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Abstract: In this paper a control law was designed to accurately control the rod position of
hydraulic servo system. In fact, due to its having a nonlinear model, the hydraulic servo system
is not accurately stabilized by a proportional controller and suffers from wind up phenomenon
when applying the PI controller. To overcome the problems encountered by the action of
these linear controllers, a sliding mode controller with an integral and realizable reference
compensation is used to obtain an accurate position in addition to having a short settling
time. The efficiency of the proposed scheme is illustrated using numerical simulations.
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1. INTRODUCTION

Hydraulic systems have been used in industry in a wide
number of applications where large inertia and torque
loads have to be handled, providing a high degree of both
accuracy and performance (Merritt, 1967). The hydraulic
servo system, among others, is perhaps the most important
system for position servo applications because it takes the
advantages of both the large output power of traditional
hydraulic systems and the rapid response of electric sys-
tems (Merritt, 1967; Viersma, 1980). Typical applications
of hydraulic position servo systems include lifting pay-
loads, shaping hard material (e.g. shaping iron sheets);
other applications consists in accurate metal-working. Al-
though some of these applications are handled in open loop
control, which does not require much studies, several other
applications are to be handled in closed loop control which
makes the control task more difficult due to the need for
accurate servovalve model.

Due to the highly nonlinear property of hydraulic servo
systems, the controller design based on local linearization
is a commonly used approach (Merritt, 1967; Viersma,
1980). However such approach yields to conservative con-
trollers that sacrifice performance and robustness in favor
of simplicity.

To achieve higher performances, nonlinear control meth-
ods and intelligent methods have been used to control
hydraulic servo systems. In (Feki et al., 1999), the in-
put/output linearizing controller has been used to track a
predetermined force profile. Although, the intended results
were attained, the robustness to parameter variations was
not guaranteed. To account for presence of unmodeled
dynamics, parametric uncertainties and external distur-

bances, adaptive controllers have been proposed in (Yao
et al., 2001; Ahn and Dinh, 2009) where the parameter
uncertainties occur linearly. To handle the case where un-
known parameters occur nonlinearly such as the cylinder
volume, a controller using the adaptive control theory and
the backstepping technique has been designed in (Sirous-
pour and Salcudean, 2000; Guan and Pan, 2008; Ursu
et al., 2013).

In (Truong and Ahn, 2009), authors suggested a grey
prediction model combined with a fuzzy PID controller to
achieve a predetermined force and to improve the control
quality of the loading system while eliminating or reducing
the disturbance. PID controllers have also been enhanced
using fuzzy methods (Mihajlov et al., 2002; Has et al.,
2013), genetic algorithm (Aly, 2011) and feed forward
compensation by pole-zero placement (Jian-jun et al.,
2012) to obtain accurate position control.

Variable structure control (VSC) is an other controller that
has been widely used to cope with systems with parameter
uncertainties and unknown nonlinear dynamics (Kheb-
bache and Tadjine, 2013; Rossomando et al., 2014; Kolsi-
Gdoura et al., 2013). In (Hwang and Lan, 1994), a time-
varying switching gain, a second-order relation between
sliding surface and uncertainties and a boundary layer for
the sliding surface, is employed to deal with the position
control. In (Miao et al., 2008), a novel control scheme
for hydraulic servo systems with large frictional torques
is proposed based on a sliding-mode variable structure
controller combined with a frictional state observer. In
(Chen et al., 2005) position control has been addressed
using VSC with varying boundary layers in order to im-
prove the tracking performance by reducing the boundary
width and decreasing the chattering effect by increasing
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the boundary width. To achieve accurate position control
in the presence of important friction nonlinearities, the
sliding mode control has also been used in (Tafazoli et al.,
1998; Bonchis et al., 2001). In (Indrawanto, 2011), a single
rigid hydraulically actuated manipulator was controlled
using the sliding mode controller to count for the changing
of inertia moment of the manipulator as well as the effect
of fiction.

The present paper deals with the design of a simple con-
troller that may achieve the reference position in presence
of parameter uncertainty and perturbation in addition to
actuator saturation. This issue has been dealt with in
(Kolsi-Gdoura et al., 2013) for a hydraulic servo system
with a symmetric piston that can be modeled with a three
dimensional system where the states are the differential
pressure, the velocity and the position of the rod. However,
in this paper, we deal with the more general case that is a
hydraulic servo system with a non symmetric piston. Thus
the system has to be modeled with a fourth order nonlinear
dynamical system where in addition to the position and
the velocity of the rod, the pressures in each chamber
of the cylinder represent a new state variable. Besides,
we add in this paper an observer design to estimate the
unmeasurable states, thus achieving an output control
strategy. The observer design is based on the sliding mode
theory.

To accomplish the prescribed aim, the effects of a pro-
portional (P) and a proportional integral (PI) control is
presented in the second section. In section three, an en-
hanced sliding mode controller by using an integral surface
and realizable reference is designed to shorten the reaching
mode and thus to obtain a short settling time. Numerical
simulation results are presented to illustrate the efficiency
of the proposed control method. The fourth section, is
devoted to the sliding observer design and the use of the
estimated states to design the controller and achieve the
output feedback design. Finally, the conclusion is drawn
in the last section.

2. PROBLEM STATEMENT
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Fig. 1. Hydraulic servo system

The hydraulic servo system depicted in figure 1 is modeled
by the following dynamical system Feki and Richard
(2005); Feki et al. (1999)

Ṗ1 =
B

V0 + S1y

(
Q1 − S1v

)
, (1a)

Ṗ2 =
B

V0 − S2y

(
Q2 + S2v

)
, (1b)

v̇ =
1

m+m0
(S1P1 − S2P2 − bv − kly) , (1c)

ẏ = v + d , (1d)

where the flow rates Q1 and Q2 are:

Q1 =





ku
√
Ps − P1 +

α(Ps + Pr − 2P1)

1 + γu
if u ≥ 0

ku
√
P1 − Pr +

α(Ps + Pr − 2P1)

1− γu if u < 0
(2)

Q2 =





−ku
√
P2 − Pr +

α(Ps + Pr − 2P2)

1 + γu
if u ≥ 0

−ku
√
Ps − P2 +

α(Ps + Pr − 2P2)

1− γu , if u < 0

(3)
with k, α and γ are constants intrinsic to the servovalve
and model the flow and the leakage through it.

P1 and P2 respectively denote the pressure inside the
first and the second chamber of the cylinder, v and y
respectively denote the velocity and the position of the
rod and d(t) < dmax is a bounded constant external
perturbation. m0 is the mass of the rod and m is the mass
of the load, V1 and V2 are respectively the volume of the
first and the second chamber of the cylinder, S1 and S2 are
respectively the section surface of the first and the second
sides of the piston, Ps is the supply pressure(pressure of
the pump) and Pr is the return pressure (atmospheric
pressure). kl is the spring stiffness constant and b is the
friction coefficient. B is the effective bulk modulus of the
fluid and u is the control signal.

Clearly, we notice that the system is highly non linear
with respect to the state vector and is also non affine
with respect to the control signal u. Thus designing a
control law is not a simple task. In addition we consider
that the system is under the effect of several mismatched
perturbations. Particularly, the spring constant is known
with an uncertainty of up to 20% of its nominal value and
the jack velocity undergoes an unknown bounded constant
perturbation d < dmax. Finally, due to practical limitation,
the input signal u(t) which is merely the current injected
to the servovalve is restrained to maximum allowed values
|u(t)| ≤ umax.

Nevertheless, one can always start by checking the effect
of the proportional and PI controllers which do not require
model knowledge. The control signal of a proportional
controller is given by up = k0(yref − y) whereas the PI

control signal is given by upi = k0(yref − y) + ki
∫ t

0
(yref −

y)dt, where yref is the reference position to be attained.
Additionally, the actuator constraint is described by the
saturation function:

usat =
1

2
(|u+ umax| − |u− umax|) (4)

Simulating the system using the parameter values shown
in the nomenclature, we obtained the results on figure
2 for the proportional controller and figure 3 for the
PI controller. We notice that the proportional controller
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yields to steady state error (SSE) of 9.1% and a 5% settling
time of Ts5% =0.6s. On the other hand, the PI controller
eliminates the SSE, but the settling time becomes too
long due to wind-up phenomenon, indeed the settling
time becomes 2.64s. Using an anti wind-up procedure the
settling time is reduced to Ts5% =0.75s as shown in 4.
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Fig. 2. Position control of the hydraulic servo system under
the proportional controller: SSE=9.1% , Ts5% =0.6s.
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Fig. 3. Position control of the hydraulic servo system under
the PI controller: SSE=0 , Ts5% =2.64s.

3. SLIDING MODE CONTROLLER DESIGN

The objective of this section is to design a simple controller
while obtaining accurate and fast position control. To
attain our aim, we propose a sliding mode controller with
an integral surface having the following expression:

u = −umaxsign(σ) (5)

where σ is the sliding surface defined by:

σ = C4ỹint + C3ỹ + C2ṽ + C1P̃2 + P̃1 (6)

with P̃1 = P1 − P1e , P̃2 = P2 − P2e , ṽ = v − ve ,

ỹ = y − yref and ỹint =
∫ t

0
ỹdt. (P1e, P2e, ve, yref ) is the
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Fig. 4. Position control of the hydraulic servo system
under the PI controller with anti wind-up: SSE=0 ,
Ts5% =0.75s.

unperturbed system equilibrium point when the reference
position yref is attained, and C4, C3, C2 and C1 are design
constants that will be chosen to ensure an asymptotic
stability of the system when it is behaving in sliding mode,
that is when σ = 0.

To confine the system behavior to the sliding surface we
need to satisfy the attractivity condition σσ̇ < 0. Knowing
that when σ < 0 then u > 0 and thus we have:

σσ̇ = C4σ(y − yref ) + C3σ(v + d)

+ C2

σ
(
S1P1 − S2P2 − bv − kly

)

m+m0

+ C1

B
(
− kumax|σ|

√
P2 − Pr + α(Ps+Pr−2P2)

1+γumax
+ S2σv

)

V0 − S2y

+
B
(
kumax|σ|

√
Ps − P1 + α(Ps+Pr−2P1)

1+γumax
− S1σv

)

V0 + S1y

and when σ > 0 then u < 0 thus we have:

σσ̇ = C4σ(y − yref ) + C3σ(v + d)

+ C2

σ
(
S1P1 − S2P2 − bv − kly

)

m+m0

+ C1

B
(
− kumax|σ|

√
Ps − P2 + α(Ps+Pr−2P2)

1+γumax
+ S2σv

)

V0 − S2y

+
B
(
kumax|σ|

√
P1 − Pr + α(Ps+Pr−2P1)

1+γumax
− S1σv

)

V0 + S1y

Thus, to fulfill the attractivity condition, we may choose
C4, C3, C2 and C1 such that:
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|C4(y − yref ) + C3(v + dmax)|
C1Bk
V0−S2y

√
P2 − Pr − Bk

V0+S1y

√
Ps − P1

+

∣∣∣ C2

m+m0
(S1P1 − S2P2 − bv − kly)

∣∣∣
C1Bk
V0−S2y

√
P2 − Pr − Bk

V0+S1y

√
Ps − P1

+

∣∣∣ C1B
V0−S2y

(
α(Ps + Pr − 2P2) + S2v

)∣∣∣
C1Bk
V0−S2y

√
P2 − Pr − Bk

V0+S1y

√
Ps − P1

+

∣∣∣ B
V0+S1y

(
α(Ps + Pr − 2P2)− S1v

)∣∣∣
C1Bk
V0−S2y

√
P2 − Pr − Bk

V0+S1y

√
Ps − P1

≤ umax if σ < 0

|C4(y − yref ) + C3(v + dmax)|
C1Bk
V0−S2y

√
Ps − P2 − Bk

V0+S1y

√
P1 − Pr∣∣∣+ C2

m+m0
(S1P1 − S2P2 − bv − kly)

∣∣∣
C1Bk
V0−S2y

√
Ps − P2 − Bk

V0+S1y

√
P1 − Pr

+

∣∣∣ C1B
V0−S2y

(
α(Ps + Pr − 2P2) + S2v

)∣∣∣
C1Bk
V0−S2y

√
Ps − P2 − Bk

V0+S1y

√
P1 − Pr

+

∣∣∣ B
V0+S1y

(
α(Ps + Pr − 2P2)− S1v

)∣∣∣
C1Bk
V0−S2y

√
Ps − P2 − Bk

V0+S1y

√
P1 − Pr

≤ umax if σ > 0

Obviously, there are infinite choices of C4, C3, C2 and C1

such that the attainability condition is satisfied. However,
there is an additional and necessary condition that should
also be satisfied which is the asymptotic stability of the
system in sliding mode; that is when the system is confined
to σ = 0. In this case, we have:

P̃1 = −C1P̃2 − C2ṽ − C3ỹ − C4ỹint (7)

thus the system dynamics may be described as follows:
˙̃yint = ỹ , (8a)

˙̃y = ṽ + d , (8b)

˙̃v =
1

m+m0

(
S1(−C1P̃2 − C2ṽ − C3ỹ − C4ỹint + P1e)

−S2(P̃2 + P2e)− b(ṽ + ve)− kl(ỹ + yref )
)
, (8c)

˙̃P2 =
B

V0 − S2(ỹ + yref )

(
Q2 + S2(ṽ + ve)

)
, (8d)

Since at equilibrium we have S1P1e−S2P2e−bve−klyref =
0 and should we choose

C1 = −S2

S1
(9)

then we get:
˙̃yint = ỹ , (10a)

˙̃y = ṽ + d , (10b)

˙̃v =
−S1C4ỹint − (S1C3 + kl)ỹ − (S1C2 + b)ṽ

m+m0
,(10c)

˙̃P2 =
B

V0 − S2(ỹ + yref )

(
Q2 + S2(ṽ + ve)

)
, (10d)

Clearly, after application of a control signal u(x1, x2), the
obtained system (10) is an autonomous system in the
triangular form:

ẋ1 = f1(x1) , (11a)

ẋ2 = f2(x1 + x1e, x2 + x2e) , (11b)

with x1 = (ỹint, ỹ, ṽ) and x2 = P̃2. Using Proposition 1 we
may prove the stability of system (10) which is actually
confined to behave on the sliding surface.

Proposition 1. Consider the dynamic system defined by
(11). Assume that x1 = 0 is an exponentially stable
equilibrium for (11-a) and ẋ2 = f2(x1e, x2 + x2e) is an
exponentially bounded system. Moreover, assume that
f2(x1 + x1e, x2 + x2e) is Lipschitz w.r.t. x1 and x2 with
constants γ1 and γ2 respectively. Then if ‖x1e‖ ≤ γ3, then
limt→∞ x1(t) = 0 and ‖x2‖ <∞.

Proof: See the appendix.

Now, to apply the above result to the controlled servo
system (10) and to prove that is stable and would reach
its reference value, we can easily note that the first three
equations form a linear subsystem whose characteristic
equation is given by:

s3 +
S1C2 + b

m+m0
s2 +

S1C3 + kl
m+m0

s+
S1C4

m+m0
= 0 (12)

Using the pole placement method and imposing a stable
multiple pole at s = −λ (λ > 0), one can derive the
following conditions for the determination of the control
parameters:

C2 =
3λ(m+m0)− b

S1
(13)

C3 =
3λ2(m+m0)− kl

S1
(14)

C4 =−λ
3(m+m0)

S1
(15)

When it comes to the fourth equation which forms the sec-
ond subsystem, we notice that it is not globally Lipschitz
since it includes the square root term. Nevertheless, since
the system variables are not supposed to behave in the
vicinity of their physical limits, then a local Lipschitz con-
dition is satisfied. It remains now to prove that the second
subsystem described by (16) is exponentially bounded.

˙̃P2 =





B

V0 − S2yref

(
− kumax

√
P̃2 + P2e − Pr

+
α

1 + γumax
(Ps + Pr − 2P̃2) + S2ve

)
if σ ≤ 0

B

V0 − S2yref

(
kumax

√
Ps − P̃2 − P2e

+
α

1 + γumax
(Ps + Pr − 2P̃2) + S2ve

)
if σ > 0

(16)
Clearly, the subsystem (16) is a switched system where
each of which has its own equilibrium point. To prove the
exponential boundedness, we use a graphical analysis as
shown on Fig. 5.

In blue color, we present
˙̃
P 2 versus P̃2 when σ ≤ 0 where

the solid part represent the effective part of the vector
field and the dashed part is not effective since the pressure
in the system cannot drop beyond the return pressure.

The arrows on the P̃2 axis point to the left if
˙̃
P 2 < 0

that is the pressure is decreasing and they point to the

right if
˙̃
P 2 > 0 that is the pressure is increasing. Using

similar argument for the case of σ > 0 shown in black
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˜P2

˙̃P 2

if σ > 0

if σ ≤ 0

Ps − P2ePr − P2e

Fig. 5. Graphical analysis to prove the exponential bound-

edness of P̃2.

curve and arrows, we may easily deduce that when the
pressure is initiated in the interval P2(0) ∈ (Pr, Ps) then
P2(t) remains in that interval for all subsequent time which
proves the boundedness of the second subsystem.

Finally using Proposition 1, we may deduce that the ref-
erence position is achieved by the servo system under the
action of a sliding control signal with an integral surface.
Figure 6 delineates the behavior of the so controlled system
states in presence of the constant perturbation d = 0.1 and
an uncertainty in the spring constant of order of 20% and
with closed loop poles placed at λ = 15. We notice that
the reference position has been achieved with a settling
time Ts5% = 0.91s and an overshoot of about 25%. The
rod velocity has been stabilized at v = −0.1 to compensate
the perturbation d and hence the physical velocity of the
system is zero that is the rod is at rest. We also notice
that the pressures in the chambers of the piston evolved
within the interval (Pr, Ps). Finally, the control signal used
to assess the hydraulic servo system is shown in Fig. 7.
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Fig. 6. Position control of the hydraulic servo system under
the integral surface sliding mode controller: λ = 15

To improve the system behavior such as decreasing the
settling time and eliminating the overshoot of the system,
we may think of decreasing the reaching time needed for
the system to attain sliding mode. To do so, we consider
the realizable reference that can be attained by the control
at each instant, and use that information so that the
system behaves as if it is in sliding mode at each instant
of the transient time.
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Fig. 7. Sliding surface σ(t) and the control signal u(t) used
to assess the hydraulic servo system.

Let the realizable reference be denoted by rref . With the
realizable reference, the sliding mode is supposed to be
attained that is σ = 0, then substituting in (6) we get:

0 = C4ỹint + C3(y − rref ) + C2ṽ + C1P̃2 + P̃1 (17)

Subtracting (17) from (6), we get:

rref = yref +
1

C3
σ (18)

Next, we substitute the reference by the realizable refer-
ence in the dynamics of the integral state to get:

ẏint = y − yref −
1

C3
σ = ỹ − 1

C3
σ (19)

Eventually, we get:

σ̇ =





−C4

C3
σ + C4(y − yref ) + C3(v + d)

+
C2

m+m0

(
S1P1 − S2P − bv − kly

)

+
C1B

V0 − S2y

(
− kumaxsign(σ)

√
P2 − Pr

+
α

1 + γumax
(Ps + Pr − 2P2) + S2v

)

+
B

V0 + S1y

(
kumaxsign(σ)

√
Ps − P1

+
α

1 + γumax
(Ps + Pr − 2P1)− S1v

)
if σ ≤ 0

−C4

C3
σ + C4(y − yref ) + C3(v + d)

+
C2

m+m0

(
S1P1 − S2P2 − bv − kly

)

+
C1B

V0 − S2y

(
− kumaxsign(σ)

√
Ps − P2

+
α

1 + γumax
(Ps + Pr − 2P2) + S2v

)

+
B

V0 + S1y

(
kumaxsign(σ)

√
P1 − Pr

+
α

1 + γumax
(Ps + Pr − 2P1)− S1v

)
if σ > 0

We notice that σ̇ is now expressed in terms of σ in
addition to the expression obtained earlier. This makes
the attractivity of the sliding surface σ conditioned by the
following relation:
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C4

C3
> 0 (20)

knowing that C4 > 0, then we need to choose λ such that
C3 is also positive, that is:

λ >

√
kl

3(m+m0)
(21)

Figure 8 depicts the behavior of the system states when
controlled by the integral sliding controller with the in-
tegral state being modified as shown in (19). The closed
loop poles are placed at λ = 90 to satisfy the stability
condition (21). We notice that the reference position has
been achieved with a settling time Ts5% = 0.35s and an
overshoot of about 1.5%. The rod velocity has been again
stabilized at v = −0.1 to compensate the perturbation
d. We also notice that the pressures in the chambers of
the piston evolved within the interval (Pr, Ps). Finally, the
control signal used to assess the hydraulic servo system is
shown in Fig. 9. Clearly, this controller outperforms the
previous designed controllers.
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Fig. 8. Position control of the hydraulic servo system under
the integral surface sliding mode controller: λ = 90

We should mention here that we did not deal with the chat-
tering phenomenon since our aim was to construct a simple
controller expression. Nevertheless, one way to reduce the
chattering phenomenon is to smooth the sign function by
choosing for instance the differentiable tanh(Aσ) function
where A is a gain. We notice that when A is very large
then tanh(Aσ) ' sign(σ). Figure 10 depicts the behavior
of the system states when the controller uses a smooth
function. We notice the decrease in the chattering phe-
nomenon especially in the pressure and velocity behaviors.
Figure 11 depicts the behavior of the controller and the
sliding surface when the controller uses a smooth function.
Clearly, we notice that the chattering was removed and the
average controller signal is applied. To avoid the chattering
phenomenon, we have eventually used a smooth saturation
function that achieved a chattering free response.

4. SLIDING MODE OBSERVER DESIGN

As we can notice, the controller conceived in the foregoing
section implicitly uses all four state variables through the

0 1 2 3 4 5 6
-15

-10

-5

0

5
x10

7

t (sec)

σ
(t
)

0 1 2 3 4 5 6
-20

-10

0

10

20

u
(t
)
(m

A
)

Time (s)

Fig. 9. Sliding surface σ(t) and the control signal u(t) used
to assess the hydraulic servo system.
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Fig. 10. State behavior of the hydraulic servo system
under the integral surface sliding mode controller with
smooth saturation function.

sliding surface definition. However, measuring the pres-
sures P1 and P2 is a costly task and requires high technol-
ogy procedure to avoid additional leakage. To circumvent
this problem, we propose in this section to design a sliding
mode observer that may estimate the required states that
are then used to construct the sliding surface.

Before tackling the observer design, it is worth noting
that when the rod position y is the measured output,
then we may easily check that the hydraulic servo system
described by its model (1) is not fully observable. Indeed,
the pressures P1 and P2 are not observable, however, the
difference S1P1−S2P2 is itself observable if it is defined as
a single state. Should we refer to the choice of C1 = −S2

S1

given in (9), and to the expression of the sliding surface
(6), then we deduce that we only need to estimate the
expression E = S1P1 − S2P2 to be able to construct
the sliding surface. Therefore, our choice to use a sliding
observer is motivated by its robustness and the possibility
to achieve the estimation of that expression without the



Control Engineering and Applied Informatics 117

0 1 2 3 4 5 6
-15

-10

-5

0

5
x10

7

t (sec)

σ
(t
)

0 1 2 3 4 5 6
0

5

10

15

20

u
(t
)
(m

A
)

Time (s)

Fig. 11. Sliding surface σ(t) and the control signal u(t)
used to assess the hydraulic servo system with smooth
saturation function.

need to obtain the full model. We here consider the reduced
order model of the hydraulic servo system:

Ė = f(P1, P2, v, y) (22)

v̇ =
1

m+m0
(E − bv − (kl + δkl)y) (23)

ẏ = v + d (24)

where δkl denotes the 20% uncertainty of the spring
stiffness and f is a nonlinear function representing the
dynamics of E. To this model we associate the following
observer:

∆̇ =L1sign(z1 −∆) (25)

˙̂v =
1

m+m0
(∆− bz2 − klŷ) + L2sign(z2 − v̂) (26)

˙̂y = v̂ + L3sign(y − ŷ) (27)

where L1, L2 and L3 are the observer gain and z1 and z2

are observer outputs defined by:

z1 = ∆ + (m+m0)L2sign(z2 − v̂) (28)

z2 = v̂ + L3sign(y − ŷ) (29)

The observer state ∆ is intended to estimate the expression
E = S1P1 − S2P2.

To prove the efficiency of the observer and that the
estimated states based controller can also achieve accurate
positioning in presence of perturbation and uncertainty, we
will proceed by a step by step proof.

Step 1: Let ey = y− ŷ and ev = v− v̂, from (24) and (27)
the error dynamics are expressed as:

ėy = ev + d− L3sign(ey) (30)

Thus, if L3 is chosen such that:

L3 > sup
t>0
{ev(t) + d} (31)

then a sliding mode is established at the observer sliding
surface ey = 0 within a finite time. Moreover, at sliding
mode we obtain ėy = 0 and thus from (30) we have

0 = v − v̂ + d− L3sign(ey) (32)

that is
v + d = v̂ + L3sign(ey) = z2 (33)

At this step, we may deduce that the observer state ŷ
will converge within a finite time to the system state y
and meanwhile the observer output z2 will converge to the
perturbed rod velocity v + d.

Step 2: Let e∆ = E − ∆ and taking into account that
ey = 0 and z2 = v + d, then from (23) and (26) the error
dynamics are expressed as follows:

ėv =
1

m+m0

(
e∆ + bd− δkly

)
− L2sign(ev + d) (34)

Thus, if L2 is chosen such that:

L2 > sup
t>0
{e∆(t) + bdmax − δkly(t)} (35)

then we can deduce that ev + d tend to zero and hence v̂
tend to v + d. That is the observer state v̂ will reach its
output z2. Moreover, when the error dynamics are sliding
on ey = 0 and ev + d = 0, then ėv = 0 and we get:

E + bd− δkly = ∆ + (m+m0)L2sign(z2 − v̂) = z1 (36)

That is the observer will estimate the expression E =
S1P1 − S2P2 with a constant difference proportional to
the perturbation d and the uncertainty δkl. Eventually,
when the estimated variables are used to design the
sliding surface, then the uncertainty will be taken into
consideration, therefore when the controller sliding mode
is reached the convergence to the reference position is
obtained despite the existence of the constant perturbation
d which will be annihilated by the use of the integral action
in the surface definition.

Figure 12 shows the convergence of the observer state ŷ
to y although starting from different initial conditions;
y(0) = 0 and ŷ(0) = −0.1 that is the observer starting
at -10cm. As expected from the above analysis, v̂ tends
to v + d and ∆ tends to E with a constant difference.
The observer gains are chosen as L1 = 107, L2 = 3000 and
L3 = 30. The system behavior is shown on Fig. 13 with the
sliding surface being calculated using the estimated states
and the controller with a smooth saturation function.
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Fig. 12. Convergence of the sliding mode observer to the
intended values.
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Fig. 13. Behavior of the hydraulic servo system controlled
with sliding mode controller with estimated states
feedback.

5. CONCLUSION

In this paper, a method to design an integral-sliding mode
controller with a realizable reference was suggested in
order to overcome the wind-up phenomenon due to the
actuator saturation. The controller achieves zero steady
state error with a substantially short settling time. The
controller is compared to the PI controller and the plain
sliding mode controller and has been shown to outperform
them in terms of rapidity. To diminish the chattering
effects, a smooth saturation function has been used to
substitute the sharp discontinuous sign function. Finally,
we have suggested the use of sliding observer to achieve
an output feedback control and design the sliding surface
using the observer estimations.

APPENDIX

Proof of Proposition 1 :

By assumption of exponential stability of (11a) we have
limt→∞ x1(t) = 0 if u(x1, x2) is bounded. Thus, we need
to show that ‖x2‖ <∞.

The exponential boundedness of ẋ2 = f2(x1e, x2 + x2e)
implies that there exist V (x2) such that the following
hold outside a ball of radius R for some positive constants
a1, a2, a3 and a4 (Sastry and Isidori, 1989).

a1‖x2‖2 ≤ V (x2) ≤ a2‖x2‖2 , (37a)
dV

dx2
f2(x1e, x2 + x2e) ≤ −a3‖x2‖2 , (37b)

∥∥∥ dV
dx2

∥∥∥ < a4‖x2‖ . (37c)

Combining (11b) and (37b) yields

V̇ =
dV

dx2
f2(x1 + x1e, x2 + x2e)

≤−a3‖x2‖2

+
dV

dx2
.
(
f2(x1 + x1e, x2 + x2e)− f2(x1e, x2 + x2e)

)
,

≤−a3‖x2‖2 + a4‖x2‖.γ1γ3 ,

thus
V̇ ≤ 0 for ‖x2‖ ≥

a4γ1γ3

a3
. (38)

Using (37) and (38) it follows that any trajectory of x2(t)
starting at a finite value x2(0) will eventually enter a ball
of radius R̄ = max{R, a4γ1γ3a3

} therefore ‖x2‖ < ∞ and

limt→∞ x1(t) = 0 is achieved. 2

NOMENCLATURE

Parameter value unit
fluid

B 2.2× 109 Pa
Ps 300× 105 Pa
Pr 1× 105 Pa

piston
m0 50 kg
S1 3.1× 10−3 m2

S2 1.5× 10−3 m2

V0 0.458× 10−3 m3

load
m 20 kg
b 590 kg/s
kl 125000 N/m

servovalve

k 1.46× 10−5 m3s−1A−1Pa−1/2

α 4.605× 10−13 m3s−1Pa−1

γ 10622 s−1

Controller
umax 20 mA
yref 0.2 m
k0 0.5 −
ki 0.5 −
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