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Abstract: An adaptive gain, smooth sliding observer-controller are developed to control uncertain
parameters, n-degree of freedom rigid robotic manipulators. Furthermore, an on-line, closed
loop identification scheme, for time-varying parameters is proposed in order to obtain useful
information despite loads, external disturbances and faults detection. In order to reduce the
chattering, a smooth switching function (parameterised tangent hyperbolic function) is used
instead of pure relay one, into the observer and the controller. The gains of the switching
functions are adaptively updated, depending on the estimation error and tracking error,
respectively. By using adaptive gains, the transient and tracking responses are improved.
Simulation results with a two degree of freedom (DOF) robot manipulator are presented to show

the interest of the approach
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1. INTRODUCTION

The state and parameter uncertainties in the
model of the rigid robotic manipulators,
considered as MIMO non-linear systems, as well
as the deviations of the parameters from their
nominal values and external disturbances lead to
some problems in parameter identification and
state estimation. All that makes absolutely
necessary the design of the controller and/or the
observer such as the closed loop robustness is
achieved, stability with small tracking and
estimation errors. It is well known that the
robustness to model parameter uncertainties and
external disturbances of the closed loop can be
achieved with a variable structure controller.
Maintaining the system on a sliding surface,
weakens the influence of the uncertainties in the
closed loop performances and quickly leads to
an equilibrium point. In Filipescu (2003), an
adaptive  variable structure control with
parameterized tangent hyperbolic as a switching
function (denoted k -tanh) with

adaptive modification of its magnitude (denoted
as X\ -modification) is used, instead of a pure
relay one with constant gain. In this paper the
parameterized tangent hyperbolic function is
used as switching function in order to alleviate,
or/and eliminate chattering. Decreasing the
parameter k in the switching function makes the
gain around zero smaller and the un-modelled
dynamics are excited in a smaller measure in
high frequency. Also, the delay due to the
control input calculus and the finite rate of
switching can lead to chattering. Using the A-
modification into the gain of & -tanh switching
function, smoothes the response and increases
the robustness to structural uncertainties. The
adaptive gain is time depending, with the norm
of the corresponding sliding surface, as input.
Based on a time-varying parameters
identification technique presented in Xu and
Hashimoto (1993), Xu and Hashimoto (1996)
and Xu, Pan and Lee (2003), we extend the
scheme, by introducing, the observer, smooth
switching function and adaptive gains. It is then
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applied to a general model of the robotic
manipulator dynamics. The physical robot may
have inside the joint, gears and clutches, through
the torque supplied by the DC motor is
transmitted in order to move the link. For this
reason, the general model of the robotics
manipulator is involved. We develop a variable
structure observer-controller based on the work
of Sanchis and Nijmeijer (1998). Extensions of
sliding control to MIMO non-linear uncertain
systems have been made in Khalil (1996) and
Utkin (1992). Several applications of the
variable structure control to robotic manipulator
controlling point out the robustness to
uncertainties and external disturbances of the
closed loop (Slotine & Sastry, 1983; Canudas de
Wit & Slotine1991). With the & -tanh switching
function and the X -modification in the observer-
controller gains, the closed loop behaves like an
approximate sliding mode, in the neighbourhood
of the corresponding sliding surface.

The main contributions of this paper are
concerned with: the adaptive smooth sliding
observer-controller, the updating law of the
variable structure gains, and finally the
identification of the time-varying parameters
and external disturbances.

The paper is organized as follows. In the Section
2, a general model for the »-degree of freedom
robot manipulator and the sliding observer are
presented. The smooth sliding observer is
designed, the gain updating law is presented and
a bound for the estimate error is computed. The
design of the adaptive gain smooth sliding
controller is performed in Section 3. An upper
bound of the tracking error is provided, too. In
Section 4, a stable identification scheme of time-
varying parameters and external disturbances
applied to a n-DOF robotic manipulator is
presented. A  2-DOF  vertical robotic
manipulator, together with closed loop
simulation results are presented in the Section5.
Some conclusion remarks can be found in
Section 6.

2. ADAPTIVE GAIN SMOOTH SLIDING
OBSERVER

A very general model of the robotic manipulator
can be expressed as a square non-linear MIMO
model

X=Xy, x eR",

% = h(x;,p) " [f(x;,x2.p) + g(x;,x2.pl] X, € R" weR”,
y=x, peR”,

)

where only the vector x; is available for
measurement, u and y are control input and
measured output, respectively. The state space
. . . 7 .

dimension is 2nand x:[xlT xg] eR?" is the

state vector. The unknown time-varying
parameter vector pe®R"” is supposed to be
bounded. The matrices f, gand h may be

partially unknown, with some parameter
uncertainties. If one assumes the partial
knowledge of the model parameters, state
estimates,  time-varying  parameters and
disturbances, then one can define
f= f(Xl,iz,ﬁ), g = g(Xl,ﬁz,ﬁ) and h :h(Xl,f))
as the estimates of the functions f, g and h.
Moreover, if the matrices g(x;,x,,p) and
g(xl , iz,f)) are nonsingular for all x,X,p,p, then
the system may be linearized via state feedback .

Let choose as the observer sliding surface
S, =%, —x; =0, . The observer can be written

as

;(l = —Fl (il — X1)+ @1 (t) tanh(kOSO)-I— ﬁz N
X = -T(% - x;)+ 0, (t)tanh(k,S, ) (2
+h(x;,p)" [f(xl,ﬁz’f))ﬂL@(Xl, ﬁz’f))“(xlaiz,f’)],

where T = diagly;; vy, ], T, =diaglys; 72,
with y; >0,i=12 and j=Ln, k, >0 being a
design parameter. The gains
©, = diag[oy, -0y, ], ©, =diag[0;;--05;], are
time-varying and defined by (A -modification is
included)

@1(t)=4»1@1(t)7p1diaghfcn 7x11‘~~ J, (3)
92(I)=*1292(1)*Pzdiagﬂfm —xp1] R, = X1, ], 4)
Where )\.] :diag[X” "')\.]n],
hy =diag[hy; 2y, ], py =diaglpy; p1, ],

py =diaglpyy -po, ], With Ay, Aoiupys P
i=1,---,n positive constants.

X1n —X1n

Remark 1. The dynamics (3) and (4) of the
switching function force the matrices ©;and

@, to the negative values. They are almost zero

when the observer is in the neighbourhood of
sliding surface. In order to satisfy the

attractiveness condition S,;S,; <0, i=1,...,n,
the gain ®; must be chosen such that



28

CONTROL ENGINEERING AND APPLIED INFORMATICS

—el,.(t)> |£2i (t)—le- (t], i=1...,nVte [O oo). (%)

By an appropriate choice of the matrices A; and
p1, the above condition at ¢=0 remains
satisfied for any ¢>0.

If the active torque delivered by the joint DC-
motor is considered as the control input, the
model of the » -DOF robotic manipulator is

H(q,mp)ijJrC(q,q,mP)(']+F('1+G(q,mp)
=u+d,

(6)

where qz[ql q,,]T is the vector of link

positions, H(q,mp)eR™ is the positive

definite inertia matrix, C(q,q,m p)e R™" is the
Coriolis and centripetal force matrix, FeR™"
is a positive semi-definite diagonal matrix with

the viscous friction coefficients, ueR” is the
vector of driving torques. Define the unknown
time-varying parameter vector

p()=|m, () aT()] cw" . where m, () is the

payload and d(r) is an additive input
disturbance. Let q=x; =[x;1... x, ]T ,
A=x; =[xy ... x3, ]T be the angular positions

and velocity vectors, respectively. The
measurements only concern the link positions
y =x;. The robot state space representation can

be written as

X =X
X, =—H(x1,m )_1 C(Xl,Xz,mp)Xz (7)
P +G(x1,mp)+Fx2—u—d

Taking into account the uncertainties, one can
define:

A A A

H(Xl’rhp)zHl(Xl)+H2(xl)rhp7 (®)

A A

C(Xlsf‘Z’nA/‘p):él(xlvi2)+c2(xlv§‘2)ﬂ1P . )

é(xl,fhp): él(x1)+é2(xl)ﬁ1p , (10)
as the estimates of function matrices:
H(xl,mp),C(xl,xz,mp),G(xl,mp). Without

loss of the generality, the friction is considered
as a positive constant uncertain diagonal matrix

F.

The following assumptions have to be
considered

Assumption 1. The reference signals y,;(r)
i=1,---,n are C" functions;

Assumption 2. The matrices I;I(xl,n% p) and
H(xl, mp) are non-singular for all x, m,, rhp ;
Assumptions 3. The time-varying vector p(z) is

bounded all the time.

With the above notations the model (6) can be
rewritten as

MR N

11

0 ofx]_[o] [ o (1
0 Flx,| |G| |u+d]|

The smooth sliding observer (k-tanh as

switching function), with gains adaptively

updated (A-modification is included, as in (3)
and (4)), is given by the equations

;(1 :—l"l(f(l —X1)+@1(‘[)tanh(koso)+f(2
;(2 :—rz()}l —X1)+®2(t)tanh(koso) (12)

—ﬁ_l [é)}z +l}§(2 +é—ﬁ].

The smooth switching function allows to
consider that the approximate

conditions: S, 0, S, ~0 are satisfied during
sliding. tanh(k,S,) can be expressed from the

first equation of (12) and replaced in the second.
Hence, the estimate error equation can be
written as

’iz = —@2@1_1’;(2 —ﬁ_l [Cf(z +1}§(2 +G-u

(13)
+H[Cx, +Fx, +G —u—d]

Above equation assures the stability of the
observer and exponential convergence rate as
how is proofed in Sanchis and Nijmeijer (1998).

Let QeR™ be the time varying positive
definite matrix defined as

Q) =Flx;, 71, )0, ()07 1)+ 8(x), %, )+ F, (14)

where

9(X13i2):£[c(xlax2’mp)i2 5 (15)

2 X=X,

é(xl,ﬁz,ﬁzp)ﬁz :é(xl,xz,n%p)ﬁz +9(x1,%, )X, . (16)
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Choosing large eigenvalues of Q, the

observation error can be globally ultimately
bounded (Corollary 5.3 from Khalil 1996). The
matrix Q determines the robustness of the

observer to the parameter uncertainties. Taking
V, as a Lyapunov function candidate

Vs Z%igﬁ(xla’hp);z, (17)

the derivative can be expressed as

. ~T l T A~ ~
Vs, :XZTHXZ +5xng2 :—xg

I"\I@z@l_liz +éi2 +ﬁ§2—(~;—6X2 (18)
~Fx, +HH![G+Cx, +Fx, —li—d]

where the following robot property and

notations have been used

ig(ﬁ/z-é(xl,xz)jiz _0, VR e®"  (19)
H'=A'-H", (20)
(Nj(xl,xz):é(xl,xz,rhp)—C(xl,xz,mp), (21)
G=G-G,F=F-F. (22)
Let define the vector p = p(x;,x,,%,) as

= —é - ﬁX - EX
n - 2 2 (23)
~HH'[G +Cx, —i—d+Fx,|
and assume that p is linearly bounded by X, :

] <p+1fRa]. ve>o0. (24)

B,y>0. The derivative of the
Lyapunov function is bounded by

for some

. o 12 L I
Vs < Aminol%a]” +[%a ] , (25)

< (hming + VRl + BIRo| < ||
where ¢ is a positive constant satisfying

e<hinto 7. (26)

If at +=0, the switching gain O, satisfies (5),
both gains @;,0, follow the adaptation laws
(3) and (4), respectively, and the vector p is
bounded, then there exists # >0 such that the
velocity estimation error fulfils the inequality

—&

A’maxl:l g 22 ‘t
}\‘—A"xz(ome max H s

[%() <

Vi<p (27)

min H

More, in finite time, the estimation error enters
into the ball B(0,r). That means

x’maxl:l B < I%
=1

vi>t, (28)
7\'min]:[ kminQ “r-e

[Ra(e)| <

where the ball radius satisfies the inequality

A A
po [fmacit P (29)
kminﬂ kminQ_y_8

Remark 2. The adaptation law (3), starting from
nonzero initial condition, assures the non-
singularity of the gain matrix @, during sliding.

Hence, the matrix Q can be computed all the
time using the expression (14). The ultimate
bound r satisfying (29) is smaller if A .,q is
greater, i.e., if the initial value of @; is chosen
smaller than @, .

3. ADAPTIVE GAIN SMOOTH SLIDING
CONTROLLER

The controller is defined assuming only that the
state x;is known and that the state x, is
provided by the observer. Corresponding to the
n-dimensional control input, the controller
sliding surface is

Sc(x1.%2) =%, ()-y, () +wx; (1)-y, (), (30)

where y,(¢) represents the trajectory to be
tracked. The matrix y = diagly,... y,], with
positive constants, v;,i=1---,n, determines
the dynamics during sliding. The sliding surface
is attractive if the following condition holds

A

8.8, <0, i=1...,n. (31)
The time derivative of the sliding surface can be

written as
Sc =% -1 +w(ky —Y1r)=ﬁ(x1»ﬁlpyl (32)
[f(xl, %,)+ &(x;, %o, pi(x), %, 13)]— ¥+ vz —¥,)
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If k-tanh is used as switching function and the
diagonal matrix n=diag[n,---n,] is taken time
depending

$ J (33)

i) =~ on(0)- p, diag[S.s

cn

the controller which fulfils the sliding condition

S, =0 can be expressed as

i =—f(x;,%5,p)+8 " (x1, %2, p)h(x;, p)

[_\Véc +n(t)tanh(kcéc)+5}r _W(ﬁ2 _Yr)
A :diag[x’cl ”'}\’cn]’
p, = diag[pcl pcn] are positive definite. The

., (34

where the matrices:

term —yS, is introduced in order to reduce the
controller to classical feedback linearization one
(Marino and Tomei 1995), if the switching term
is set to zero.

Despite the calculus of the control input for » -
DOF robotic manipulator, to fulfil the
attractiveness condition (31), it is necessary to
express the derivative of the sliding surface (30)
A X . N . A ~ 1

Sc =X2—Y: +‘|’(X2 _Yr): _H(Xl’mp)
[é(Xl,ﬁz,l'/l\’lp)iz +F§(2 +G(X1,ﬁlp)_ﬁ] . (35)
_yr +‘|’(§2 _Yr)

Similarly as to the observer, using k-tanh as
switching function and A -modification into the
gain, the sliding condition is fulfilled, if the
control input is chosen as:

ﬁ:C(Xl,ﬁz,I’l\lp)”\(z +F§(2 +G(X1,ﬁlp)

+Ax,, —\|l§0+n(t)tanh(kcéc) : (36)
1>p +yr—‘l’(f‘2—yr)

The controller switching gain n(¢) is adaptively
updated as in (33).

Remark 3.The observer error is nonzero if a k -
tanh function is used as a switching function in
the observer equations. The controller sliding

surface §c can still be attractive by choosing

sufficiently large initial values for the switching
gains @; and @, . Moreover, the tracking error

does not go to zero on controller sliding surface,
because the smooth controller is used (4 -tanh
switching function).

Remark 4. In order to reduce the influence of
velocity estimation error in the control input, the
relative weight of the states x,in the definition

of the sliding surface should be decreased. This
explains the introduction of the supplementary

term —yS, in the control input. The increasing
of the parameter y is limited by the switching
frequency and possible measurement noise.

Using (13), the derivative of the sliding surface
(30) can be expressed as

S, :n(t)ta?h(kcsc)—\vsc. (37)
+o, ()07 (- vk,
If the gain n(¢) fulfils the inequality

Sci

wilSei|—mi(t)

:[le2er ()-wk- ]

, (38)
,Vt,i=1...n

then the attractiveness condition is achieved.
Because ®; and @, are diagonal matrices, the

inequality (38) can be written as

GURdE

Remark 5. The initial value of the switching
controller gain must be defined to guarantee the
sliding condition after convergence of the
observer, when the error in state estimates is

Sy Vi=1..n.(39)

vi[Sei|-mi(t)=

bounded by (28). The term vS . Mmaintains the

sliding variable bounded during the observer
transient. This leads to

>|92i(t0)_ '}\’maxﬁ B
}\'minl:l (}"minQ_y)

. (40)

By an appropriate choice of A.and p,with
respect to A;,h,, p; and p,, the above

condition can be satisfied all the time.

Expressing the control input sliding condition as

Xy -y, +w(x; -y, )=-X,, 41)

where the true velocity state is introduced,
taking into account (28), a bound of the tracking
error can be obtained :

I Mot B
i = ] € — %
Vi 7\'minl:l (kminQ _Y)

Vit . (42)
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Remark 6. The actual value of # depends on

the convergence rate of the observer, and on the
time defined by the gain matrix y . The, observer

and the controller, both of them into a smoothed
form, can achieve high performance. Choosing
the value of the constant k, greater than k., the

smooth switching function of the observer is
closer to a pure relay than the smooth switching
function of the controller. Therefore, the
observer converges faster than the controller
with small estimate error. The state estimates
could be chattering-free, independent by of the
value of the gains ®; and @, . More, choosing

the matrices ®; and @, adaptively updated as

in (3) and (4), the magnitudes of the switching
function go to small values while link position
errors go to small values.

Remark 7. During sliding, the error
S, =X; —X;.is approximately zero. The derivate

is not exactly zero, but it is a high frequency
signal of average approximately zero, with an
amplitude depending of @, . If the gain ®; goes

to zero, the derivative of the velocity estimation
error goes to zero or becomes very small. That
means a reduced observation error even in the
presence of parameter uncertainties. Also, the
behaviour of the controller is similar with that of
the full state measurements if its switching is
based on a smooth variable. The smooth
controller means a reduced or free chattering for
the control input law and/or the output.

4. PARAMETER IDENTIFICATION
BASED ON SMOOTH SLIDING
OBSERVER-CONTROLLER

The way followed for the time-varying
parameter identification is quite different from
that proposed by Xu, Pan and Lee (2003).
Firstly, it is based on the state estimates and on
the faster convergence of the observer than the
controller. Secondly, it is based on smooth
sliding observer-controller, both of them having
adaptive switching gain. Zero or small state
estimate error leads to zero or small tracking
error and small gains of the corresponding
switching function. Consequently, during
sliding, the weight of the switching term is
negligible with respect to the compensation part.

Define as the parameter vector estimate with p .
If the functions f, g and h are linear in thetime

varying parameters, each term of the system (1)
can be expressed as follows:

o i) L)
On  Ouxfn,-1) | ’
+hz@ﬁh @;@r;kw
|:f(xli§2a f’)} ) |:fl (szﬁz)}
Onx(npl)]ﬁ 0 ’

011
+ 2 N
f(x1, %5) <Pr21x(np—1)

|:In 0.xn :||:0n:|_|: 0, }
0 8(x.%,.p)] @ g1(x;.%5,u)[.  (45)

+®3(x;,%,,0)p(t)

(44)

Define the followings function matrices and
vectors:

I:IO(Xlaf’):L)In ﬁﬁxnfnp)} (46)

ﬁO(leXZ»XlaXZ { (x,) XJ (47)

by (k1.5 %1.%,) [ (11)] (48)
n Xo

folx. %0.P)= L(Xbxszﬂ fo x,%) LI(XI,XZJ, (49)

~ . 0n 0nx(npfl)

D, (x),%;)= £, (x,.%,) (Pix(n ) , (50)

N I 0
Golx;.%,,p)=| " ., ™ } (51)
0( b2 ) [Onxn g(xl,xz,p)
~ A A On
X, Xp,u)=| RN 52
go(l 2 ) |:g1(X1>X2:u):| (52)

(52), Hy, G, are
2nx2n  matrices, ®;, ®,, @,

In the relationships (46),...

are 2nxn »

matrices and f,, fy;, 8¢, hy are 2n vectors.

With the above notations the robot model can by
expressed compactly by:

I:IO(xlaf))’.‘ZEO(XI”}Z)—F(A;O(XlﬂﬁZ’ﬁ)ﬁO’ (53)

. I
where uoz[()£ uT].
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Assumption 4. To each element p,(t)i=1...n,

of the unknown time varying parameter vector
p(z), there exist the values Pi,, - Pi,, » @ priori

known, such that
pi  S<pPi<p; - (54)

Assumption 5. There exist bounding functions
a(x;), 6(x;) such that

ot - < 0" 1) < o)
“fl_l (xl ,[31‘ < “I:Ia1 (xl ,f)X‘ < &(xl ), vx; eR", (55)

the[O ).

Vpe‘ﬁnp»vf)ie[ﬁ‘i pi

Assumption 6. There exist 2nx2n function
matrices, structured as follows:

~ ~ ) In Onxn
GOI(XI’XZ)_|:0nxn QOI(XIJ’\(2):| (56)

of full rank, and

A . 0
Goz(Xl,Xz,P)I{

nxn Onxn :| , (57)

0, gOZ(XI’QZ’f))
with g02ij(xl’§2’f’): g02,-j(x1,f(2)ﬁ, such that

>

o(be‘z

i . o (58)
=Gy XI’XZ)[IZn +G02(X17X27P)]

Assumption 7. There is a positive constant o
such that

vTﬁ_lgVZG"V Z,VVGSR". (59)

Define the matrix
(i)(xl,iz,xl,ﬁz,u)z—(i)l-f-(i)z +(i)3 (60)

and the vector
(:)().(l,iz,xl,iz,ll)zho—fo—go (61)

of 2mxn, and 2n-dimension, respectively.

)4

Suppose that ®7 @ is a nonsingular matrix, then
the parameter estimate p can be computed as

the minimum residuum solution of the system

Dp=6. (62)

In order ensure the boundedness of p, the

following scheme for computing the parameter
estimate is used

With the observer (2) and the control law (34),
both of them having smooth switching term and
gains adaptively updated, the neighborhood of
the controller sliding surface (30) can be reached
in finite time.

The Lyapunov function candidate is chosen as
v=878,/2. (64)

The controller sliding surface (30) depends on
the tracking error vector (reference tracking and
velocity tracking)

~ . A T
e:Xr_X:[(yr_xl)T (Yr_XZ)T] : (65)
The derivative of the Lyapunov function can be
expressed as

S, . ardS.(.

a—ece:ScT £ (yr—x). (66)
Using (53), the above derivative function can be
written as

v=S8IS. =S,

s ar el aclr Al .
V=SZ aec (yr—HolfO—HolGoll). (67)

The smooth sliding controller (32) can be
expressed as the sum of two terms

u= lAlc +ﬁs 5 (68)
where

u, = _f'(xl,5(2,ﬁ)+§71(xl,ﬁ2,ﬁ)ﬁ(xl’f’) (69)
v+, —wlky -v,)

is the compensation part,

iy =57 (x.%0.pa(x, () anh(k,8, ) (70)
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being the switching part one. Using (58) and the
block diagonal form of the matrices, the
compensation part can be further expressed as

l"ic = |;é01[1n.+§02A]]2_1 . , (71)
[yr —f; +hiX, —((Dz - @ H

where

(i)lz = [ﬁz (Xl )iz <P:1x(,,p,1)} >

®3 - [fz (x.%) (pix(np_l)} are nxn, -matrices

which hold the second block row of the matrices
@, and ®,, respectively.

In order to re-write the variable structure term,
&T

C

the expression S. can be replaced with

Oe
smooth switching function tanh(kcﬁc) whilst the

system evolution is in a neighbourhood of the
sliding surface, the attractiveness condition is
satisfied, the switching gain n(¢) is closed to

zero and the parameter £, is sufficiently large.

Defining the vector
T= lplmax _plmin o pnpmax _p”pmin JT (72)

and using the relationships (64), (55), and (59),
there exists a positive constant & such that

H@fl(xlaf‘zaf’)ﬁ(xlaf’)ﬂ(tﬂ
_ (6] ranbi 5.
) cs[tanh(kcéC )]T tanh(kc§c )’

(73)

elo oo)'

The variable structure part can be re-expressed
as

(el efamnle 3. anhlt,8,). (74)
’ G[tanh(kcéc)]T tanh(kcgc) .

With these components of the controller, taking
into account the particular structure of the
matrices and vectors (46)...(52), the derivative
of the Lyapunov function may be expressed as

- o | hyxy +®Fp -1, —®3p
V_[tanh(kCSC)] " ILI[@zlhnlJréozhﬁc 2 :*
—[tanh(kcéc)]Tﬁ_lgﬁs = [tanh(kcgc)]ilﬁ_l
{ﬁpﬁz -f, +(<i)12 —‘i’%k’—[ém[ln +802 ]]“c}
+[&o1lgor 802 e
—[tanh(kcéc)]Tﬁ’lgﬁs = [tanh(kcé )]Tffl
@3 + &3 -®f [p-p)
ol S] [
G[tanh(kcsc)] tanh(kCSC)
h'g tanh(kcéC )S &Htanh(kcécl
-{efola o
[tanh(kcsc)]Tﬁ1gtanh(kcéc)s_étanh(kcgJ
cs[tanh(kcéc)]T tanh(kcéc) (75)

A

SC

]

tanh(kcéc)

Defining the set{ ski}, we can say that
c

there  exists some T=0 such  that

vielo,r), éc(t)ﬂ>ki and [S.(] will be

strictly decreasing until it reaches the set in
finite time and remains inside thereafter
(fort>T).

Particularizing the above relationships for » -
degree of freedom robot manipulator,
considering the estimates of the velocities and
the uncertainties in the parameters, the robot
model (11) becomes

Xl On n f(z
Y +| A~ m, =—| ~ . ~ A
H1X2 H2 p C1X2 +FX2 +G1
0 0 0
o PP P el B
C2X2+G2 u d

Define the 2nx2n matrices and 2n vectors,
respectively

(76)

A I 0 ~ X
O - TS P
0nxn H H1X2
(i) B On 0nx(np—l) (78)
! H2§2 0nx(npfl) ’

>

S S A R T
fo {—Ciz—Ff;z—G} ol Lq&z—ﬁz—q} (7)
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A i 0)1 Onx(n],—l)
b= . , (80)
|~C2X2 =Gy Ly, )
~ [r, o . .
GO = 0 " Inx :|, go(Xl,Xz,ll)=|: i|, (81)
LY nxn n
A _Onxn Onx(n —1)
D, = Pl 82
3 _On 0nx(npfl) ( )
This allows to re-write as
g X =1y + Goi
o|s [=fo+Gou (83)
X2
or equivalently as
ho +®p = oy + D3P + &) + D3p - (84)

Remark 8. The smooth sliding controller allows
the using of the compensation part as equivalent
control input signal during sliding. The adaptive
gain of the controller switching term goes to
zero or becomes very small, depending of the
error in the state estimate. Therefore, the
influence of the noise induced by control input
acquisition is very small in the parameter
estimate.

Remark 9. In closed loop, the robustness to
uncertainties makes insensitive the stability to
phase lag induced by the filters used to compute
the derivatives of the state estimate.

Remark 10. As emphasized in Xu, Pan and Lee
(2003), the reference signal has to be chosen in
order to avoid the singularity of the

A

matrix ®’ @ .

5. CLOSED LOOP SIMULATION

A two degree of freedom vertical robot with two
rigid revolute joints, two rigid links, a time
varying payload m,(r)and an additive

disturbance d(r) on the control input has been

considered in order to test the smooth variable
structure observer-controller with time-varying
parameter identification, developed in this

paper.

The wvectors of position and velocities are

T T
X1:[x11 xlz] and XzZ[le xzz] >
respectively.

The trajectory to be tracked is defined as

¥y, =[-0.5+03sin(r—=03)  0.7sin(2r+0.3)]" (84)

The parameter vector to be identified is

p(z)=[3+e*0~5f ~1+0.7 sin(3t)]T, (85)
where m,(t)=3+¢" is the payload and

d(t)=-1+0.7sin(3¢) is the additive disturbance.

The corresponding robot model matrices and
vectors are the following:

H(xl,mp)
9.77+2.02cos(x15) 1.26+1.01cos(x;, )
= , (86)
1.26+1.01cos(x;, ) 1.12
N 2+Zcos(x12) 1+cos(x12)m
1+cos(x12) 1 P
C(xl,xz,mp)
—X22 TX217X22 1.01
. X2 0 ) (87)
=S111(X12

—X22 —X217X22
+ m
X21 0

8.1sin(x;;)+1.13sin(x;; +x
G(xl,mp)= ( 11). (xq1+x12)
1.13s1n(x11+x12) (88)
sin(x11)+ Sin(Xn +X12)
+g . m
Sln(X” +X12) P
F =diag[10 10], (89)
i X11 |
X12
[9.77 +2.02 cos(x 15 )k 2
hg = ) ,  (90)
+[1.26+1.01cos(x; )k 2,
| [1.26+1.01cos(x 5 )k p; +1.12% 9, |
0
o - %lon
' [2+2c08(xp gy +[1+cos(rpa )Jan 0
[1+cos(xs )fipy + 325 0
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X21
X22

1.01 Sin(Xlz )X22X21

+(X21 +X22 )I.OISin(Xlz)Xzz

for = —8.1gsin(x;;)—1.13gsin(x 5, +x5) |’ ©2)
—10X21
—l.Olsin(xlz)x%1
—1.l3gSiH(X21+X22)—10X22
_ o
0
@, =| sin(xj2 )% , (93)
+(x21 + X9 )sin(xy5 Jx 2 0
—gsin(x;;)—gsin(x; +x5)
_—sin(x12 X1 —gsin(x21 +X9) 1]
g0=[0 0 u; wy]",®;=[0,,,]. (%94)

The initial conditions are:

x,(0)=x,(0)=%,00)=[0 0]": %,(0)=[-1 2],

@1(0){—10 o} @2(0){—100 0 }

0 -10 0 -200

-5 0
O =
n(0) {0 _10}
The following constants are chosen as:
A=Ay =A, =diag[l 1], I, =diag[10 10],

I, = diag[5000 5000], p, =p, =p. =diagl 1]
v =diag[20 20].

In the Fig. 1, the closed loop simulated
manipulator response is shown. Adaptive gains,
smooth sliding observer-controller and time
varying parameter have been introduced into the
loop. Small parameter uncertainties (2%) have
been considered.

By choosing k, greater than k., a faster sliding

observer convergence than that of the sliding
controller has been obtained. The response is
free of chattering, although limitations have
been  introduced into  control  input
(|u1|3150;|u2|£75). Even if the system
evolutes, during sliding, in a neighbourhood of

the corresponding sliding surface, the output
tracking is achieved. In the figure 2, the

identification of time-varying parameters m, (¢)

and d(t) is shown. The reference signal was
chosen in order to avoid the singularity of the

matrix ®7 @ . In order to compute the derivatives
of the state estimate the first order numerical
difference has been used. The phase lag does not
lead to instability and fluctuation in the
parameter estimates.

Fig. 1. Closed loop robot response, smooth sliding
observer and controller, parameterized tangent
hyperbolic switching functionk, =10, k. =1.

dirtification emoe

Fig. 2. Closed loop, smooth sliding observer-
controller, on-line time varying parameters
identification.

6. CONCLUSION

A robotic manipulator closed loop control with
adaptive gains, smooth variable structure
observer-controller and time varying parameter
identification has been designed and tested by
simulation. The output tracking, the robustness
to uncertainties and external disturbances are
increased by the use of parameterised switching
functions with gains adaptively updating. The
parameterised k -tanh switching function assures
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an alleviated or completely elimination of
chattering. An appropriate choice of the
parameters in the observer and controller
switching functions, allows a faster convergence
rate of the observer than that of the controller
can be obtained. The gains adaptively updated
lead the system to output tracking with smooth
transient response. With some conditions on the
robot model, reference input and a priori
information, the identifier of time-varying
parameters converges. The error in the
parameter estimates depends on the error in the
estimated state and on the tracking error.
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