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Abstract: In this paper, we introduce a new algebraic state estimation approach for the
linear time-varying (LTV) systems. This approach is based on the following mathematical tools:
Leibniz formula, generalized integration by parts, operational calculus and distribution theory.
Firstly, we estimate the successive time derivatives of the measured output. Then, a generalized
expression of the state variables of the system as a function of the integrals of the output and
the input is obtained. Comparisons with the Kalman-type observer and some simulation results
are given to illustrate the performance of the proposed approach.
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1. INTRODUCTION

State estimation is undoubtedly crucial research topic in
control systems, and the associated problems are of great
interest for engineers. Indeed, the state is not always avail-
able by direct measurement (for cost reasons, technological
constrains, etc), especially such signals come in a quite
large number, including time varying signals character-
izing the system and unmeasured external disturbances,
etc. Thus, a state observer (a dynamic auxiliary system),
which gives a complete estimate based on measurements
and inputs, must be designed (Wang et al., 2012, 2014a,b).

In the context of deterministic linear finite-dimensional
time-invariant systems, an observer can be designed if
the system is observable, i.e. if any initial state x(t0) at
t0 can be determined from the knowledge of the system
output y and the control u on some time interval [t0, t0 +
T ]. The observability can be verified by the well-known
Kalman rank condition (Kalman, 1960) and an observer
leading to the asymptotic estimation of the state was
firstly introduced by Luenberger (Luenberger, 1966).

For the observer design problem of LTV systems (i.e.
contain some time-dependent parameters), there are also
some pioneering studies. According to the Theorem (2.2)
in (O’Reilly, 1983), if a system is completely observable
(the definition will be recalled later), there exists an
asymptotically stable observer. Such a type of observers
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takes the form of Kalman-Bucy filter (Kalman and Bucy,
1961). In (Hammouri and Morales, 1990), an observer for
state-affine systems was constructed and it depends on the
input of the the systems. In (Brdiek and Rotella, 1993), a
design method of full order and reduced order observer for
the linear time-varying systems without stochastic terms
is reviewed, but some Riccati equation need to be solved.
Furthermore, in the work of J. Trumpf (Trumpf, 2007), the
necessary and sufficient existence conditions for tracking
and asymptotic observers for linear functions of the state
are given, whereas the way to find the right matrices
satisfied with those conditions is not so evident.

The purpose of this article is to design a new fast state
estimator for LTV systems by using an algebraic approach,
which is an extension of M. Fliess and H. S. Ramirez’s
work originated from the linear time-invariant systems
identification (Fliess and Sira-Ramirez, 2003, 2008). Based
on this algebraic method, (Mboup et al., 2007) work
on the signal time derivative estimation, (Gensior et al.,
2007) study the experimental applications of parameter
identification following similar ideas, in the linear context
see also (Tian et al., 2008), and the switched systems
estimation see (Zheng et al., 2009), (Tian et al., 2011).
The main idea of this new approach is to apply some
algebraic operations to a linear differential equation of the
analyzed signals in the complex domain, when come back
to the time domain with the inverse Laplace transform,
one obtains an expression of the integral of the input and
the output signal. As a result, the process of estimation is
represented by an exact integral formula, rather than by an
auxiliary dynamic system, without any other equations to
be solved. In this approach, the successive time derivatives
of the output are expressed as a function of the integral of
the output y(t) itself and of the input u(t) so that the state
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x(t) can be estimated in terms of the integral of y(t) and
u(t) in order to attenuate the influence of measurement
noises.

The proposed algebraic method exhibits the following
features:

• the state can be efficiently approximated which is
independent of the initial values,
• it is non-asymptotic: the estimated value tracks the

true value in a finite time,
• state estimation is given by an explicit formula which

can be computer-implemented formally and quickly,
• robustness properties with respect to additive noise.

This paper is organized as follows. We begin with the
problem formulation. In Section 3, the successive time
derivatives of the measured output are estimated by Leib-
niz formula, operational calculus, integration by parts
and distribution theory. Then, we apply the estimated
successive time derivatives of the output to achieve the
state estimation of the systems. Simulation results are
given in Section 4 to highlights the efficiency and the
robustness properties of the proposed approach w.r.t noisy
measurements, and comparisons with the Kalman-type
observer are also included. Finally, some conclusions and
perspectives are given in Section 5.

2. PROBLEM STATEMENT

Consider the linear time-varying systems given by:{
ẋ = A(t)x+ B(t)u
y = C(t)x

(1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rd
represents the output. A(t) ∈ Rn×n, B(t) ∈ Rn×m and
C(t) ∈ Rd×n are matrices with time varying coefficients.

For the LTV systems, the definition of completely/totally
observable is recalled (Kreindler and Sarachik, 1964):

Let tf > t0. Then, the dynamic system (1) is

• completely observable on [t0; tf ] if any initial state
x(t0) at t0 can be determined from the knowledge of
the output y(t) and the control u(t) on [t0; tf ];
• totally observable on [t0; tf ] if it is completely observ-

able on every subinterval of [t0; tf ].

In (Silverman and Meadows, 1967), the observability of
the system (1) characterized in terms of A(t), C(t) and
their appropriate time derivatives is defined as follows:

On the interval [t0; tf ], the dynamic system (1) is

• completely observable if rank O(t) = n on [t0; tf ];
• totally observable if and only if rank O(t) = n on

every subinterval of [t0; tf ].

where O(t) is the observability matrix defined by:

O(t) = [S0(t), S1(t), ..., Sn−1(t)]T , (2)

S0(t) = CT (t),

Sk+1(t) = AT (t)Sk(t) + Ṡk(t), k = 0, ..., n− 2.

In (Fliess and Diop, 1991), module theory notions are
used to define the observability 1 of the system (1) as
the possibility to express all the variables of the system,
(in particular all the state variables) as combinations of
the components of the input variable, the output variable
and of their time derivatives up to a finite order. In this
context, this observability matrix O(t) can be rewritten as
follows:

O(t) =
[
CT (t),∆(t)CT (t), ...,∆n−1(t)CT (t)

]T
,

∆(t) = AT (t) +
d

dt
.

If the dynamic system (1) is completely observable and
(A(t), C(t)) are bounded, there exists a Kalman-type ob-
server (Besancon, 2007) of the form :

ẋe(t) = A(t)xe(t) + B(t)u(t)−K(t)(C(t)xe(t)− y(t)) (3)

K(t) is given by:

Ṗ (t) = P (t)AT (t) + A(t)P (t)− P (t)CT (t)W−1(t)C(t)P (t)

+ V (t) + δP (t),

K(t) = P (t)CT (t)W−1(t),

xe(0) = xe0, P (0) = P0 = PT0 > 0.

with either δ > 2‖A(t)‖ for all t or V = V T > 0. W (t) and
P (t) are symmetric positive definite matrices of adapted
dimensions.

Hereafter, we introduce the algebraic state estimation and
the comparisons with this Kalman-type observer will be
given later.

3. ALGEBRAIC STATE ESTIMATION

From now on, for the sake of the clarity and without
loss of generality, only observable mono-variable systems
are considered, that is to say: u ∈ R and y ∈ R (This
approach can be extended to certain Multi-input Multi-
output systems with the decoupling technique). It is aimed
to estimate the state x(t) in a fast way and on the basis of
possibly noisy measurements. For this, exact expressions
of the state are derived as a function of the integral of the
output and the input. Since the integral operator has a
filtering effect, the influence of measurement noise can be
reduced.

3.1 Notations

For the sake of convenience, some useful formulas are
introduced as follows (see (Yosida, 1984)):

1 Which is also valid for nonlinear systems (Barbot et al., 2007;
Fliess and Sira-Ramirez, 2003).
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(i)L−1
(

1

sl
dkY (s)

dsk

)
=


∫ t

0

(−τ1)k(t− τ)l−1y(τ)

(l − 1)!
dτ, l ≥ 1

dl
(
(−t)ky(t)

)
dtl

, l ≤ 0

(ii)Leibniz formula:

dh(x(s)y(s))

dsh
=

h∑
j=0

(
h

j

)
dh−j(x(s))

dsh−j
dj(y(s))

dsj

(iii)(f ∗ g)(t) =

∫ t

0

f(t− λ)g(λ)dλ

(iv)L−1 (g1(s)g2(s)) = g1(t) ∗ g2(t) Convolution theorem

3.2 Estimation of the successive time derivatives of the
measured output

In the following, an algebraic method is developed to
obtain a fast and accurate estimate of the output and a
finite number of its time derivatives. Since the observable
system’s observability matrix is invertible, once those
variables are known, one can recover the state of the
system.

Theorem 1. For the linear time-varying mono-variable sys-
tems, the estimates of the successive time derivatives of the
measured output y are given by:

ye(t) =
1

(−t)n
M0(t) (4)


y(1)e (t)

y(2)e (t)

y(3)e (t)
...

y(n−1)e (t)

 =
1

(−t)n




M1(t)
M2(t)
M3(t)

...
Mn−1(t)

−N(t)


ye(t)

y(1)e (t)

y(2)e (t)
...

y(n−2)e (t)




(5)

with

N(t) =


N1,1(t) 0 0 . . . 0
N2,1(t) N2,2(t) 0 . . . 0
N3,1(t) N3,2(t) N3,3(t) . . . 0

...
...

...
...

...
Nn−1,1(t) Nn−1,2(t) Nn−1,3(t) . . . Nn−1,n−1(t)


Np,l(t) =

n−1∑
j=n−p

γjn
1
l−1,w(t) + n2p,l−1(t), γj =

n!n!

j!j!(n− j)!
,

n1g,w(t) =

(
w

g

)
j!(−1)j

(j − w + g)!
tj−w+g, w = p+ j − n,

n2p,k(t) =

(
p

k

)
(−1)nn!

(n− p+ k)!
tn−p+k,

mp,fi,i = {(t− τ)n−p−1(−τ)nfi(τ)}(i),

Mp(t) =

n−1∑
i=0

(−1)i
∫ t
0

(mp,bi,iu(τ)−mp,ai,iy(τ)) dτ

(n− p− 1)!

−
n−p−1∑
j=0

γj

∫ t

0

(t− τ)−w−1(−τ)jy(τ)

(−w − 1)!
dτ.

Demonstration

From system (1) which satisfies the observability assump-
tion, one obtains the input-output relation :

n∑
i=0

ai(t) y
(i)(t) =

n−1∑
i=0

bi(t) u
(i)(t), (6)

with an = 1.

a) Apply the Laplace transform to this I/O relation

sny(s)− ...− y(n−1)(0) +

n−1∑
i=0

L
(
ai(t) y

(i)(t)
)

=

n−1∑
i=0

L
(
bi(t) u

(i)(t)
)
.

b) Algebraic manipulations.

Deriving the preceding expression n times with respect to
s, in order to eliminate the initial conditions, using the
Leibniz formula and the relation

dk(sl)

dsk
=


l!

(l − k)!
sl−k, if 0 < k ≤ l

0, if 0 < l < k
(−1)k(k − l − 1)!

(−l − 1)!
sl−k, if l < 0 < k

(7)

Setting γj = n!n!
j!j!(n−j)! and then multiply each side of the

expression by s−(n−p), one obtains:
n∑
j=0

γj
sj

sn−p
dj(y(s))

dsj
+

n−1∑
i=0

1

sn−p
dnL

(
ai(t) y

(i)(t)
)

dsn

=

n−1∑
i=0

1

sn−p
dnL

(
bi(t) u

(i)(t)
)

dsn
. (8)

c) Return to time domain.

Applying the Inverse Laplace Transform (ILT) to (8), one
gets:

n∑
j=0

L−1

(
γj

sn−p−j

dj(y(s))

dsj

)
︸ ︷︷ ︸

Ãp

+

n−1∑
i=0

L−1

(
1

sn−p

dnL
(
ai(t) y

(i)(t)
)

dsn

)
︸ ︷︷ ︸

B̃p

=

n−1∑
i=0

L−1

(
1

sn−p

dnL
(
bi(t) u

(i)(t)
)

dsn

)
︸ ︷︷ ︸

C̃p

. (9)

Now, one needs to express Ãp, B̃p et C̃p as a function of
y, u and their successive derivatives of order less than p.

c1) Using the formula (i), one gets:

L−1
(

1

sn−p−j
dj(y(s))

dsj

)
=

∫ t

0

(t− τ)n−p−j−1(−τ)jy(τ)

(n− p− j − 1)!
dτ, 0 ≤ j ≤ n− p− 1

dp+j−n
(
(−t)jy(t)

)
dtp+j−n

, n− p ≤ j ≤ n.
(10)
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Setting w = p + j − n and applying the Leibniz formula
and the relation (7), one has:

dw
(
(−t)jy(t)

)
dtw

=

w∑
g=0

(
w

g

)
j!(−1)jtj−w+gy(g)(t)

(j − w + g)!
. (11)

When j = n, one has:

dp ((−t)ny(t))

dtp
= (−t)ny(p)(t)

+

p−1∑
k=0

(
p

k

)
n!(−1)ntn−p+ky(k)(t)

(n− p+ k)!
. (12)

Using (10), (11) and (12), Ãp can be rewritten as follows:

Ãp =

n−p−1∑
j=0

F̃p,j +

n−1∑
j=n−p

γj

w∑
g=0

(
w

g

)
j!(−1)jtj−w+gy(g)(t)

(j − w + g)!

+ (−t)ny(p)(t) +

p−1∑
k=0

(
p

k

)
n!(−1)ntn−p+ky(k)(t)

(n− p+ k)!
, (13)

where

F̃p,j = γj

∫ t

0

(t− τ)−w−1(−τ)jy(τ)

(−w − 1)!
dτ.

c2) In order to express B̃p and C̃p, one applies the
convolution theorem and gets

B̃p =

n−1∑
i=0

tn−p−1ε(t)

(n− p− 1)!
∗ (−t)nai(t)y(i)(t),

where ε(t) is the step function.

If g1 is a C1–function such that g1(0) = 0 and g2 is a
C0–function then∫ t

0

g1(t− τ)g2(τ)dτ

=

[
g1(t− τ)

∫ τ

0

g2(µ)dµ

]t
0

−
∫ t

0

dg1(t− τ)

dτ

(∫ τ

0

g2(µ)dµ

)
dτ

=

∫ t

0

dg1(t− τ)

d(t− τ)

(∫ τ

0

g2(µ)dµ

)
dτ.

This result can be extended for two distributions (g1, g2)
with left hand side limited supports which implies the
existence of the convolution product g1 ∗ g2 and to the
following more general result∫ t

0

g′1(t− λ)g2(λ)dλ =

∫ t

0

g1(t− λ)g′2(λ)dλ

which reads as

g′1(t) ∗ g2(t) = g1(t) ∗ g′2(t), (14)

where the prime notation denotes the distribution deriva-
tion.

Using the formulas which were indicated at the beginning
and (14), one has:

tn−p−1ε(t) ∗ (−t)nai(t)y(i)(t)
(14)
= (n− p− 1)!ε(t) ∗

∫ t

0

...

∫
︸ ︷︷ ︸
(n−p−1)

(−τ)naiy
(i)dτ

(iii)
= (n− p− 1)!

∫ t

0

...

∫
︸ ︷︷ ︸
(n−p)

ε(t− τ)(−τ)naiy
(i)dτ

=

∫ t

0

(t− τ)n−p−1(−τ)naiy
(i)dτ

So

B̃p =

n−1∑
i=0

∫ t

0

(t− τ)n−p−1

(n− p− 1)!
(−τ)nai(τ)y(i)(τ)dτ.

Then, applying the integration by parts, which can be
generalized for the function of class Ci:∫ b

a

f(τ)g(i)(τ)dτ =

[
i−1∑
k=0

(−1)kf (k)(τ)g(i−1−k)(τ)

]b
a

+ (−1)i
∫ b

a

f (i)(τ)g(τ)dτ

one gets:

B̃p =
1

(n− p− 1)!

n−1∑
i=0

i−1∑
j=0

(−1)jmp,ai,jy
(i−j−1)(τ)

t
0

+
1

(n− p− 1)!

n−1∑
i=0

(−1)i
∫ t

0

mp,ai,iy(τ)dτ,

where

mp,ai,j = {(t− τ)n−p−1(−τ)nai(τ)}(j)

=

j∑
f=0

(j
f

)dj−f{(τ2 − tτ)n−p−1}
dτ j−f

df{(−τ)p+1ai(τ)}
dτf

=

j∑
f=0

(j
f

)dj−f ((τ2 − tτ)n−p−1)

d(τ2 − tτ)j−f

d(τ2 − tτ)j−f

dτ j−f

df{(−τ)p+1ai(τ)}
dτf

.

Using the relation (7), one gets

dj−f ((τ2 − tτ)n−p−1)

d(τ2 − tτ)j−f

=

 (n− p− 1)!(τ2 − tτ)n−p−1−j+f

(n− p− 1− j + f)!
, j − f ≤ n− p− 1

0, n− p− 1 < j − f

So
i−1∑
j=0

(−1)j
[
mp,ai,jy

(i−j−1)(τ)
]t
0

= 0,

and

B̃p =
1

(n− p− 1)!

n−1∑
i=0

(
(−1)i

∫ t

0

mp,ai,iy(τ)dτ

)
. (15)

Applying the same operation for C̃, one gets:

C̃p =
1

(n− p− 1)!

n−1∑
i=0

(
(−1)i

∫ t

0

mp,bi,iu(τ)dτ

)
. (16)
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Substituting the preceding results (13), (15) and (16) into
(9), one obtains the following expressions for the time
derivatives of y:

y(p)(t) =
1

(−t)n
(Mp(t)− Γp(y)) , (17)

with

Mp(t) = C̃p − B̃p −
n−p−1∑
j=0

F̃p,j ,

Γp(y) =

n−1∑
j=n−p

γj

w∑
g=0

(
w

g

)
j!(−1)jtj−w+g

(j − w + g)!
y(g)(t)+

p−1∑
k=0

(
p

k

)
n!(−1)ntn−p+k

(n− p+ k)!
y(k)(t)

=
(
γn−pn

1
0,0 + . . .+ γn−1n

1
0,p−1 + n2p,0

)
y + . . .+(

γn−pn
1
p−1,0 + . . .+ γn−1n

1
p−1,p−1 + n2p,p−1

)
y(p−1)

=

 n−1∑
j=n−p

γjn
1
0,w + n2p,0

 y + . . .+

 n−1∑
j=n−p

γjn
1
p−1,w + n2p,p−1

 y(p−1)

=

p∑
l=1

Np,ly
(l−1).

In the particular case where p = 0, applying the result of
(13), (15) and (16), one gets:

Ã0 = (−t)ny(t) +

n−1∑
j=0

γj

∫ t
0
(t− τ)n−j−1(−τ)jy(τ)dτ

(n− j − 1)!
,

B̃0 =

n−1∑
i=0

(−1)i
∫ t
0
{(t− τ)n−1(−τ)nai(τ)}(i)y(τ)dτ

(n− 1)!
,

C̃0 =

n−1∑
i=0

(−1)i
∫ t
0
{(t− τ)n−1(−τ)nbi(τ)}(i)u(τ)dτ

(n− 1)!
.

(18)

So

M0(t) = B̃0 − C̃0 −
n−1∑
j=0

F̃0,j

Clearly, ye(t) can be rewritten as in (4) as a function
of the integral of the output y and the input u. Then,
one substitutes ye(t) in (17) such that one obtains (5)
as an expression of the estimate of the successive time
derivatives of the measured output y. Due to the triangular
structure of the matrix N(t), one gets the estimate of the
p− th time derivative of y as a function of the integral of
y and the input u only.

3.3 State reconstructor

In the following, with the knowledge of the output and
the input and a finite number of their time derivatives,
one can reconstruct the state of the system. Let us note
(cf the observability matrix defined in (2)):

S0(t) = CT (t),

Sk(t) =

(
AT (t) +

d

dt

)k
CT (t), 0 < k < n

Qk0(t) = STk (t)B(t),

Qkj(t) =

{
C(t)B(t), j = k

Q(k−1)(j−1)(t) + Q̇(k−1)j(t), 1 ≤ j < k.

One can show that for all 0 ≤ k < n:

y(k)(t) = STk (t)x(t) +

k∑
j=1

Qkj(t)u
(j−1)(t). (19)

Indeed, one has:

y(t) = ST0 (t)x(t)

ẏ(t) = ST1 (t)x(t) +Q11(t)u(t)

Assume (19) is true for integer k > 0, one has:

y(k+1)(t)

= ṠTk (t)x+ STk (t)ẋ+ Q̇k1(t)u+Qk1(t)u̇+ . . .

+Qk(k−1)(t)u
(k−1) + Q̇kk(t)u(k−1) +Qkk(t)u(k)

=
(
ṠTk (t) + STk (t)A(t)

)
x+

(
Qk0(t) + Q̇k1(t)

)
u+ . . .

+
(
Qk(k−1)(t) + Q̇kk(t)

)
u(k−1) +Q(k+1)(k+1)(t)u

(k)

= STk+1(t)x+

k+1∑
j=1

Q(k+1)j(t)u
(j−1).

Then it is true for integer k+1. Thus, one can estimate all
the state xe as a function of ye, u and their time derivatives
as follows:

xe(t) =


ST0 (t)
ST1 (t)
ST2 (t)

...
STn−1(t)


−1 


ye
ẏe
y(2)e
...

y(n−1)e

−Q(t)


u
u̇

u(2)

...

u(n−2)



 .
with

Q(t) =


0 0 . . . 0

Q11(t) 0 . . . 0
Q21(t) Q22(t) . . . 0

...
...

...
...

Q(n−1)1(t) Q(n−1)2(t) . . . Q(n−1)(n−1)(t)

 .

For the input u, it is assumed to be sufficiently differen-
tiable and its derivatives are known. If it’s not the case, an
estimate technique of the numerical derivation developed
by the similar algebraic method (Mboup et al., 2007) can
solve out it. Thus, one can obtain an expression that no
longer involves the derivatives of the input.

The observability matrixO(t) = [S0(t), S1(t), ..., Sn−1(t)]
T

is invertible since the system is assumed observable, but it
should be pointed out that in some cases, for the numerical
problem, there are some singular points needed to be
treated particularly.

Note that all these computations are singular at t = 0 but
becomes valid for any arbitrary small instant. Therefore
one must to evaluate the formula not at t = 0 but after a
small time ε.
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4. NUMERICAL EXAMPLE AND SIMULATIONS

Consider a DC motor system whose electric part is ne-
glected, and its equations are given by: ẋ1(t) = x2(t)

ẋ2(t) = − 1

τ(t)
x2(t) +

k

τ(t)
u(t)

with y = x1 as measured output; x1 is the angular position
of the rotor, x2 is the angular velocity of the rotor and u
is the control input voltage. k is strictly positive constant
and τ(t) is time-varying strictly positive parameter.

4.1 Application of developed algebraic approach

Write the input-output relationship:

y(2)(t) +
1

τ(t)
ẏ =

k

τ(t)
u(t) (20)

Step 1: Express ye as a function of the integral of y.

a) Apply the Laplace transform to the relation (20).

s2y(s)− sy(0)− ẏ(0) + L
(

ẏ

τ(t)

)
= kL

(
u(t)

τ(t)

)
(21)

b) Derive (21) twice to eliminate the initial conditions:

2y(s) + 4s
dy(s)

ds
+ s2

d2y(s)

ds2
+
d2L

(
ẏ
τ(t)

)
ds2

= k
d2L

(
u(t)
τ(t)

)
ds2

(22)

Multiply each side of (22) by s−2:

2

s2
y(s)+

4

s

dy(s)

ds
+
d2y(s)

ds2
+

1

s2

d2L
(

ẏ
τ(t)

)
ds2

=
k

s2

d2L
(
u(t)
τ(t)

)
ds2

(23)

c) Apply the inverse Laplace transform to (23) using the
expressions of (4) or (18) in order to return to time domain,
one obtains the estimation of the output:

• τ(t) = a0t+ a1

ye(t) =

∫ t
0
y(λ)

(
−2a0λ3−3a1λ2+t(a0λ

2+2a1λ)
(a0λ+a1)2

+ 6λ− 2t
)
dλ

t2

+ k

∫ t
0

(t−λ)λ2u(λ)
a0λ+a1

dλ

t2
(24)

• τ(t) = b0 sin b1t+ b2

ye(t) =

∫ t
0
y(λ)

(
−(3λ2−2tλ)
b0 sin(b1λ)+b2

+ (λ3−tλ2)b0b1 cos(b1λ)
(b0 sin(b1λ)+b2)2

)
dλ

t2

+

∫ t
0
y(λ)(6λ− 2t)dλ+

∫ t
0
k(t−λ)λ2u(λ)
b0 sin(b1λ)+b2

dλ

t2
(25)

Step 2: Express y(1) as a function of y, u and their integral.

Multiply each side of (22) by s−1:

2

s
y(s) + 4

dy(s)

ds
+ s

d2y(s)

ds2
+

1

s

d2L
(

ẏ
τ(t)

)
ds2

=
k

s

d2L
(
u(t)
τ(t)

)
ds2

(26)

Apply the ILT to (26) using the expressions of (5) or (13,
15, 16), one obtains:

• τ(t) = a0t+ a1

y(1) =

∫ t
0

(
y(λ)

(
a0λ

2+2a1λ
(a0λ+a1)2

− 2
)

+ kλ2u(λ)
a0λ+a1

)
dλ

t2

+
2ty(t)− t2y(t)

τ(t)

t2
(27)

• τ(t) = b0 sin b1t+ b2

y(1) =

∫ t
0
y(λ)

(
2λ

b0 sin(b1λ)+b2
− λ2b0b1 cos(b1λ)

(b0 sin(b1λ)+b2)2
− 2
)
dλ

t2

+

∫ t
0

kλ2u(λ)
b0 sin(b1λ)+b2

dλ+ 2ty(t)− t2y(t)
τ(t)

t2
(28)

Then, one substitutes ye(t) (24) (respectively (25)) in the
expression of y(1)(t) (27) (respectively (28)) such that one

obtains y
(1)
e (t) as an expression of the estimate of the

successive time derivatives of the measured output y.

Step 3: Reconstruction of state.

3a) τ(t) = a0t+ a1, one obtains:



x̂1 =

∫ t
0
y(λ)

(
t(a0λ

2+2a1λ)−2a0λ3−3a1λ2

τ2(λ) + 6λ− 2t
)
dλ

t2

+

∫ t
0
u(λ)k(t−λ)λ

2

τ(λ) dλ

t2

x̂2 =

∫ t
0

(
y(λ)

(
a0λ

2+2a1λ
τ2(λ) − 2

)
+ u(λ) kλ

2

τ(λ)

)
dλ

t2

+
2tye(t)− t2ye(t)

τ(t)

t2

3b) τ(t) = b0(sin b1t) + b2, one obtains:



x̂1 =

∫ t
0
y(λ)

(
2tλ−3λ2

τ(λ) + (λ3−tλ2)b0b1 cos(b1λ)
τ2(λ) + 6λ− 2t

)
dλ

t2

+

∫ t
0
u(λ)k(t−λ)λ

2

τ(λ) dλ

t2

x̂2 =

∫ t
0

(
y(λ)

(
2λτ(λ)−λ2b0b1 cos(b1λ)

τ2(λ) − 2
)

+ u(λ) kλ
2

τ(λ)

)
dλ

t2

+
2tye(t)− t2ye(t)

τ(t)

t2

4.2 Simulation

Hereafter, robust estimation with respect to noise and
comparative study with Kalman-type observer are de-
picted. Simulations are given for a polynomial parameter
(Fig. 1, Fig. 2): τ = a0t + a1 (a0 = 0.001, a1 = 1) and a
sinusoidal one (Fig. 3, Fig. 4): τ = b0 sin(b1t)+b2 ( b0 = 2,

b1 = 0.2 ∗ π, b2 = 3), δ = 0, R = 1 and V =

(
2 0
0 2

)
. The

initial conditions are: x2(0) = 5(rad/s), x1(0) = 1(rad),
k = 1 and the input voltage is chosen as u(t) = 12 sin(t).

For the Kalman-type observer (3), it is assumed that:
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• w(t) is a Gaussian white noise of the covariance
matrix W (t) and v(t) is a Gaussian white noise of
the covariance matrix V (t) with the average values 0,
that is to say:

E{w(t)} = 0,

E{v(t)} = 0,

E{w(t)wT (t)} = W × δ(t− τ),

E{v(t)vT (t)} = V × δ(t− τ).

• The noise w(t) and v(t) are independent Gaussian
random variables, that is to say:

E{w(t)vT (t)} = 0.

• The noise w(t), v(t) and the initial condition x(0) are
mutually independent,that is to say:

E{x(0)wT (t)} = 0,

E{x(0)vT (t)} = 0.

• x(t) and y(t) are independent variables.
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Fig. 1. States and its estimates (without noise) (τ = a0t+
a1).

In the figures (Fig. 1 and Fig. 3), there is no measurement
noise. It can be seen that the estimated value tracks quasi-
instantaneously exactly the real value.

In the figures (Fig. 2 and Fig. 4), the measured signal y(t)
was perturbed by a white noise normally distributed in the
interval [−4, 4] (standard deviation 4/

√
3). It can be seen

that this estimator is quite robust w.r.t white noise.

In the following, we conclude the differences between these
two methods.

Kalman-type observer:

(1) The observer is an auxiliary system;
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Fig. 2. States and its estimates (affected by white noise)
(τ = a0t+ a1).
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Fig. 3. States and its estimates (without noise) (τ =
b0 sin(b1t) + b2).

(2) The convergence of the observer is asymptotic, and
the convergence speed can be selected by the value of
δ or V ;
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Fig. 4. States and its estimates (affected by white noise)
(τ = b0 sin(b1t) + b2).

(3) The statistical properties of the noise and disturbance
should be known.

Algebraic state estimation:

(1) It is based on algebraic operational calculus (Laplace
here) and state estimation is given by an explicit
formula;

(2) The estimated value tracks the true value in a finite
time. This approach requires no convergence param-
eter adjustment (it only needs the system parameters
A(t) and C(t) );

(3) It is deterministic: no knowledge of the statistical
property of the noise is required.

5. CONCLUSION AND PERSPECTIVES

In this paper, an algebraic state estimation approach
for the linear time-varying systems has been introduced.
The estimation is given by an explicit integral formula
which can be carried out by the computer formally and
quickly, without using a dynamic auxiliary system. The
only required condition is that the time-varying param-
eters should be continuously derivable. Note that such a
new technique could be a powerful tool to solve the state
estimation problem and the parametric identification. In
the near future, the above techniques and results can be
generalized to state estimation of the switched system with
LTV subsystems, or state estimation of linear time delay
systems.
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