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Abstract: Natural gas transmission systems stand for mathematical modelled complex systems as 
systems with distributed parameters having the form of differential equations with partial 
derivatives. In view of studying some practical situations, such as the process of flow along a 
natural gas pipeline, a simplified mathematical model may be used. Practical operation with this 
model demands a spatial and temporal discretization of functions of interest (pressure and 
weight/flow rate). The paper develops one such model and analyses the necessary discretization 
processes needed for numeric integration. Using an implicitly numeric integration method more 
case studies suitable to some flow processes through pipelines in distinct situations are developed. 
As the results obtained by computation are very close to the experimental ones, the case studies 
acknowledge both the validity of the developed simplified model and those of the calculation 
procedures used. 
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1.  INTRODUCTION 

A natural gas transmission system (STG) 
represents the interconnected result of the many 
gas transmission pipe segments of various 
lengths and cross sections of passage, according 
to the flow and pressure requested by gas 
consumers. Figure 1 illustrates a schematic 
diagram of such a gas transmission system, 

marked by STG(1), the system’s pipe segments, 
of Lxy lengths and Dxy diameters, are 
functionally interconnected by means of the so 
called internal technological nodes (valve 
control stations, gas compression stations) N1, 
N2 and Ns. The STG(1) system, under 
consideration, is in its turn interconnected by 
means of N0 and, respectively N4 technological 
nodes with the adjacent STG(0) and STG(2) gas 
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transmission systems. Consumers of the STG(1) 
system are represented by SDG(3), SDG(6) and 
respectively SDG(7) gas distribution systems 
connected to the STG(1) system, through the N3, 
N6, and respectively N7 outlet nodes. 

The exploitation of such a system assumes its 
integration within a control system which has to 
implement several functions out of which the 
most important one refers to its physical 
balancing [1], that is, to the establishment and 
maintenance of a balance between the incoming 
and respectively outgoing gas flows. We deal 
here with an automatic control issue, of 
stabilizing the P3, P6 and, respectively P7 intake 
pressures in the SDG(3), SDG(6) and 

respectively SDG(7) gas distribution systems, in 
conditions of gas flow fluctuations required 
from within the system by these ones. From a 
technological point of view this problem is 
solved by performing a set of predictive actions 
(internal and of entrance or interconnection with 
other systems) which will lead to the permanent 
pressure remodelling for the whole system, so as 
to compensate for the gas flow fluctuations 
required by consumers connected to the system 
[4]. The predictive character of the automatic 
control algorithm is required by the process of 
wave propagation at the level of the 
transmission system, characterized by 
propagation times of action. 

 

 
Fig.1. Schematic diagram of a gas transmission system 

 
The systematic approach of these practical 
problems and the assurance on some other 
auxiliary functions is possible only with 
adequate mathematical models, from the class of 
systems with distributed parameters. The use of 
these systemic instruments in view of solving 
the tangible exploitation problems requires 
numerical methods rather than analytical ones. 
The complexity of the problems is partly 
diminished by the fact that pipeline segments 
between two junctions or assemblies of 
segments limited by junctions are displayed as 
separable, independent modelled subsystems. 

The exploitation of natural gas transmission 
system from the implementation perspective of 
specific automatic control concepts has begun to 
apply in a systemic content, starting with the 
1960s, through research programs supported by 
“The Pipeline Research Council International” 
(www.prci.org). The resulted mathematical 

models were used for the exploitation, optimal 
inspection, and more efficiency of engineering 
activity. Regarding the framework of this paper, 
the researches referred in [8] and [7] deal, for 
the first time, with the problem of modelling the 
transient behaviour of the flow process of 
natural gas through transmission systems, with 
simplifications which can be brought to the 
mathematical model, and the determination of 
some linear approximating models. For the 
usage of transient regime models numerical 
computation techniques have been used, based 
on finite differences, without the detailed 
analysis of the convergence properties of the 
method. Paper [13] (www.psig.org) is 
representative from this point of view and shows 
that the systems arising from discretization 
through the finite difference method (of the gas 
flow process models through a transmission 
system), ranks, starting with a certain required 
computational accuracy, within the class of 
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inflexible equation systems respectively (“stiff 
equations”) which needs specific numerical 
solving methods. 

Going on from a complex model of the gas flow 
process through a pipeline section, in [15] and 
[16] were studied the advantages and 
disadvantages of using simplified mathematical 
forms. 

At European level, “SIMONE Research Group” 
(www.ercim.org) has developed, beginning with 
1975 a research project focussed on the 
properties, the behaviour and the control of 
complex networks consisting of a great number 
of dynamic elements and non-linear restrictions. 
By means of specialized SIMONE software, 
numerical simulation algorithms for solving 
some network structures, which come up to 
more than 10.000 non-linear differential 
equations with partial derivatives dependent on 
several types of restrictions were implemented. 

The systemic approach of natural gas 
transmission systems constitutes the object of 
some recent papers, [19] and [2]. In the first, by 
using a simplified linearized mathematical 
model with constant parameters, are designed 
some structures of state observers, while in the 
second, a linearized mathematical models of the 
flow process is used to implement some control 
algorithms of a natural gas transmission system. 

The present paper intends to offer a systemic 
interpretation of fundamental equations of the 
flow process (chapter 2), to present assumptions 
which allow the use of some simplified 
mathematical models of the process in certain 
conditions of technological exploitation (chapter 
3), to define and to simulate the systemic model 
of the process, from the perspective of a process 
with distributed parameters (chapter 4), and 
finally, in the absence of some analytical 
solutions of the mathematical model of the flow 
process, to validate the latter one by numerical 
simulation and by comparison with data 
measured in real operating conditions (chapter 
5). 
 

2. FUNDAMENTAL EQUATIONS OF THE 
FLOW PROCESS.  

SYSTEMIC INTERPRETATION 

According to the previous chapter it is important 
to note two aspects: 

• Through a transmission system, natural gas 
flow is a process with distributed parameters, 

described by a complex system of differential 
equations with partial derivatives, which 
incorporate mechanical, kinematics and 
thermodynamics aspects of the real viscous fluid 
flow [11] and [9]. 

• For modelling, one applies the separation 
hypothesis relative to the component pipeline 
segments of the system, i.e. starting from the 
functional point of view, the pipeline segments 
are considered in the developing of models, as 
separable elements.  

In this context, as a separable subsystem, a 
segment of straight pipeline of length L, pipe 
bore D<< L and the area of the inner cross-
section 

2

4
π

=
DA  is considered. The longitudinal 

axis is marked Ox. With respect to the horizontal 
direction the pipeline segment displays the 
elevation z(x) and the elevation angle α(x). The 
D<<L hypothesis allows to use as independent 
variables of the model only the longitudinal 
coordinate x and the time t.  

Thus, the flowing process through the pipeline 
section of a gas of ( ),ρ x t  density, carried out at 
( ),p x t  pressure and ( ),T x t  temperature, at a 

velocity ( ),v x t  will be described by the system 
of differential equations with partial derivatives 
which describe mass, momentum and energy 
conservation laws [10], [6]: 
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to which the thermodynamics equation of state 
[14] is added: 

ρ =
p

ZRT
         (1.d) 

The space-temporal domain of flow is 
( ) [ ], 0, 0,τ τ⎡ ⎤= × ⎣ ⎦f fD L L , with τ f the final time. 

In (1), the meaning of the other quantities is: vc  
–specific gas heat at constant volume; 

( ),=Z Z p T  – compressibility factor which 
expresses natural gas deviation from the thermo-
dynamic behaviour of ideal gas; q – heat quan-
tity changed into unit of time by the unity of gas 
mass; R – specific constant of gas; 

29,81=
mg
s

 - 
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gravitational acceleration; ( )λ λ= Re - the 
hydraulic loss factor (dimensionless).  

System (1) has a unique solution when terminal 
conditions of the form (CI) and (CB) are 
imposed [17] [3]: 
• initial conditions (CI): ( ),0p x , ( ),0v x , 

( ),0T x  correlated with ( ),0ρ x  through the 
equality (1.d); 

• boundary conditions (CF): any of the 
combinations of three distributions of the 

( ) ( ) ( ) ( ) ( ) ( ){ }0, , , , 0, , , , 0, , ,p t p L t v t v L t T t T L t  set 
correlated with ( ) ( ){ }0, , ,ρ ρt L t , also through 
(1.d) equality. 

Because the gas flow ρ=Q vA  (mass or volume) 
is most often measured in technological 
applications, the system (1) of equations is 
rewritten [4] considering ( ),Q x t  variables 
instead of ( ),ρ x t . The boundary conditions 
change accordingly. 

From a systemic point of view the assignation of 
terminal conditions means in fact the 
mathematical model orientation in view of 
assigning the input, state and output quantities 
[5]. In this context, Figure 2 exemplifies a 
systemic realization of the mathematical model 
consisting of equations (1) rewritten in { }, ,p Q T  
variables, and the boundary conditions 

( ) { } ( ){ }0, , , , 0,p L Q L t T t . 

 

 
Fig. 2. Systemic interpretation of the flow eqs.(1) 

and associated terminal conditions 

For the systemic realization in figure 3 we have: 
• The input variables represented by the 

imposed boundary conditions: ( )0,p t , 
( ),Q L t  and ( )0,T t  for 0,τ⎡ ⎤∈⎣ ⎦ft ; 

• The output variables represented by 
distributions of characteristic variables for 
the flow process: ( ),p x t , ( ),Q x t , and 

( ),T x t  for ( ) [ ], 0, 0,τ⎡ ⎤∈ = × ⎣ ⎦fx t D L , and in 

particular by the boundary values: ( ),p L t , 
( )0,Q t and ( ),T L t  for 0,τ⎡ ⎤∈⎣ ⎦ft ; 

At any point ( ),x t  the state of flow process 
within the flow domain [ ]0, 0,τ⎡ ⎤= × ⎣ ⎦fD L  is 

represented by the [ ]Ω = tp Q T  vector. 
Particularly, the initial state at the time moment 

0=t  is rendered by the initial conditions. 

Obtaining of an analytical solution for the 
mathematical model (1) at any combination of 
boundary conditions is possible only for some 
simplifying hypotheses. In change, through 
numerical computations, by respecting some 
quality criteria, one may obtain approximate 
solutions of the system of equations for any set 
of boundary conditions. 
 
 

3. A SIMPLIFIED MATHEMATICAL 
MODEL OF THE FLOW PROCESS 

 
Real operating conditions of the natural gas 
transmission pipelines allow the adoption of 
some simplification hypotheses of the 
mathematical model represented in system (1). 
General references with regard to this problem 
may be found in [7], [15], and [16]. 

A first, important, simplifying hypothesis is of 
thermodynamics nature and regards the process 
of flow in isothermal behaviour since the 
entrenchment of the pipeline in the ground: the 
temperature variation along the pipeline, on the 
largest part of the track, is negligible. Gas 
temperature will rank to ground temperature 
level ( ), = = =average solT x t T T const  and the practical 
consequence of this hypothesis consists in 
omitting equation (1.c) from the model. 
Comparative studies based on numerical 
simulations, performed by using this hypothesis 
for other situations, have proved that the 
deviations of the characteristic variables of flow 
ranks under 2% in comparison with values 
calculated with model (1) [7], [16]. 

A second simplification can be operated in (1.b). 
The analysis of the order of magnitude of the 
compound terms in (1.b) has shown that the 

values for ( )ρ∂
∂

v
t

and ( )2ρ∂

∂

v
x

 are about 1% from 

that of the 
2

2
λ ρv
D

, which express the friction 

loss during the flow process. Consequently, their 
influence on the dynamic behaviour is more 
reduced and, at a first approximation, they can 
be omitted [7], [16]. 
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Thirdly, on the basis of some observations rela-
tive to the parameters ( )α x , ( )Reλ  and ( ),Z p T , 
simplifications which “reduce” the non-linear 
character of system (1) can be performed. Thus: 
• The elevation angle of the pipe segment α 
can be considered null (horizontal pipe segment) 
or constant (equal with the total elevation h∆  
between the ends of the pipe segment 

arcsinα ∆
= =

h const
L

). 

• Studies undertaken through numerical 
simulations have shown variations of the loss 
pressure factor λ under 20% within large 
enough ranges of variation (1:4) of the gas flow. 
At the same time, a dependence of pressure, 
density and velocity on squared root of λ has 
been noticed, so that within a range of [0.9 – 
1.1] from the nominal value of λ, again for a 
first approximation one can consider λ = const  
[7]. 
• At temperature = =averageT T const , in thermo-
dynamics isotherm regime, the compressibility 
factor Z may be considered linear, dependent on 
pressure p, according to equation: 

( ) ( ), 1 τ
=

= = −
solT T

Z p T Z p p ,          (2) 

where τ is a parameter dependent on soil 
temperature and on natural gas characteristics 
[7]. For a pressure variation of 10± bar  around an 
average value, the relative deviation of Z is less 
than 3%. The expression (2) is important in 
terms of equation (1.d). 

In the above mentioned hypothesis, in [4] is 
shown that the flow process model (1), without 
direction change, may be brought to the 
simplified form (3), by using equation (1.c) and 
as variable the mass flow Q: 

( )1 0ξ∂ ∂
+ =

∂ ∂
p Qp
t x

        (3.a) 

( ) ( )
2

2 3 0ξ ξ∂
+ + =

∂
p Qp p p
x p

        (3.b) 

The coefficients in (3) are: 

( ) ( )2

1

1 τ
ξ

−
= averagep RT
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A

        (4.a) 

( ) ( )
2 2

1
2

τ λ
ξ

−
= averagep RT
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DA

        (4.b) 

( ) ( )3 sin
1

ξ α
τ

=
− average

gp
p RT

       (4.c) 

In its turn, in certain operating conditions, the 
system (3) can be reduced to a more simplified 
form, which allow for the acquiring of some 
analytical solutions which represent a first step 
in modelling the gas flow process through a pipe 

segment. Thus, by considering in a first step 
constant average values for some of the process 
parameters [6], [7], by integrating the steady-
state regime equations one can assume a batch 
of computation relationships which allow for a 
complete description of the flow process in the 
operating conditions under consideration. Than, 
in a second step, by the analytical solving  of the 
simplified form of (3) for initial uniform distri-
buted conditions { },stat statp Q  and boundary condi-
tions ( ) ( ){ }0, , ,p t p L t , with 0>t , one can con-
clude that the transitory dynamics of the process 
of flow represents the linear combination of 
some individual modes of dynamic behaviour 
described in terms as [13], [4]: 

( ) , 1,τ
−⎧ ⎫⎪ ⎪= =⎨ ⎬

⎪ ⎪⎩ ⎭

j

t

jM t e j m            (5) 

The time constants of the process are 

2( )
ατ

β γ
=

⋅ +j j
 where , , 0 , 1,α β γ > =j m . 

The larger the number m of spatial discretization 
points is, the more their values differ. 
 
 

4. THE PROBLEM OF NUMERICAL 
SIMULATION WITH THE SIMPLIFIED 

MODEL 
 
In the following we refer to the use of the 
mathematical model (3) in order to compute its 
response, by appealing to the spatial 
discretization based on finite differences and on 
several approaches of numeric integration of the 
resulted dynamic systems with lumped 
parameters. 

In perform it, a discretization grid of the space-
temporal domain ( ),τ fD L  is to be built on 

which, the values of continuous and different-
tiable functions ( ),p x t  and ( ),Q x t  are compu-
ted. The discretization grid will be characterised 
by the ∆

=
∆

tr
x

 parameter, where ∆t  is the 

discrete-time step and ∆x  the discrete spatial 
step. The discrete step time ∆t  and parameter r 
respectively can have, depending on the 
imposed rated numeric accuracy and considera-
tions of assuring the convergence of the numeric 
method, different values on each iteration steps, 
operating in general with an irregular discretiza-
tion grid [10]. The parameter r value selection to 
each iteration step is therefore, directly linked to 
the numeric method performances used. 
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By marking any of the variable {p, Q}, with y, 
in a first phase a spatial discretization of the 
mathematical model (4) is performed relative to 
x variable. This is done through approximation 
of the ( ),∂

∂ j
y x t
x

 derivates with the ( ),δ ∆jy t x , 

1,=j m  finite differences, with formulas 
obtained from Taylor series with truncation 
errors ( ) ( ), 0ε ∆ = ∆ q

tr q x x . The q parameter 

characterizes the development order. 

Corresponding to the m spatial discretization 
points, from (3) we obtain the system (6), built 
up of 1,=j m  subsystems, each of two non-linear 
differential equations: 

( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )( )

1

2

2 3

, 0

, 0

ξ δ

δ ξ ξ

⎧
+ ⋅ ∆ =⎪

⎪
⎨
⎪ ∆ + + =
⎪⎩

j
j j

j
j j j j

j

dp
t p t Q t x

dt
Q t

p t x p t p t p t
p t

 (6) 

Further on, system (6), having 2 ⋅m  equations, 
is restructured through removal of equations 
which describe the dynamics of variables known 
by specified boundary conditions. 

Particularly, assuming that one knows the 
pressure in the point 1=j : ( ) ( )1 0,=p t p t , 
respectively, the flow in the point j m= : 

( ) ( ),=mQ t Q L t , at level 1=j , the first equation 
which expresses the pressure dynamics is 
omitted, respectively, at level =j m , the second 
equation which expresses the flow dynamics is 
omitted. By introducing the notation: 
• ( ) ( ) ( ) 2

1= ⎡ ⎤ ∈⎣ ⎦
t

mu t p t Q t R - the vector of input 
quantities; 

• ( ) ( ) ( ) ( ) 1
2 3 ... −= ⎡ ⎤ ∈⎣ ⎦

t m
p mX t p t p t p t R , 

( ) ( ) ( ) ( ) 1
1 2 1... −

−= ⎡ ⎤ ∈⎣ ⎦
t m

Q mX t Q t Q t Q t R  - the 
vectors of state quantities, associated with 
pressure distribution, respectively with flow 
distribution, 

the restructured system (6) for the given 
boundary conditions, are written as follows:  

( ) ( ) ( ) ( )( ), , ,= Ω ∆p
p Q m

d X
t X t X t Q t x

dt
      (7.1) 

( ) ( ) ( )( )1, ,= Ξ ∆Q pX t X t p t x        (7.2) 

where: 2 1: −Ω →m mR R , 1 1: + −Ξ →m mR R  are non-
linear vector functions. 

By replacing the flow distribution vector ( )QX t  
from (7.2) into (7.1) the matrix differential 
equation (8) is obtained. This models, like a 

process with lumped parameters, only the 
pressure dynamic: 

( ) ( ) ( )( ), ,= Ψ ∆p
p

d X
t X t u t x

dt
.          (8) 

In (8), 2 1: + −Ψ →m mR R  is a non-linear vector 
function. Obviously, (8) is used in association 
with (7.2). 

As starting point for a second stage, the 
discretization of the derivative ( )p

k

d X
t

dt
 relative 

to time is used. This is done again through a 
finite difference, of expression ( ),pX k tδ ∆  with 

0≥k  and ∆t  with the discrete-time coordinate 
step relying again on a Taylor series with a 
truncation error equal to the residue 

( ) ( ), 0ε ∆ = ∆ s
tr s t t . The s parameter characterizes 

the order of series development. This way, the 
continuous-time system (8) associated with the 
spatial discretization points 1,=j m  is 
approximate through the discrete-time system 
(9.1). It describes the pX  transition between 
discrete moments of time 1→ +k k  with the 
variable discrete-time step t∆  [4]: 

( ) ( ) ( )( )
( ) ( ) ( )( )

1, 1 , 1 ,

                           1 , ,

δ θ

θ

+ ∆ = Ψ + + ∆ +

− Ψ ∆

p p

p k

X k t X k u k x

X k u k x
    (9.1) 

In (9.1) θ represents the parameter of the 
discretization method through approximation. It 
takes value 1 for the so-called implicit method 
and value 0 for the so-called explicit method. 
Thus, (9.1) is a recurrent algebraically system 
which for 0θ =  requires for ( )1+pX k  
determination only successive substitutions 
(with an explicit character), while for 0θ ≠  
requires solving, for each computation iteration, 
a non-linear system of algebraically equations 
(implicit character). Obviously, for 0θ ≠ , speed 
of the numerical method will be linked directly 
to the manner of finding the solution for this 
algebraically system of equations. 

The knowledge of the state vector associated to 
pressure distribution ( )1+pX k  at the discrete-
time 1+kt  (iteration k+1) allows the calculation 
of flow distribution according to relation (9.2), 
acquired from (7.2): 

( ) ( ) ( )( )11 1 , 1 , ,+ = Ξ + + ∆ ∆Q pX k X k p k x t       (9.2) 

To be able to use system (9) one must determine 
the initial distributions of pressure ( )0pX and of 
flow ( )0QX . They will be calculated using 
model (10) resulted from model (3) for a 
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stationary regime. Equations (10) are 
numerically integrated for boundary conditions: 

( )1 0p  and ( )0mQ , extracted from the boundary 
conditions under consideration:  

( )1 0ξ =
dQp
dx

       (10.1) 

( ) ( )
2

2 3 0ξ ξ+ + =
dp Qp p p
dx p

     (10.2) 

Since ( )1 0ξ ≠p , from (10.1) it follows that 

( ) 0=
dQ x
dx

. Consequently: 

( ) ( ) ( )1 10 0 ... 0= = = = =m statQ Q Q Q const     (11.1) 

By replacing the result in (10.2), we obtain the 
differential equation  

( ) ( )
2

1
2 3ξ ξ+ = − −j stat

j j j
j

dp Qp p p
dx p

     (11.2) 

Through numerical integration for the boundary 
condition ( )1 1 0=p p , (11.2) provides the initial 
pressure distribution ( ){ }0 / 2,=jp j m , (vector 

( )0pX ) components). 

In the following, we refer to the convergence 
problem for the method of integration of 
systems type (9.1). According to theory of 
numerical integration of differential equations 
the convergence affects the solution quality [17], 
[3]. 

Natural, when the discretization grid norm aims 
to zero the numeric approximation solution 
converges towards the accurate solution. From a 
computational point of view such a way is 
prohibitive, being difficult to implement. 

By compensation, all important is Lax theorem 
according to which the partial check up of some 
weaker characteristics of the numeric method, 
that is the stability and consistency, together 
imply the convergence [5].  

Since, the approximations achieved through 
finite differences represent the result of using 
some developments in Taylor series, whose 
truncation error aims to nullify when the norm 
of the discretization grid drops towards zero, 

( ) 0, 0ε ∆ →∆ ⎯⎯⎯→x
tr q x  and  ( ) 0, 0ε ∆ →∆ ⎯⎯⎯→t

tr s t  
respectively, one can immediately state that they 
are consistent. At the same time, because the 
smaller the truncation errors, the greater the 
development orders in Taylor series are, 
respectively q and s, one can obtain an increase 
in the accuracy of the discretization formulas, 

without decreasing the discretization step, by 
increasing the development order in the used 
Taylor series [17]. 

It is more difficult to demonstrate the stability of 
the numerical integrating method of the non-
linear discrete model with variable parameters 
(9.1). Thereby, owing to the variant character, to 
each k rated iteration, a stability analysis of the 
equation 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1

2

1 , , , , 1

                    , , , ,

+ =Φ ∆ ∆ +Γ ∆ ∆ + +

Γ ∆ ∆ + Λ ∆ ∆
p pX k k x t X k k x t u k

k x t u k k x t
 (12.1) 

obtained by linearization function Ψ  around 
( )pX k  point, must be performed. At the same 

time, in the context developed further on, 
stability analysis of the linearized form, around 
points ( )p kX t , of the continuous-time model (8) 
must be also performed: 

( ) ( ) ( ) ( ) ( ) ( ), , ,= ∆ + ∆ + ∆p
p

d X
t A t x X t B t x u t D t x

dt
 (12.2) 

The discrete-time model (11) is (asymptotic) 
stable (in Lyapunov sense) if the spectre ( )λ Φ  
(set of eigenvalues) of matrix Φ , lies within the 
unity radius circle, centred in the complex plane 
origin [12] [5]. We formally write: 

( ) 1λ Φ <           (13) 

Considering that Φ  depend on the discretization 
steps ∆x , ∆t , and that the discretization points 
are fixed, for each iterated calculation we should 
choose the value of discrete-time step ∆t  so that 
the eigenvalues of matrix Φ  lie within the unit 
circle. 

By using an implicit numerical method of 
solving, when 1θ = , model (9.1) becomes: 

( ) ( ) ( )( )1, 1 , 1 ,δ + ∆ = Ψ + + ∆p pX k t X k u k x .       (14) 

Its linearized form is: 

( ) ( ) ( )
( ) ( ) ( )

1 , ,

                 , , 1 , ,
p i p

i i

X k k x t X k

k x t u k k x t

+ = Φ ∆ ∆ +

Γ ∆ ∆ + + Λ ∆ ∆
       (15) 

Further on, a series of peculiarities which allow 
some simplifications in the analysis of model 
stability in discrete-time (15) shall be presented. 

One should observe that the simplified form (14) 
represents a non-linear system of implicitly 
algebraically equations with the unknown 
variables grouped under vector ( )1+pX k . The 
system (14) shall be solved, for each of the 
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iterations, by an adequate numerical method, for 
example Newton-Raphson method [3]. 

When the finite difference used in system (14) is 
in form: 

( ) ( ) ( )1
1,δ

+ −
+ ∆ =

∆
p p

p

X k X k
X k t

t
        (16) 

suitable to an Euler type numerical method, with 
the truncation error ( )0 ∆t  [17], between matrix 

Φi  of the discrete model (15) and the matrix A  
of the continuous model (12.2) holds the 
relationship: 

( ) 1−Φ = − ∆ ⋅i I t A           (17) 

By taking the next theorem [12] into account:  

If ( ) { }1 2, ,...,λ λ λ λ= nA  is the matrix spectrum 
×∈ n nA C  than for each finite function f defined on 

( )λ A  holds ( )( ) ( ) ( ) ( ){ }1 2, ,...,λ λ λ λ= nf A f f f , 

we particularly obtain the relationship: 

( ) ( )
1

1
λ

λ
Φ =

− ∆ ⋅i t A
.         (18) 

Here the notation on the left side signifies 
whatever element of ( )λ A  and the notation on 
the right side that of the corresponding element 
in set ( ( ))λ f A . Equality (18) allows upholding 
that regardless the value of discrete-time step 
∆t , if ( )Re 0λ⎡ ⎤ <⎣ ⎦al A  then ( ) 1λ Φ < , and the 
stability condition of the numerical method 
described by the discrete model (14) is carried 
out. Consequently, the convergence of the 
implicit numerical method will only be 
conditioned by the structure of matrix ( ),∆A t x  
resulted after the spatial discretization, and the 
value of discrete-time step ∆t  will influence 
only the numeric accuracy of computation. 

The disadvantage of the method arises from the 
implicit shape of the equations of model (14) 
which, for the recurrence implementation, needs 
for each iteration additional computation of 
explicitness (i.e. the solving of a non-linear 
system of algebraically equations). 

In case of an explicit numerical method, when 
0θ = , the model (9.1) becomes: 

( ) ( ) ( )( )1, , ,δ + ∆ = Ψ ∆p p kX k t X k u k x ,       (19) 

having the following linearized form: 
( ) ( ) ( )

( ) ( ) ( )
1 , ,

                , , 1 , ,
p e p

e e

X k k x t X k

k x t u k k x t

+ = Φ ∆ ∆ +

Γ ∆ ∆ + + Λ ∆ ∆
       (20) 

By expressing the finite difference ( )1,δ + ∆pX k t  
again through formula (16), between matrix Φe  
of the discrete model (20) and the matrix A  of 
the continuous model (12.2), the following 
relationship holds: 

Φ = + ∆ ⋅e I t A           (21) 

Based on the same theorem, between the 
eigenvalues of the two matrixes the following 
relationship will be established: 

( ) ( )1λ λΦ = + ∆ ⋅e t A          (22) 

Now, the stability of the explicit numerical 
method is conditioned both by respecting the 
stability condition of the continuous-time model 

( )Re 0λ⎡ ⎤ <⎣ ⎦al A  and by choosing the value of 
discrete-time step ∆t  because it is possible to 
have Real(1 ) 1λ+ ∆ ⋅ < −it . In this case we talk 
about locating the values of the discrete-time 
step ∆t  under a maximum value called stability 
limit [5], [3] which have to be calculated for 
each computation. 

The advantages of the explicit numerical method 
not necessitating the solving of a non-linear 
system of algebraically equations for each 
repeated computation like in case of the implicit 
numerical method is diminished by the 
disadvantages of necessitating to choose the 
values for discrete-time step ∆t  for each 
repeated computation. The difficulty of the 
problem arises from the following context. 

Thus, according to relationships (5) in the 
general solution component of the flow process 
model the fastest mode of dynamic behaviour 
will be characterized by a time constant whose 
order of magnitude is directly proportional with 

21 / m . For the discussed explicit numerical 
methods, this time constant will practically 
represent the stability limit implied in choosing 
the discrete-time step ∆t . If high computational 
accuracy is required which, among others, 
imposes a high number m of spatial 
discretization points, automatically the range of 
choosing the discrete-time step ∆t  practically 
decreases with the square number m of spatial 
discretization points, implicitly increasing the 
computational effort, too. In the same time, the 
slowest mode of dynamic behaviour, which 
according to relationship (5) is obtained for 

1=j  will determine the value of transitory time. 

This aspects are important both from a qualita-
tive point of view (different orders of magnitude 
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of the extreme dynamic modes of behaviour) 
and from a quantitative point of view (proper 
values of time constants) because the resulted 
solutions will simultaneously present both the 
extremely slow dynamic components and the 
extremely fast dynamic components. From a 
mathematical point of view, such models are 
included in the category of inflexible systems of 
equations (stiff equations) [13]. 

For this type of systems of differential equations 
a special class of explicit numerical solving me-
thods called Runge-Kutta-Chebyshev methods 
have been developed. These are based on the 
principle of numeric computation accuracy 
relaxation in favour of increasing the stability 
limit [20] [21]. In this case, the formulas for the 
finite difference ( )1,δ + ∆pX k t  permit to expand 
the stability domain of the discrete equation 
system should towards the unitary radius circle 
used in case of applying formula (16). 

From those presented above, it turns out that the 
selection mechanism of a numerical method in 
order to simulate the mathematical model of the 
gas flow process through a transmission system 
is not an easy task, in different well-defined 
situations being compulsory to take the 
discussed aspects into consideration. 

The case studies presented in the next chapter 
refer to numerical simulations performed with 
the discrete model (6) related to the simplified 
mathematical model (3), relative to a pipe 
segment, for experimental validation of the 
model. Implicit numerical methods [2], selected 
on the convergence criterion, have been used, in 
inverse ratio to the number of differential 
equations and in direct ratio to the step value of 
time discretization. 

Of course, this criterion may be inadequate 
when the question of simulating, on the whole, 
of a gas transmission system arises, situation in 
which the mathematical model resulted after 
mathematical models aggregation of the 
component elements tends to become extremely 
complex. And in this case, the presented 
systemic aspects, correlative with the 
experimental results to be presented, may 
constitute starting points in the selection and 
development of some numerical methods of 
simulation for these complex mathematical 
models. 
 
 
 

5. EXPERIMENTAL TESTS 

5.1 Preliminaries 

For the experimental validation of the discrete 
model (6), comparisons between some 
characteristic variables of the gas flow process 
(pressures and flows) resulted after numerical 
simulations and the same characteristic quantity 
values measured in real operating conditions, 
were made. 

 
Fig. 3. Pipe segment and afferent parameters 

 
The following working procedure was adopted 
[4]: 

a) It is considered an equivalent pipe segments 
(figure 3), bounded by an inlet node 1 and an 
outlet node m, having the pipe bore D, pipe 
length L and the elevation between input and 
output ∆h . For flow direction in figure 4 the 
value of elevation ∆h  is positive. 

b) The variations ( )1 measured
p t , ( )m measured

p t , 

( )m measured
Q t  are measured on a time interval 

0,τ⎡ ⎤⎣ ⎦f  with the discrete-time step ∆ measurementt . 

c) There are identified some steady-state 
regime of the gas flow process through the pipe 
segment, characterized by the measured values 
for the stationary regime of the inlet pressure 

1p , outlet pressure mp  and the outlet flow mQ , 
which allow the computation of the pressure loss 
(friction) factor λ and the estimation of an 
interior roughness of the pipe segment based on 
the established calculus formula (Colebrook-
White) [18]. The average temperature averageT of 
gas flow which characterizes the isothermal 
behaviour of flow is estimated to be that of point 
level of measurement of the gas flow. 

d) It is choose a flow stationary regime and it 
is computed, based on equation (10.2), the 
pressure distribution in the established m of 
points of spatial discretization. The results are 
used for initialization of the numerical 
simulation algorithm at the time 0=t . 

e) Accomplishment on the time interval 
0,τ⎡ ⎤∈⎣ ⎦ft  of the numerical simulation, taking as 

input variables the inlet pressure ( )1 measuredp t  
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and the outlet flow ( )m measuredQ t , respectively, as 

output variable the outlet pressure ( )m computed
p t . 

f) There are plotted and interpreted 
( )1 measuredp t , ( )m measuredp t , ( )m computed

p t , and the 

relative percentage error respectively 

( )
( ) ( )

( )
100ε

−
= ×

m mmeasured computed

m measured

p t p t
t

p t
. 

Numerical computations were made in the 
hypothesis of considering the methane gas as 
natural gas. 
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