zero 
solution of the perturbed system (13) is global 
exponentially stable. 

4. CONCLUDING REMARKS 

The present paper extends our previous work 
([3], [4], [5]), and states sufficient condition for 
the exponentially stability of a cellular neural 
network with time delay feedback and zero 
control templates. The result is independent of 
the delay parameter. 

Since the Liapunov method gives only sufficient 
stability conditions, the urgent task is, as usual, 
improvement of these conditions making them 
sharper i.e. closer to the necessary ones. A 
normal way for this is to improve the Liapunov 
function(al).  

Here we took into account the following. In the 
linear case a quadratic Liapunov functional may 
provide necessary and sufficient conditions for 
exponential stability, but in the time delay case 
the sharpest most general quadratic Liapunov 
function (as suggested by the papers of Datko 
and Infante with Castelan - their exact 
references are to be found in [7]) is rather 
difficult to manipulate. On the other hand, the 
simplified versions which are currently used 
(including our earlier reference [3] - [5]) deserve 
improvement. This fact lead us to the approach 
of Kharitonov [6], [7] which gives a constructive 
approach to linear time lag robust systems which 
is sufficiently sharp. 

The natural nonlinear extension of linear 
robustness is robustness with respect to sector 
restricted nonlinearities. This is of course the 
standard absolute stability problem and if we 
want to take advantage of all properties of a 
quadratic Liapunov function(al), the approach of 
Malkin is the simplest and also the most 
reasonable. Worth mentioning that we used it in 
both Malkin and Barbashin expositions which 
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are formulated for the single nonlinearity case. 
Here we obtained a result for several 
nonlinearities, also in the delay case. Of course 
the conditions are sufficient and still require 
improvement. Such improvement can be 
obtained only by adequate application of the 
entire set of procedures and results of the 
Liapunov method; moreover, the Liapunov 
method remains the basic one in coping with 
such problems as oscillations and several 
equilibria. 
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