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Abstract: An adaptive gain, smooth sliding observer-controller are developed to control uncertain 
parameters, n -degree of freedom rigid robotic manipulators. Furthermore, an on-line, closed 
loop identification scheme, for time-varying parameters is proposed in order to obtain useful 
information despite loads, external disturbances and faults detection. In order to reduce the 
chattering, a smooth switching function (parameterised tangent hyperbolic function) is used 
instead of pure relay one, into the observer and the controller. The gains of the switching 
functions are adaptively updated, depending on the estimation error and tracking error, 
respectively. By using adaptive gains, the transient and tracking responses are improved. 
Simulation results with a two degree of freedom (DOF) robot manipulator are presented to show 
the interest of the approach 
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1. INTRODUCTION 

The state and parameter uncertainties in the 
model of the rigid robotic manipulators, 
considered as MIMO non-linear systems, as well 
as the deviations of the parameters from their 
nominal values and external disturbances lead to 
some problems in parameter identification and 
state estimation. All that makes absolutely 
necessary the design of the controller and/or the 
observer such as the closed loop robustness is 
achieved, stability with small tracking and 
estimation errors. It is well known that the 
robustness to model parameter uncertainties and 
external disturbances of the closed loop can be 
achieved with a variable structure controller. 
Maintaining the system on a sliding surface, 
weakens the influence of the uncertainties in the 
closed loop performances and quickly leads to 
an equilibrium point. In Filipescu (2003), an 
adaptive variable structure control with 
parameterized tangent hyperbolic as a switching 
function (denoted k -tanh) with  

 

adaptive modification of its magnitude (denoted 
as λ -modification) is used, instead of a pure 
relay one with constant gain. In this paper the 
parameterized tangent hyperbolic function is 
used as switching function in order to alleviate, 
or/and eliminate chattering. Decreasing the 
parameter k  in the switching function makes the 
gain around zero smaller and the un-modelled 
dynamics are excited in a smaller measure in 
high frequency. Also, the delay due to the 
control input calculus and the finite rate of 
switching can lead to chattering. Using the λ -
modification into the gain of k -tanh switching 
function, smoothes the response and increases 
the robustness to structural uncertainties. The 
adaptive gain is time depending, with the norm 
of the corresponding sliding surface, as input. 
Based on a time-varying parameters 
identification technique presented in Xu and 
Hashimoto (1993), Xu and Hashimoto (1996) 
and Xu, Pan and Lee (2003), we extend the 
scheme, by introducing, the observer, smooth 
switching function and adaptive gains. It is then 
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applied to a general model of the robotic 
manipulator dynamics. The physical robot may 
have inside the joint, gears and clutches, through 
the torque supplied by the DC motor is 
transmitted in order to move the link. For this 
reason, the general model of the robotics 
manipulator is involved. We develop a variable 
structure observer-controller based on the work 
of Sanchis and Nijmeijer (1998). Extensions of 
sliding control to MIMO non-linear uncertain 
systems have been made in Khalil (1996) and 
Utkin (1992). Several applications of the 
variable structure control to robotic manipulator 
controlling point out the robustness to 
uncertainties and external disturbances of the 
closed loop (Slotine & Sastry, 1983; Canudas de 
Wit & Slotine1991). With the k -tanh switching 
function and the λ -modification in the observer-
controller gains, the closed loop behaves like an 
approximate sliding mode, in the neighbourhood 
of the corresponding sliding surface. 

The main contributions of this paper are 
concerned with: the adaptive smooth sliding 
observer-controller, the updating law of the 
variable structure gains, and finally the 
identification of the time-varying parameters 
and external disturbances. 

The paper is organized as follows. In the Section 
2, a general model for the n -degree of freedom 
robot manipulator and the sliding observer are 
presented. The smooth sliding observer is 
designed, the gain updating law is presented and 
a bound for the estimate error is computed. The 
design of the adaptive gain smooth sliding 
controller is performed in Section 3. An upper 
bound of the tracking error is provided, too. In 
Section 4, a stable identification scheme of time-
varying parameters and external disturbances 
applied to a n -DOF robotic manipulator is 
presented. A 2-DOF vertical robotic 
manipulator, together with closed loop 
simulation results are presented in the Section5. 
Some conclusion remarks can be found in 
Section 6. 

2. ADAPTIVE GAIN SMOOTH SLIDING 
OBSERVER 

A very general model of the robotic manipulator 
can be expressed as a square non-linear MIMO 
model 
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where only the vector 1x  is available for 
measurement, u  and y  are control input and 
measured output, respectively. The state space 

dimension is n2 and [ ] nTTT 2
21 ℜ∈= xxx  is the 

state vector. The unknown time-varying 
parameter vector pnℜ∈p  is supposed to be 
bounded. The matrices f , g and h  may be 
partially unknown, with some parameter 
uncertainties. If one assumes the partial 
knowledge of the model parameters, state 
estimates, time-varying parameters and 
disturbances, then one can define 

( )pxxff ˆ,ˆ,ˆ
21= , ( )pxxgg ˆ,ˆ,ˆ 21=  and ( )pxh h ˆ,ˆ

1=  
as the estimates of the functions f , g  and h . 
Moreover, if the matrices ( )pxxg ,, 21  and 
( )pxxg ˆ,ˆ,ˆ 21  are nonsingular for all ppxx ˆ,,ˆ, , then 

the system may be linearized via state feedback . 
 
Let choose as the observer sliding surface 

no 0xxS =−= 11ˆ . The observer can be written 
as 
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where [ ]n1111 diag γγ= LΓ , [ ]n2212 diag γγ= LΓ  
with 2,1,0 =>γ iij  and nj ,1= , 0>ok  being a 
design parameter. The gains 

[ ]n1111 diag θθ= LΘ , [ ]21212 diag θθ= LΘ , are 
time-varying and defined by (λ -modification is 
included) 
 

( ) ( ) [ ],ˆˆdiag 1111111111 nn xxxxtt −−−−= L& ρΘλΘ     (3) 

( ) ( ) [ ] ,ˆˆdiag 1111112222 nn xxxxtt −−−−= L& ρΘλΘ     (4) 
where [ ]n1111 diag λλ= Lλ , 

[ ]n2212 diag λλ= Lλ , [ ]n1111 diag ρρ= Lρ , 
[ ]n2212 diag ρρ= Lρ , with i1λ , i2λ , i1ρ , i2ρ , 

ni ,,1 L=  positive constants. 
 
Remark 1. The dynamics (3) and (4) of the 
switching function force the matrices 1Θ and 

2Θ  to the negative values. They are almost zero 
when the observer is in the neighbourhood of 
sliding surface. In order to satisfy the 
attractiveness condition niSS oioi ,,1,0 K& =< , 
the gain 1Θ  must be chosen such that 
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( ) ( ) ( ) [ ) .0,,,1,ˆ 221 ∞∈∀=−>θ− tnitxtxt iii K     (5) 
 
By an appropriate choice of the matrices 1λ  and 

1ρ , the above condition at 0=t  remains 
satisfied for any 0>t . 

If the active torque delivered by the joint DC-
motor is considered as the control input, the 
model of the n -DOF robotic manipulator is 
 
( ) ( ) ( )
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where [ ]Tnqq K1=q  is the vector of link 
positions, ( ) nxn

Pm ℜ∈,qH  is the positive 
definite inertia matrix, ( ) nxn

pm ℜ∈,, qqC &  is the 

Coriolis and centripetal force matrix, nxnℜ∈F  
is a positive semi-definite diagonal matrix with 
the viscous friction coefficients, nℜ∈u  is the 
vector of driving torques. Define the unknown 
time-varying parameter vector 

( ) ( ) ( )[ ] pnTT
p ttmt ℜ∈= dp , , where ( )tm p  is the 

payload and ( )td  is an additive input 
disturbance. Let [ ]Tnxx 1111 K== xq , 

[ ]Tnxx 2212 K& == xq  be the angular positions 
and velocity vectors, respectively. The 
measurements only concern the link positions 

1xy = . The robot state space representation can 
be written as 
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Taking into account the uncertainties, one can 
define: 
 
( ) ( ) ( ) ,ˆˆˆˆ,ˆ

12111 pp mm xHxHxH +=                      (8) 
 
( ) ( ) ( ) ,ˆˆ,ˆˆ,ˆˆ,ˆ,ˆ

21221121 Pp mm xxCxxCxxC +=      (9) 
 
( ) ( ) ( ) ,ˆˆˆˆ,ˆ

12111 pp mm xGxGxG +=                   (10) 
 
as the estimates of function matrices: 
( )pm,1xH , ( )pm,, 21 xxC , ( )pm,1xG . Without 

loss of the generality, the friction is considered 
as a positive constant uncertain diagonal matrix 
F̂ . 

The following assumptions have to be 
considered 
Assumption 1. The reference signals ( )tyri  

ni ,,1 L=  are nC  functions; 
Assumption 2. The matrices ( )pm̂,ˆ

1xH  and 
( )pm,1xH  are non-singular for all pp mm ˆ,,1x ; 

Assumptions 3. The time-varying vector ( )tp  is 
bounded all the time. 

With the above notations the model (6) can be 
rewritten as 
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The smooth sliding observer ( k -tanh as 
switching function), with gains adaptively 
updated ( λ -modification is included, as in (3) 
and (4)), is given by the equations 
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The smooth switching function allows to 
consider that the approximate 
conditions: 0,0 ≈≈ oo SS &  are satisfied during 
sliding. ( )ook Stanh  can be expressed from the 
first equation of (12) and replaced in the second. 
Hence, the estimate error equation can be 
written as 
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Above equation assures the stability of the 
observer and exponential convergence rate as 
how is proofed in Sanchis and Nijmeijer (1998). 
Let nxnℜ∈Q  be the time varying positive 
definite matrix defined as 
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( ) ( ) ( ) 221221221

~ˆ,ˆˆˆ,,ˆˆˆ,ˆ,ˆ xxxxxxCxxxC ϑ+= pp mm . (16) 
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Choosing large eigenvalues of Q , the 
observation error can be globally ultimately 
bounded (Corollary 5.3 from Khalil 1996). The 
matrix Q  determines the robustness of the 
observer to the parameter uncertainties. Taking 

2V  as a Lyapunov function candidate 

( ) 2122
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2
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T xHx= ,                                 (17) 

the derivative can be expressed as 
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where the following robot property and 
notations have been used 
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Let define the vector ( )221 ˆ,, xxxµµ =  as 
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and assume that µ  is linearly bounded by 2

~x : 
 

0,~
2 >∀γ+β≤ txµ .                                 (24) 

 
for some 0, >γβ . The derivative of the 
Lyapunov function is bounded by 
 

( ) 2
22

2
2min

2
2

2min2

~~~

~~V

xxx

µxx

Q

Q

ε−≤β+γ+λ−≤

+λ−≤&
,                 (25) 

 
where ε  is a positive constant satisfying 
 

γ−λ≤ε Qinf .                                               (26) 
 
If at 0=t , the switching gain 1Θ satisfies (5), 
both gains 1Θ , 2Θ  follow the adaptation laws 
(3) and (4), respectively, and the vector µ  is 
bounded, then there exists 01 ≥t  such that the 
velocity estimation error fulfils the inequality 
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More, in finite time, the estimation error enters 
into the ball ( )r,0B . That means 
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where the ball radius satisfies the inequality 
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Remark 2. The adaptation law (3), starting from 
nonzero initial condition, assures the non-
singularity of the gain matrix 1Θ  during sliding. 
Hence, the matrix Q  can be computed all the 
time using the expression (14). The ultimate 
bound r  satisfying (29) is smaller if Qminλ  is 
greater, i.e., if the initial value of 1Θ  is chosen 
smaller than 2Θ . 

3. ADAPTIVE GAIN SMOOTH SLIDING 
CONTROLLER 

The controller is defined assuming only that the 
state 1x is known and that the state 2x  is 
provided by the observer. Corresponding to the 
n -dimensional control input, the controller 
sliding surface is 
 

( ) ( ) ( ) ( ) ( )( )tttt rrc yxψyxxxS −+−= 1221 ˆˆ,ˆ & ,     (30) 
 
where ( )try  represents the trajectory to be 
tracked. The matrix [ ]nψψ= K1diagψ , with 
positive constants, nii ,,1, L=ψ , determines 
the dynamics during sliding. The sliding surface 
is attractive if the following condition holds 
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The time derivative of the sliding surface can be 
written as 
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If k -tanh is used as switching function and the 
diagonal matrix [ ]nηη= L1diagη  is taken time 
depending 

( ) ( ) [ ]cnccc SStt ˆˆdiag 1 L& ρηλη −−= ,          (33) 

the controller which fulfils the sliding condition 
0ˆ =cS&  can be expressed as 
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where the matrices: [ ]cncc λλ= L1diagλ , 
[ ]cncc ρρ= L1diagρ  are positive definite. The 

term cSψ ˆ−  is introduced in order to reduce the 
controller to classical feedback linearization one 
(Marino and Tomei 1995), if the switching term 
is set to zero. 

Despite the calculus of the control input for n -
DOF robotic manipulator, to fulfil the 
attractiveness condition (31), it is necessary to 
express the derivative of the sliding surface (30) 
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Similarly as to the observer, using k -tanh as  
switching function and λ -modification into the 
gain, the sliding condition is fulfilled, if the 
control input is chosen as: 
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The controller switching gain ( )tη  is adaptively 
updated as in (33). 
 
Remark 3.The observer error is nonzero if a k -
tanh function is used as a switching function in 
the observer equations. The controller sliding 
surface cŜ  can still be attractive by choosing 
sufficiently large initial values for the switching 
gains 1Θ  and 2Θ . Moreover, the tracking error 
does not go to zero on controller sliding surface, 
because the smooth controller is used ( k -tanh 
switching function). 
Remark 4. In order to reduce the influence of 
velocity estimation error in the control input, the 
relative weight of the states 2x̂ in the definition 

of the sliding surface should be decreased. This 
explains the introduction of the supplementary 
term cSψ ˆ−  in the control input. The increasing 
of the parameter ψ  is limited by the switching 
frequency and possible measurement noise. 

Using (13), the derivative of the sliding surface 
(30) can be expressed as 
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If the gain ( )tη  fulfils the inequality 
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then the attractiveness condition is achieved. 
Because 1Θ  and 2Θ  are diagonal matrices, the 
inequality (38) can be written as 
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Remark 5. The initial value of the switching 
controller gain must be defined to guarantee the 
sliding condition after convergence of the 
observer, when the error in state estimates is 
bounded by (28). The term cSψ ˆ  maintains the 
sliding variable bounded during the observer 
transient. This leads to 
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By an appropriate choice of cλ and cρ with 
respect to 1λ , 2λ , 1ρ  and 2ρ , the above 
condition can be satisfied all the time. 

Expressing the control input sliding condition as 
 

( ) 212
~xyxψyx −=−+− rr& ,                           (41) 

where the true velocity state is introduced, 
taking into account (28), a bound of the tracking 
error can be obtained : 
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Remark 6. The actual value of 1t  depends on 
the convergence rate of the observer, and on the 
time defined by the gain matrixψ . The, observer 
and the controller, both of them into a smoothed 
form, can achieve high performance. Choosing 
the value of the constant ok  greater than ck , the 
smooth switching function of the observer is 
closer to a pure relay than the smooth switching 
function of the controller. Therefore, the 
observer converges faster than the controller 
with small estimate error. The state estimates 
could be chattering-free, independent by of the 
value of the gains 1Θ  and 2Θ . More, choosing 
the matrices 1Θ  and 2Θ  adaptively updated as 
in (3) and (4), the magnitudes of the switching 
function go to small values while link position 
errors go to small values. 

Remark 7. During sliding, the error 
.ˆ 11 xxS −=o is approximately zero. The derivate 

is not exactly zero, but it is a high frequency 
signal of average approximately zero, with an 
amplitude depending of 1Θ . If the gain 1Θ  goes 
to zero, the derivative of the velocity estimation 
error goes to zero or becomes very small. That 
means a reduced observation error even in the 
presence of parameter uncertainties. Also, the 
behaviour of the controller is similar with that of 
the full state measurements if its switching is 
based on a smooth variable. The smooth 
controller means a reduced or free chattering for 
the control input law and/or the output. 

4. PARAMETER IDENTIFICATION 
BASED ON SMOOTH SLIDING 

OBSERVER-CONTROLLER 

The way followed for the time-varying 
parameter identification is quite different from 
that proposed by Xu, Pan and Lee (2003). 
Firstly, it is based on the state estimates and on 
the faster convergence of the observer than the 
controller. Secondly, it is based on smooth 
sliding observer-controller, both of them having 
adaptive switching gain. Zero or small state 
estimate error leads to zero or small tracking 
error and small gains of the corresponding 
switching function. Consequently, during 
sliding, the weight of the switching term is 
negligible with respect to the compensation part. 

Define as the parameter vector estimate with p̂ . 
If the functions f , g  and h  are linear in thetime 

varying parameters, each term of the system (1) 
can be expressed as follows: 
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ˆ,ˆ,ˆ
ˆ

2
1nnx212

1nnxn

211

2

21

2

p

p p
xxf

00

xxf
x

pxxf
x













ϕ
+









=









−

−
,                          (44) 

 

( ) ( )
( ) ( )tˆˆ,ˆ,

,ˆ,ˆˆˆ,ˆ,ˆ

213

211

nn

21nxn

nxnn

puxxΦ
uxxg

0
u

0
pxxg0

0I

+









=
















.     (45) 

 
Define the followings function matrices and 
vectors: 

( ) ( )






=

pxh0
0I

pxH
ˆ,ˆˆ,ˆ

1
10

nxn

nxnn ,                         (46) 

( ) ( ) 







=

211

1
21210 ˆˆˆ,,ˆ,ˆ

xxh
x

xxxxh &
&&& ,                     (47) 

( ) ( )
( ) ( )














ϕ
=

−

−
1

1212

1
21211 ˆˆˆ,,ˆ,ˆ

p

p

nnx

nnxn

xxh

00
xxxxΦ &

&& ,    (48) 

( ) ( )






=

pxxf
x

pxxf
ˆ,ˆ,ˆ

ˆ
ˆ,ˆ,ˆ

21

2
210 , ( ) ( )






=

211

2
2101 ˆ,ˆ

ˆ
ˆ,ˆ

xxf
x

xxf ,         (49) 

( )
( )

( ) ( )













ϕ
=

−

−
2

1212

1
212 ˆ,ˆˆ,ˆ

p

p

nnx

nnxn

xxf

00
xxΦ ,             (50) 

( ) ( )






=

pxxg0
0I

pxxG
ˆ,ˆ,ˆ

ˆ,ˆ,ˆ
21

210
nxn

nxnn ,              (51) 

( ) ( )






=

uxxg
0

uxxg
ˆ,ˆ,ˆ

ˆ,ˆ,ˆ
211

21
n

o ,                       (52) 

 
In the relationships (46),…,(52), 0Ĥ , 0Ĝ  are 

nnx22  matrices, 1Φ̂ , 2Φ̂ , 3Φ̂  are pnxn2  

matrices and 0f̂ , 01f̂ , 0ĝ , 0ĥ  are n2  vectors. 
With the above notations the robot model can by 
expressed compactly by: 
 

( ) ( ) ( ) 021021010 ˆˆ,ˆ,ˆˆ,ˆˆ,ˆ upxxGxxfxpxH +=& ,      (53) 
 

where [ ]TTT
n u0u ˆˆ 0 = . 
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Assumption 4.  To each element ( ) pi nitp K1, =  
of the unknown time varying parameter vector 
( )tp , there exist the values 

maxmin
, ii pp , a priori 

known, such that 
 

maxmin iii ppp ≤≤ .                                         (54) 
 
Assumption 5. There exist bounding functions 
( )1xα , ( )1ˆ xα  such that 

 
( ) ( ) ( )

( ) ( ) ( )

[ ] [ ) .0t,ppp̂,

,,ˆˆ,ˆˆ,ˆ

,,,

minmin
p

iii
n

n
111

1
01

1

11
1

01
1

∞∈∀∈∀ℜ∈∀

ℜ∈∀α≤≤

α≤≤

−−

−−

p

xxpxHpxh

xpxHpxh

  (55) 

 
Assumption 6. There exist nnx22  function 
matrices, structured as follows: 
 

( ) ( )






=

2101
2101 ˆ,ˆ

ˆ,ˆ
xxg0

0I
xxG

nxn

nxnn                  (56) 

 
of full rank, and 
 

( ) ( )






=

pxxg0
00

pxxG
ˆ,ˆ,ˆ

ˆ,ˆ,ˆ
2102

2102
nxn

nxnnxn ,         (57) 

with ( ) ( )pxxpxx ˆˆ,ˆ,ˆ, 21022102 ijij gg = , such that 
 

( )
( ) ( )[ ]pxxGIxxG

pxxG

ˆ,ˆ,ˆˆ,ˆ
ˆ,ˆ,ˆ

2102n22101

210

+=
.               (58) 

 
Assumption 7. There is a positive constant σ  
such that 
 

nT ℜ∈∀σ≥− vvvghv ,ˆˆ 21 .                           (59) 
 
Define the matrix 
 
( ) 3212121

ˆˆˆ,ˆ,,ˆ,ˆ ΦΦΦuxxxxΦ ++−=&&               (60) 
 
and the vector 
( ) 0002121 ˆˆˆ,ˆ,,ˆ,ˆ gfhuxxxxω −−=&&                    (61) 

 
of pnxn2  and n2 -dimension, respectively. 

Suppose that ΦΦ ˆˆ T  is a nonsingular matrix, then 
the parameter estimate p̂  can be computed as 
the minimum residuum solution of the system 
 

ωpΦ )
=ˆˆ .                                                       (62) 

 
In order ensure the boundedness of p̂ , the 
following scheme for computing the parameter 
estimate is used 
 

( )

( )
( ) ( )
[ ]

( )















>





∈













<





=

−

−−

−

.pˆˆˆˆifp

,pp

ˆˆˆˆifˆˆˆˆ

,pˆˆˆˆifp

tp̂

maxmax

minmin

minmin

i
i

T1T
i

ii

i

T1T

i

T1T

i
i

T1T
i

i

ωΦΦΦ

ωΦΦΦωΦΦΦ

ωΦΦΦ

  (63) 

 
With the observer (2) and the control law (34), 
both of them having smooth switching term and 
gains adaptively updated, the neighborhood of 
the controller sliding surface (30) can be reached 
in finite time. 

The Lyapunov function candidate is chosen as 
 

2ˆˆ
c

T
cV SS= .                                                (64) 

 
The controller sliding surface (30) depends on 
the tracking error vector (reference tracking and 
velocity tracking) 

( ) ( )[ ]TT
r

T
rr 21 ˆˆ xyxyxxe −−=−= & .           (65) 

The derivative of the Lyapunov function can be 
expressed as 

( )xy
e

S
Se

e
S

SSS &&&
&& ˆ

ˆ
ˆ

ˆ
ˆˆˆ −

∂
∂

=
∂
∂

== r
cT

c
c

cc
T
cV .         (66) 

Using (53), the above derivative function can be 
written as 
 

( )uGHfHy
e

S
S ˆˆˆˆˆ

ˆ
ˆ

0
1

00
1

0
−− −−

∂
∂

= r
cT

cV && .              (67) 

 
The smooth sliding controller (32) can be 
expressed as the sum of two terms 
 

sc uuu ˆˆˆ += ,                                               (68) 
 
where 
 

( ) ( ) ( )
( )[ ]r2rc

121
1

21c

ˆˆ
ˆ,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ

yxψySψ

pxhpxxgpxxfu

&&& −−+−

+−= −
        (69) 

 
is the compensation part, 
 

( ) ( ) ( ) ( )ccs kt Sηpxhpxxgu ˆtanhˆ,ˆˆ,ˆ,ˆˆ 121
1−=         (70) 
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being the switching part one. Using (58) and the 
block diagonal form of the matrices, the 
compensation part can be further expressed as 
 

[ ][ ]
( )[ ]pΦΦxhfy

gIgu

ˆˆˆˆˆˆ
ˆˆˆ

2
1

2
2211r

1
02n01c

−−+−

+= −

&&&
,                        (71) 

 

where ( ) ( )



 ϕ= −

1
1212

2
1 ˆˆˆ

pnnxxxhΦ & , 

( ) ( )



 ϕ= −

2
1212

2
2 ˆ,ˆˆ

pnnxxxfΦ  are pnxn -matrices 

which hold the second block row of the matrices 
1Φ̂  and 2Φ̂ , respectively. 

 
In order to re-write the variable structure term, 

the expression c

T
c S
e

S ˆ
ˆ

∂
∂  can be replaced with 

smooth switching function ( )cck Ŝtanh  whilst the 
system evolution is in a neighbourhood of the 
sliding surface, the attractiveness condition is 
satisfied, the switching gain ( )tη  is closed to 
zero and the parameter ck  is sufficiently large. 
 
Defining the vector 

[ ]Tnn pp
pppp

minmaxminmax 11 −−= Lπ        (72) 

and using the relationships (64), (55), and (59), 
there exists a positive constant ξ  such that 
 

( ) ( ) ( )

( ) ( )
( )[ ] ( )

[ )∞∈∀
σ

ξ+α
≤

−

0t,
ˆktanhˆktanh

ˆktanhˆˆ

tˆ,ˆˆ,ˆ,ˆ

cc
T

cc

cc

121
1

SS

SπΦ

ηpxhpxxg

.      (73) 

 
The variable structure part can be re-expressed 
as 
 

( ) ( )
( )[ ] ( )

( )cc
cc

T
cc

cc
s k

kk

k
S

SS

SπΦ
u ˆtanh

ˆtanhˆtanh

ˆtanhˆˆ
ˆ

σ

ξ+α
= .     (74) 

 
With these components of the controller, taking 
into account the particular structure of the 
matrices and vectors (46)…(52), the derivative 
of the Lyapunov function may be expressed as 
 

( )[ ]
[ ][ ]

( )[ ] ( )[ ]
( ) [ ][ ]

[ ][ ]
( )[ ] ( )[ ]

[ ]( )
( ) ( )

( )[ ] ( )
( )[ ]
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ˆˆktanhˆˆktanhˆˆ

ˆktanh
ˆktanhˆktanh

ˆktanhˆˆ

ˆˆˆˆ

ˆˆktanhˆˆˆˆktanh

ˆˆˆ
ˆˆˆˆˆˆˆˆ

ˆˆktanhˆˆˆˆktanh

ˆˆˆ
ˆˆˆˆˆˆˆˆˆktanhV

cc
cc

T
cc

cc
1T

cc

cc

cccc
1

T
cc

cc
T

cc

cc

2
1

2
3

2
2

1T
ccs

1T
cc

c020201

c02n01
2
2

2
1121

11
ccs

1T
cc

c02n01

2
21

2
1211T

cc

S
SS

SghS

SπΦ

πΦSSgh

S
SS

SπΦ

ppΦΦΦ
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ugIgpΦΦfxh
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ugIg
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σ
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σ
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−

−−+
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











−+

+−−+−
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






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


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&

      (75) 

Defining the set








≤
c

c k
1Ŝ , we can say that 

there exists some 0≥T  such that 

[ )Tt ,0∈∀ , ( )
c

c k
t 1ˆ >S  and ( )tcŜ  will be 

strictly decreasing until it reaches the set in 
finite time and remains inside thereafter 
(for Tt ≥ ). 
 
Particularizing the above relationships for n -
degree of freedom robot manipulator, 
considering the estimates of the velocities and 
the uncertainties in the parameters, the robot 
model (11) becomes 
 









+








+


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
+

−









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−=







+









d
0

u
0

GxC
0

GxFxC
x

H
0

xH
x

nn
p

222

n

1221

2
p

2

n

21

1

ˆ
m̂ˆˆˆ

ˆˆˆˆˆ
ˆ

m̂ˆˆˆ &
&

.     (76) 

 
Define the nnx22  matrices and n2  vectors, 
respectively 
 









=

H0
0I

H ˆ
ˆ

0
nxn

nxnn , 







=

21

1
0 ˆˆ

ˆ
xH

x
h &

&
,               (77) 

 
( )
( )











=

−

−

122

1
1 ˆˆ

ˆ
p

p
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nnxn

0xH

00
Φ & ,                              (78) 

 









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=
GxFxC

x
f ˆˆˆˆˆ
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2
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
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=
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2
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GxFxC

x
f ,       (79) 
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( )
( ) 












−−
=

−

−

1222

1
2 ˆˆˆ

ˆ
p

p

nnx

nnxn

1GxC

00
Φ ,                   (80) 

 









=

nnxn

nxnn
I0

0I
G 0
ˆ , ( ) 








=

u
0

uxxg
ˆ

ˆ,ˆ,ˆ 210
n ,      (81) 

 
( )
( )











=

−

−

1

1
3

ˆ
p

p

nnxn

nnxnxn
00
00

Φ .                                (82) 

 
This allows to re-write as 
 

uGf
x
x

H ˆˆˆ
ˆ

ˆ
00

2

1
0 +=








&
&

                                      (83) 

 
or equivalently as 
 

pΦgpΦfpΦh ˆˆˆˆˆˆˆˆˆ
3020110 +++=+ .                    (84) 

 
Remark 8. The smooth sliding controller allows 
the using of the compensation part as equivalent 
control input signal during sliding. The adaptive 
gain of the controller switching term goes to 
zero or becomes very small, depending of the 
error in the state estimate. Therefore, the 
influence of the noise induced by control input 
acquisition is very small in the parameter 
estimate. 

Remark 9. In closed loop, the robustness to 
uncertainties makes insensitive the stability to 
phase lag induced by the filters used to compute 
the derivatives of the state estimate. 

Remark 10. As emphasized in Xu, Pan and Lee 
(2003), the reference signal has to be chosen in 
order to avoid the singularity of the 
matrix ΦΦ ˆˆ T . 

5. CLOSED LOOP SIMULATION 

A two degree of freedom vertical robot with two 
rigid revolute joints, two rigid links, a time 
varying payload ( )tm p and an additive 
disturbance ( )td  on the control input has been 
considered in order to test the smooth variable 
structure observer-controller with time-varying 
parameter identification, developed in this 
paper. 
 

The vectors of position and velocities are 
[ ]Txx 12111 =x  and [ ]Txx 22212 =x , 

respectively.  

The trajectory to be tracked is defined as 
 

( ) ( )[ ]Tr tt 3.02sin7.03.0sin3.05.0 +−+−=y   (84) 
 
The parameter vector to be identified is 
 

( ) [ ]Tt tet )3sin(7.013 5.0 +−+= −p ,             (85) 
 
where ( ) t

p etm 5.03 −+=  is the payload and 
( ) ( )ttd 3sin7.01+−=  is the additive disturbance. 

The corresponding robot model matrices and 
vectors are the following: 
 
( )

( ) ( )
( )

( ) ( )
( ) p

12

1212

12

1212

p1

m
1xcos1

xcos1xcos22
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( ) ( ) ( )
( )

( ) ( )
( ) p
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121111
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121111
p1

m
xxsin

xxsinxsin
g

xxsin13.1
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  (88) 

 
[ ]1010diag=F ,                                           (89) 
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[ ]Tuu 210 00ˆ =g , [ ]243
ˆ

x0Φ = .               (94) 

 

The initial conditions are: 

( ) ( ) ( ) [ ] ;000ˆ00 121
T=== xxx ( ) [ ]T210ˆ 2 −=x , 

( ) ( )

( ) 




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
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0 21

η

ΘΘ
. 

The following constants are chosen as: 
[ ]11diag21 === cλλλ , [ ]1010diag1 =Γ , 

[ ]50005000diag2 =Γ , [ ],11diag21 === cρρρ  
[ ]2020diag=ψ .  

In the Fig. 1, the closed loop simulated 
manipulator response is shown. Adaptive gains, 
smooth sliding observer-controller and time 
varying parameter have been introduced into the 
loop. Small parameter uncertainties (2%) have 
been considered.  

By choosing ok  greater than ck , a faster sliding 
observer convergence than that of the sliding 
controller has been obtained. The response is 
free of chattering, although limitations have 
been introduced into control input 
( 1501 ≤u ; 752 ≤u ). Even if the system 
evolutes, during sliding, in a neighbourhood of 
the corresponding sliding surface, the output 
tracking is achieved. In the figure 2, the 

identification of time-varying parameters ( )tm p  
and ( )td  is shown. The reference signal was 
chosen in order to avoid the singularity of the 
matrix ΦΦ ˆˆ T . In order to compute the derivatives 
of the state estimate the first order numerical 
difference has been used. The phase lag does not 
lead to instability and fluctuation in the 
parameter estimates. 

 
Fig. 1. Closed loop robot response, smooth sliding 

observer and controller, parameterized tangent 
hyperbolic switching function 10=ok , 1=ck . 

 
Fig. 2. Closed loop, smooth sliding observer-

controller, on-line time varying parameters 
identification. 

6. CONCLUSION 

A robotic manipulator closed loop control with 
adaptive gains, smooth variable structure 
observer-controller and time varying parameter 
identification has been designed and tested by 
simulation. The output tracking, the robustness 
to uncertainties and external disturbances are 
increased by the use of parameterised switching 
functions with gains adaptively updating. The 
parameterised k -tanh switching function assures 
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an alleviated or completely elimination of 
chattering. An appropriate choice of the 
parameters in the observer and controller 
switching functions, allows a faster convergence 
rate of the observer than that of the controller 
can be obtained. The gains adaptively updated 
lead the system to output tracking with smooth 
transient response. With some conditions on the 
robot model, reference input and a priori 
information, the identifier of time-varying 
parameters converges. The error in the 
parameter estimates depends on the error in the 
estimated state and on the tracking error. 
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