
CEAI, Vol.17, No.1 pp. 3-11, 2015                                                                                                                    Printed in Romania 
 

Motion Data Preprocessing in Robotic Applications 
 

Peter Benický, Ladislav Jurišica, Anton Vitko 


Slovak University of Technology in Bratislava 
Faculty of Electrical Engineering and Information Technology 

Institute of Robotics and Cybernetics  
Ilkovičova 3, 81219 Bratislava, Slovakia 

e-mail: peter@benicky.info, ladislav.jurisica@stuba.sk, anton.vitko@stuba.sk 

Abstract: There are numerous approaches to processing images of moving bodies.  As to robotic 
applications call for real time algorithms, the redundant data obtained from the input image should be 
filtered out and implemented with deep knowledge of hardware specifications.  The paper demonstrates a 
new approach to real-time motion classification. Partial problems resolved in this paper cover the fast 
motion detection, edge detection, corner detection and finally motion classification.  The motion, edge 
and corner detectors are optimized with respect to effective use of the memory and excluding redundant 
data. 

Keywords: robotics, motion, real time, identification, in memory database 

1. INTRODUCTION 

If an adequate mathematical model of a system is not 
available, the designer should make recourses to abstract 
methods.  The image processing is one of such problems.  
The image processing has been realized by means of artificial 
intelligence implemented on neural networks of various 
kinds. However, the neural processing of image data is time 
consuming and very often it does not meet real time 
requirements. In real time applications the processor should 
process 24 or more images per second.  Therefore this paper 
is focused on solving the problem of motion detection and 
classification by different means then those used so far. The 
suggested approach tries to resolve the problem of improving 
quality of detection so as the detected edges may be used for 
subsequent corner detection and fast motion identification or 
classification tasks.  

Real time object tracking in robotics applications is 
extremely important in the area of visual servoing where the 
presence of time delay causes a significant problem.  The 
performance of object tracking can be increased using 
Kalman Filter (Liu et al., 2012).  

Among the existing edge detection methods the Canny 
method is probably the most popular one and it has various 
implementations.  One of its fast implementation is in 
OpenCV library (OpenCV), representing an assembly of 
optimized Computer Processing Unit (CPU) 
implementations. Another implementation can be achieved 
by Graphical Processing Unit (GPU), using the programming 
model (Compute Unified Device Architecture or CUDA) 
released by NVIDIA. Using this implementation the Canny 
edge detection becomes more than 20% faster than assembly 
optimized CPU implementation. (Luo and Duraiswami, 
2008).  The GPU allows for processing even larger amounts 

of data in real time, for example the transformation from 2D 
into 3D representation using range imaging sensors (Wasza et 
al., 2011).  The corner detection by GPU resulted into 
significant speed-ups (Teixeira et al., 2008).  Another 
approach of real-time edge detection using CPU rests in 
computing a set of anchor points on the image and drawing 
edges between them (Topal et al., 2010).  Such approach 
produces 1-pixel wide edges with real connectivity in real 
time (10msec for a VGA image on a 2GHz CPU in single 
thread). 

The work (Wang, 2006) is focused on the performance 
evaluation of the edge detection in the tasks of recognition of 
a human behavior using infrared lighting (for night vision). 
The results are automatically in the grayscale format.  By 
removing some mathematical operations, like finding square 
roots and reduced number of divisions, the performance 
becomes ten-times faster than conventional Sobel detector. It 
can be used for night monitoring of the patients behaviors in 
a hospital.  The approach described in (HANA) is based on 
using fast Random Access Memory (RAM) in all data 
storage applications.  It was implemented in HANA (product 
of SAP Company). The HANA is basically “in memory 
database” with column or row storage making applications 
much faster. 

The authors are not aware of any work dealing with the one 
column store “in memory” approach to the edge detection of 
a moving object which would minimize redundant and 
useless information for achieving high processing speed. That 
is just what is required in robotic applications.  It can be 
reasonably expected that “in memory” implementations (not 
only databases) can play a significant role in the endeavor of 
reaching high performance. These facts have motivated us to 
adopt such an approach in developing a real time processing 
system for robotic applications. 



4                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

2. MOTION DETECTOR 

To achieve motion detection of acceptable quality the 
detecting algorithm should be considered together with its 
implementation.  Note that using a slow detection algorithm 
the final result is of poor quality even for a good 
implementation. To substantiate this, let us calculate (for 
each element of the array array_ ) the value of a testing 

function, for example the function (1). To achieve more 
accurate measurements the algorithm is executed 10000 
times. Note that the algorithm must be compiled in the 
release mode.  

 
 
 
 
 

Fig. 1. Experiment for performance testing. 

For instance, the execution time for calculating the two-

parametric function (1) 2550, ji  by the specific 

hardware (Pentium with GHz6,1  microprocessor, 

RAM MB512 ) was 87,10  seconds.  Let us note that our goal 

is to achieve higher performance by the algorithm rather then 
by the hardware. 

 
1

,



ji

i
jif  (1) 

Therefore let us rewrite the function (1) into an array 
representation with already pre-calculated values and suppose 
that in the run time no calculations, except for reading from 
the two dimensional array, are performed. This led to the 
execution time 6,7  seconds using the same hardware.   After 

rewriting the two dimensional array into one dimensional 
array  jikf . , where k  is a number of elements in one row 

and using one-dimensional array of pre-calculated values, the 
execution time decreased to 3,49 seconds. With a correct 

implementation, the algorithm may be 3 times faster.  This is 
especially important when considering real time motion 
detection. 

However, our main goal was to obtain characteristic features 
that would better describe input data.  The characteristic 
feature means, for instance, the curvature of the detected 
motion.  For detection of the edges, i.e. locations where the 
contour’s curvature is greater than a given threshold the 
contours of the detected areas must be known. 

3. EDGE DETECTOR 

Standard methods like Laplace edge detector (Fig. 2) do not 
provide contours that could be applicable in the tasks of 
curve detection.  For this purpose one needs contours of one 
pixel wide and without unreasonable line discontinuity.  As 
to the solution should meet the real time processing 
requirements, the processing time should be considered as 
well.   

               

Fig. 2. Input to the edge detection (left) and the result of the 
detected edges by the standard Laplace edge detector (right).  

Since the inputs to the curve detector are binary data (binary 
picture) we used the method based on masks was considered, 
which is faster than any standard of edge detection method.   

1 2 3 
4 5 6 
7 8 9 

Fig. 3. Matrix of size 3x3 as a reference template for the 
mask based method. 

The edge detection of a binary picture with the mask based 
method is defined as follows: the pixel “5” (Fig. 3) is a part 
of the edge (line) marked as a black point if the pixel has at 
least one white pixel in its direct neighborhood (“2”, “4”, “6”, 
“8”) (the white pixel is not a part of the detected edge) or 
there is at most one black pixel among all eight pixels around 
it. (“1”, “2”, “3”, “4”, “6”, “7”, “8”, “9”).  However, the 
mentioned rules do not provide contours of sufficient quality 
as required by the task the subsequent corner detection.  To 
ensure higher quality contours the set of rules should be 
widened.  New rules were found empirically using the set of 
input binary images. Using this approach the 89 fix patterns 
were found.  Using all these patterns resulted into improved 
robustness of the edge detection and provided higher quality 
of the pixel-wide edges. 

 

Fig. 4.  Input image (left) and detected edge with correction 
by pattern fixing images (right). 

Another advantage of this method (besides the quality of 
detected edges), rests in the possible optimization during 
implementation, which is aimed at obtaining the real time 
processing system.  The number of 89 fix patterns can be 
considered as 9 bit information per pattern, meaning that this 
information can be coded by 32 bit integer (in C++ language) 
for one fix pattern.     

 

Fig. 5.  Binary pattern image can be represented by a 32bit 
integer where 9 bits are used.   

for (int k = 0; k < 10000; k++) 
 for (int i = 0; i < 255; i++) 
  for (int j = 0; j < 255; j++) 
    _array[i, j] = f(i,j); 



CONTROL ENGINEERING AND APPLIED INFORMATICS    5 

     

 

In this way 89 integers were obtained, each representing one 
binary edge describing pattern. To cover all combinations of 
9 bit information an array of size 29=512 is needed. (Access 
to one dimensional array is faster than to multidimensional 
array).   

 
 
 
 
 
 
 
 
 

Fig. 6. Implementation of 3x3 matrix into integer that will be 
used as index.   

Finally, after getting a 3x3 matrix from the input binary 
image it is converted into 32 bit integer (Fig. 6) and the 
information whether the pixel “5” is edge or not will be 
simply decided by looking into the array of integers.   

 

 

Fig. 7. Fix patterns and 9 bits information per pattern and its 
index. 

/logical operation is required since the look up table of 
integers is prepared before starting the entire algorithm.  
Finally, by that approach the high quality moving contours 
(continual lines of a pixel-wide) can be quickly obtained.  

         

Fig. 8. Input image (left) and the result of detected edge with 
correction by references images on real input data (right). 

When looking at the edges in Fig. 8, it is obvious that data 
are not invariant w.r.t. rotation.  The approach described is 
also applicable on the exact motion identification from a 
fixed position of the observer.  A picture similar to the 
Picasso’s one line hand sketch of a bull can be obtained.  By 
a multi-erosion of the input picture all partial surfaces can be 
connected together into one. It is done on expense of the lost 
of unimportant details.  

   

Fig. 9. Motion detection with multi-erosion (left) and 
detected longest edge (right). 

Having all parts connected the longest edge will describe the 
object in the same way as Picasso’s hand sketches do.  Then 
having the longest pixel-wide edge describing the moving 
object as one unit, the rotation and zoom invariant 
characteristic features can be calculated.  As a means of the 
curves detection the M2003 algorithm was used (Mayed et 
al., 2012). To obtain invariant features, the object center is 
calculated by expression (2). 

   









1

1

1

1

1
  y,

1 n

k
hc

n

k
hc ky

T
kx

T
x  

(2) 

 

Where  hh yx ,  is h -th point of the edge.  The relative 

distances can be then calculated by expression (3). 

   
 



 N

i

R

id
N

kd
kd

1

1

 
(3) 

 

Where  kd  is k -th absolute distance of the corner from the 

object center.  It is calculated in accordance with (4). 

        22
yc xkyxkxkd   

1,...,1  nk  

(4) 

 

     

Fig. 10. Invariant motion descriptors are defined as the 
distance between the detected corner and the centroid of the 
moving object. 

When the human finds itself inside of a new scene, he or she 
first considers the biggest moving object.  The above 
mentioned approach describes the biggest moving object (or 
the linked group of objects) by one line that describes the 
contour by invariant motion descriptors.  The approach can 
be used even in situations where besides the main moving 
objects also other smaller moving objects are in the 
background as shown in Fig. 11. 
 

int n = matrix[i - 1, j - 1]; 
n += matrix [i - 1, j - 0] << 1; 
n += matrix [i - 1, j + 1] << 2; 
n += matrix [i - 0, j - 1] << 3; 
n += matrix [i - 0, j - 0] << 4; 
n += matrix [i - 0, j + 1] << 5; 
n += matrix [i + 1, j - 1] << 6; 
n += matrix [i + 1, j - 0] << 7;



6                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

                 

Fig. 11.  Detected motion of hand (in the middle) with 
complex background of moving trees.  Detected corners with 
relative distances between centroid and corners on the longest 
detected edge (right). 

     

Fig. 12.  Test experiment of taking flowerpot with flower and 
its movement from left to the right. 

The algorithm was used to obtain invariant relative distances 
of the longest detected motion line.  Since the algorithm 
implementation of the algorithm was done with respect to the 
known properties of the hardware used it is relatively fast. In 
order to evaluate it in similar experiments a simulation of the 
movement of the flowerpot with flower (Fig. 12) from the 
right corner to the centre of the window after which the hand 
was removed without flowerpot was done.  The invariant 
relative distances calculated by expression (3) for action 
shown in Fig. 12 are described in Fig. 13. 

 

Fig. 13.  Detected relative distances of moving flowerpot.  

The invariant relative distances of such action are shown in 
Fig. 14 (left).  Now let us imagine that the camera had been 
recording a hand moving towards the flowerpot but at a 
certain moment the hand was returned back without grasping 
the flowerpot. The invariant relative distances of this action 
can be seen in Fig. 14 (right).  Finally, the same action was 
simulated but it was done much faster. The invariant relative 
distances are shown in Fig. 14 (middle).  It can be seen that 
there is certain similarity between Fig. 13 and Fig. 14 
(middle). 

       

Fig. 14.  Detected relative distances of other similar actions. 

Invariant motion descriptors may be created easily without an 
excessive computational burden. They are also useful for the 
object identification or classification. 

4. STORING THE INVARIANT MOTION DESCRIPTORS 

Having the invariant motion descriptors known, the next 
important task is to use them effectively in terms of their 
storing and reading in a database.  To work with the database 
effectively means using the correct fields indexing and table 
relations according the data.  Also the principle of parsimony 
should be applied, meaning that data should not be redundant 
and not more accurate than it is required.  In our case it 
means that the variable representing invariant motion 
descriptors should not be stored as double types.  For that 
reason they were converted into the integer types. 

 realxkRoundy .integer   (5) 

To calculate parameter k  one needs to know the minimal 

and maximal value of realx
, which (in our case) will be 

represented by minimum and maximum value of relative 
distance from the  corner of the detected edge to its centre  
calculated by the expression (3).   

 

Fig. 15.  Minimal relative distance calculated by expression 
(3) (left) and maximal relative distance calculated by 
expression (3) (right). 

From Fig. 15 (left) it is obvious that minimal relative distance 
calculated by (3) is equal to1.  In order to simplify 
expression (5) let us suppose that the parameter k  is within 
the following interval of integers. 

655360  k  (6) 

To calculate parameter k  the maximum relative distance 
calculated by expression (3) will be considered.  Let’ us 
imagine a theoretical situation shown in Fig. 15 (right), where 
an infinite number of points are located in a circle of radius 1 
pixel in one corner of the picture and just one point is located 
in the opposite corner, thus we can achieve the maximum 
relative distance calculated by expression (3).  This 
maximum relative distance will be represented by integer 
value of 65536.  The maximum relative distance calculated 
by expression (3) based on the situation shown in Fig. 15 
(right) will be calculated as the longest absolute distance of 
an edge point from the edge centroid and the average 
absolute distance of all edge points from the edge centroid as 
mentioned in expression (7). 

 
































1

1
lim

1

1

22

22

1

max
max

n

ba

ba

id
N

d
d

n

i
n

N

i

R

 

(7) 



CONTROL ENGINEERING AND APPLIED INFORMATICS    7 

     

 

The integer parameter k  will be calculated from the 
condition (8).  
 

65536.

1

1
lim

!

1

22

22
































k

n

ba

ba
n

i
n

 

(8) 

The expression (8) can be simplified by calculating the limit 
as mentioned in expression (9). 

 
  1

.01

.10

.
1

1

.1

lim

1

1
lim

22

1

22














 





























n

n

n
n

n
n

ba

n

ba

n

n

i
n

 
(9) 

Hence, the parameter k  will be calculated in accordance with 
the expression (10). 

22

65536

ba
k


  

(10) 

In case of using non-integer type of data the parameter  k  
should be recalculated with respect to the range of values of 
the using data type. 

d [k]R

k
databaserelative distancesconnections between

edges and centroid  

Fig. 16.  Process of writing invariant descriptors of moving 
hand into database of knowledge. 

The main reason for the need of effective use of data types is 
using smallest memory so as to allow for the fastest computer 
memory, namely the RAM memory.  The database which is 
exclusively located in RAM is known as “in memory 
database”. It is much faster than the database which is only 
partly stored in RAM, meaning that the rest of data is stored 
on a hard disk.  Having “in memory database” with one 
dimensional arrays the extremely high performance can be 
achieved. 

5. DESIGN OF DATABASE MODEL 

As to the database model can contain large amounts of data 
and their processing is required in real time, in the design 
stage it is necessary to consider various requirements (e.g. 
low data redundancy, correct use of data types, correct draft 
indexes) with regard to known application database tables.  

Also utilization of all means which would secure higher 
performance of the database system, for instance so called 
storing procedures should not be omitted.  

The suggested structure of the movement defining table is 
displayed in Table 1. Some space is reserved for additional 
descriptors of the contours of the motion contours. 

   

Fig. 17.  Amounts of dynamic pixels and information on the 
total length of edges may be obtained during the preparation 
of input data.  

During data preparation it is possible to get a few useful 
descriptors which are readily available and easily calculated.  
For instance, during the calculation of dynamic pixels one 
can implement a counter of such pixels.  This, so-called a 
number of dynamic pixels, describes the “size” of the 
movement.  This descriptor is, however, dependent on the 
distance of the object from the camera. 

Table 1. Movement defining database table named 
“MotionDefinitions”. 

Column name Data type 
Motion Integer data type 
Frame  Integer data type 
Edge Integer data type 
Corner Integer data type 
CornerDistance Integer data type 
CornerCount Integer data type 
CornerDistanceCount Integer data type 
ParameterN Integer data type 

However, if a certain degree of invariance should be ensured, 
we can put the number of dynamic pixels to the ratio of the 
length of edges as indicated in the column name "Edge" 
(Table 1) which was already calculated because of the 
selection of the longest edge where the length of detected 
edge was calculated. This descriptor, for the purpose of draft 
tables will be named as "ParameterN".  Note that by a similar 
simple way it is possible to get more descriptors (for 
example, the overall curvature of the edges, calculated as the 
sum of the curvature at each point which is situated on the 
edge).  

From the Table 1 it is evident that each of the trained 
movements (the movement registered in the table 
"MotionDefinitions") is represented by a unique ID number 
in the column "Motion".  Every movement is composed of 
several pictures "Frame" and every frame has few edges 
"Edge".  Finally, the edge contains several corners "Corner".  
Then for each of the "Motion", "Frame", "Edge", "Corner" 
combinations there exists a relative distance between a corner 



8                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

on the edge and the edges’ Centre of gravity.  The relative 
distances are shown in the raw "CornerDistance".   

 

Fig. 18. Multilevel classifier.  

Due to using the multilevel classifier (Fig. 18) it is 
convenient to define the descriptors also on the level of the 
images, i.e. for a combination of "Motion" and "Frame" 
values. 

6. MOTION IDENTIFICATION 

At the first level identification the similar images are 
identified on the basis of global descriptors describing an 
image as a whole.  The motion identification is based on 
finding images with similar global descriptors.  Similarity of 
global descriptors can be calculated as the percentage of the 
deviation from the model in accordance with (11). 

  100.%
in

inpattern

D

DD 
           (11) 

Symbol inD  means a descriptor calculated on the basis of 

input data and stored in the knowledge database. 

For the sake of simplicity we only consider the longest edge 
and two descriptors describing the image as a whole.  One 
descriptor represents number of detected corners on the 
longest edge and the second one represents the sum of all 
relative distances between corners and the centre of gravity of 
the longest edge. Using this approach, one can use the 
following SQL command for obtaining all similar images 
from the knowledge database.  Similar images are those 
where all descriptors at the image level have smaller 
percentage of the deviation then empirically determined 
deviation for the given descriptor. 

 

Fig. 19  Block diagram of the input data identification 

As an example let us consider the input image with 10 
detected corners and with the sum of all relative distances is 
equal to 2545.  

 

Fig. 20.  The SQL command for identification all similar 
images. 

Now we should obtain (from the knowledge database) all 
similar images for which the deviation of the descriptor of the 
number of corners (CornerCount) is less than 10% and the 
deviation of the sum of relative distances is less than 20%. 
The SQL command shown in Fig. 20 is not effective because 
the SQL server must calculate the deviation of the descriptors 
for all records.  The command may be optimized so as the 
SQL server does not need to do any calculations, except for 
the simplest mathematical operation, namely the comparison. 

 
Fig. 21.  Optimized SQL command for identification of all 
similar images. 

The optimized SQL command (Fig. 21) will constitute the 
identifier of the first level, i.e. (at the level of images.) It will 
identify those pictures that have global descriptors in the 
permitted value ranges.  In general, one can assume that for 
any couple of the similar images their descriptors must be 
similar as well.  This is a necessary condition for the 
existence of a similarity between the images.  However the 
opposite is not true.  

By using the optimized SQL command one can get similar 
images.  After that the images can be ordered in accordance 
to the similarity based on the number of corners.  Ordering 
based on the sum of the relative distances of the detected 
corners may be the same for different combinations of the 
corners. For this reason the identified images will be ordered 
by the number of corners only. In this way the similar images 
will be ordered from the most probable image the lowest 
probable image. 

It is necessary to note that even this ordering does not 
necessary correspond the actual ordering. For instance, the 
image with other number of detected corners may be more 
similar with the input image as the image with an identical 
number of detected corners. It has been found by the 
experimental testing procedure that the images that had the 
same number of detected corners or those that had virtually 
the same  number of detected corners as the input image were 
actually  similar.  

SELECT MotionID, Frame, Edge 
FROM MotionDefinitions 
WHERE  
(abs(CornerCount-10)/10)<0.10  
AND  
(abs(CornerFeatureCount-
2545)/2545)<0.2 
GROUP BY MotionID, Frame, Edge 

SELECT MotionID, Frame, Edge 
FROM MotionDefinitions 
WHERE  
CornerCount between 9 and 11  
AND  
CornerFeatureCount  
between 2036 and 3054 
GROUP BY MotionID, Frame, Edge 



CONTROL ENGINEERING AND APPLIED INFORMATICS    9 

     

 

 

Fig. 22. Optimized SQL command identifying all similar 
images which are ordered in accordance to the degree of 
similarity. 

Table 2.  Table of comparisons of input image with 
images stored in database.  

 

The Table 2  shows descriptors of the image 96 of input 
motion with index 2 that was calculated as similar motion to 
the motion stored in database as motion with index 1.  Images 
from the knowledge database that have been identified as 
being similar to the input image numbered as 96 are ordered 
in accordance to deviation w.r.t. number of the detected 
corners.  In particular, these pictures are from the knowledge 
database of the motion of  indexed as 1, that is those with 
serial numbers 5, 9, 20, 22, 28, 40, 54, 68, 74, 77, 85, 88, 90, 
93, 99.  In this case the permitted value of deviation of the 
number of detected corners was set to zero (zero tolerance of 
detected corners). 

The images presented in Fig. 19 can be considered as outputs 
of the first level classifier.  These pictures can be also 
analyzed at the second level, i.e. with respect to the deeper 
details, for instance at the level of individual edges, corners 
and relative distances (Table 3). 

Table 3.  Table of relative distances of corners with the 
longest edge in image that it is stored in the database.  

 

From set of pictures that were obtained from first level 
classifier can be analysed the picture number 88 from 
knowledge database (Table 3).  

   

   

Fig. 23.  Object with detected corners (left), the same object 
turned by   angle (in the middle), and finally the same 

object turned by   angle (right) with detected corners. 

There is no need to consider an identification numbers of 
detected corners in order to calculate the similarity between 
the  pictures based on individual corners and theirs relative 
distances from the center of gravity of the object.  That is 
because the same object turned by   or   angle can have 

different values of relative distances from the center of 
gravity for individual identification numbers of detected 
corners.  Therefore, the objective will be finding the 
maximum number of relative distances from the set of data in 
input image that will have similar relative distances as the 
reference picture stored in the database will have.  It means 
that the objective is to find the most relative distances from 
the set of data in input image, which will have similar relative 
distances as the reference image stored in the database.  For 
example the similarity between input image number 96 and 
reference image number 88 stored in knowledge database as 
motion number 1 is calculated below.  The relative distances 
of the input image are shown in Table 4 and that of the 
reference image are shown in Table 3. 

Table 4.  Relative distances of corners with the longest 
edge in input image.  

 

As in the case of the first level classifier, which is based on 
global descriptors (number of corners detected, the amount of 
relative distances), also the second level classifier based on 
each relative distances, the percentage of acceptable 
deviation of the relative distances of the reference image is 

SELECT MotionID, Frame, Edge,  
Min(Abs(CornerCount - 10))  

as Deviation 
FROM MotionDefinitions 
WHERE  
CornerCount between 0 and 11  
AND CornerFeatureCount  

between 2036 and 3054 
GROUP BY MotionID, Frame, Edge 
ORDER BY Deviation 



10                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

used.  Please note that there are several solutions within 
second level classifier.   

Finally the algorithm for similarity calculation may be 
summarized as below: 

1. For the relative distance of the input image ][idRv , 

it searches for such relative distance between 
relative distances of reference image, which, 
regarding its length is the most similar in accordance 
with the formula (11).   

2. For the first greatest relative distance of the input 
image and the first greatest relative distance of the 
reference image we calculate percentage deviation. 
This calculated percentage is stored in order to 
calculate average arithmetic percentage deviation 
later.  

3. Step 1 is repeated until all relative distances in the 
input image or the reference image are evaluated. 

4. Average percentage deviation is calculated as the 
average value of all average deviations as calculated 
in step 1. 

From the above algorithm it is clear that the number of 
mathematical operations will be higher, which will result into 
higher demands for computer time. To reduce the number of 
operations the simplified algorithm can be used: 

1. Both the input and reference image descriptors are 
sorted by values of relative distances.  

2. For the longest relative distance of the input image 
and longest relative distance of the reference image 
percentage error is calculated and saved for later 
calculation of the arithmetic average percentage 
deviation. The percentage deviations are computed 
sequentially for each pair of relative distances with 
the same order position (position in input image and 
position in reference image) until all pairs of relative 
distances are taken into account. 

3. The average percentage error as the average of 
percentage deviations calculated in step 1 and 2. 

The advantage of the simplified algorithm is that it is less 
time demanding.  The result of the algorithm is the value of 
the average percentage deviation, which expresses the degree 
of similarity between the input image and the reference 
image. 

  

Fig. 24.  The contour of the moving hand stored in the 
database of already learned movements (left) and the contour 
of the moving  hand detected as a similar contour in  the input 
image (right). 

Given the fact that we identified the movement and not only a 
similarity of a single input image with the reference image, a 
measure of the motion similarity of should be calculated. For 
expressing degree of similarity of motion, it is necessary to 

express the percentage deviation between the input motion 
and the reference motion.   The algorithm is searching for 
such a sequence of consecutive images of the reference 
motion that will produce the maximum similarity of the input 
motion with the reference motion.  It is therefore an 
optimization problem, which may resemble the so-called 
“traveling salesman problem”, in which a path is looking for 
which secure reaching the extreme of optimization function 
when moving from one place to another. In the problem in 
hand the task is to find a sequence of reference images, which 
would secure maximum agreement between the input and 
reference motion.  

7. CONCLUSION 

The rotation, zoom invariant motion descriptors based on the 
curves of the longest edge of a moving object and calculated 
in real time are inevitable data for better real time 
identification and/or classification of the moving object.  The 
presented approach can be easily implemented. Its 
computational complexity is low due to the fact that the 
memory is exclusively used for motion and edge detection.  
Besides, the way of excluding the redundant and useless 
information while useful information is converted into the 
appropriate data ranges were described.  Due to that the only 
a small portion of memory is required for implementation of 
the “in memory database” with fast response.  Note that when 
a motion comprising tens or even hundreds images is to be 
processed, a sophisticated methods were traditionally 
implemented to identify the similar motions in knowledge 
base. Finally the approach to implementation of a multilevel 
classifier exhibiting better performance than the one-level 
classifier was presented. It is able to evaluate image details 
even in the case of low similarity.  

ACKNOWLEDGMENT 

The support of the grant VEGA 1/0177/11 is dully 
acknowledged. 

REFERENCES 

HANA. http:// www.saphana.com 
Liu Ch., Huang X. and Wang M. (2012). Target Tracking for 

Visual Servoing Systems Based on an Adaptive Kalman 
Filter, International Journal of Advanced Robotic 
Systems, Volume 9,  

Luo Y., Duraiswami R. (2008). Canny Edge Detection on 
NVIDIA CUDA, Computer Vision and Pattern 
Recognition Workshops, 1-8. Anchorage, USA. 

Marji M., Siy P. (2003). A new algorithm for dominant 
points detection and polygonization of digital curves, 
Pattern Recognition Volume 36, Issue 10, 2239-2251, 
ISSN: 0031-3203. 

OpenCV. http://opencv.org 
Teixeira L., Celes W., Gattass M. (2008). Accelerated 

Corner-Detector Algorithms, British Machine Vision 
Conference. Leeds, UK. 

Topal C., Akinlar C.,  Genc Y. (2010). Edge Drawing: A 
Heuristic Approach for Robust Real-Time Edge 



CONTROL ENGINEERING AND APPLIED INFORMATICS    11 

     

 

Detection, International Conference on Pattern 
Recognition, 2424-2427. Istanbul, Turkey. 

Wang Ch. W. (2006). Real Time Sobel Square Edge Detector 
for Night Vision, Springer, 404-413. Berlin, DE. 

Wasza J., Bauer S., Hornegger J. (2011). Real-time 
Preprocessing for Dense 3-D Range Imaging on the 
GPU: Defect Interpolation, Bilateral Temporal 
Averaging and Guided Filtering, Computer Vision 
Workshops, 1221 – 1227. Barcelona, ES. 


