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Abstract: In approximating nonlinear systems, averaging theory provides very useful tools, which permit 
one to obtain simpler mathematical models. The current paper addresses the problem of averaging pulse-
frequency modulated systems with constant duty ratios, whose trajectories exhibit a moving average 
dependent on the modulation period. Because for such systems conventional averaging methods lead to 
period - independent averaged models, the paper proposes a period-weighted averaging approach, which 
leads to a period - dependent averaged model (simpler than the original one). The proposed averaging 
method is further used in a case study involving the cardiovascular system (regarded as a pulse-frequency 
modulated system). Finally, simulation results illustrate the effectiveness of the proposed averaging 
method. 

Keywords: averaging theory, pulse-modulation, nonlinear systems, biomedical systems, cardiovascular 
system. 

1. INTRODUCTION 

Averaging theory has been widely used for approximating 
nonlinear systems, and thus facilitating future analysis and 
control design approaches. Especially for the class of periodic 
(quasi-periodic) systems, averaging methods permit one to 
obtain a simpler non-periodic system, which approximates to 
a certain degree the original system. Applications of 
averaging can be found in power electronics (Pedicini et al., 
2012), pneumatic systems (Shen et al., 2006), robotic 
manipulators (Sira-Ramirez et al., 1993), adaptive control 
(Sastry et al., 2001), vibrational control (Baillieul et al., 
2011), switched controllers (Sedghi, 2003), extremum 
seeking control (Moura et al., 2013), synchronization of 
oscillators (Stilwell et al., 2006), multi-agent systems (Porfiri 
et al., 2007) and congestion control (Marquez et al., 2005). 

Over the years, several averaging methods have been 
proposed, ranging from rather heuristic or application 
oriented methods to theoretical methods for specific classes 
of systems. In power electronics, the circuit averaging and 
state space averaging methods were among the first to be 
used in applications. The circuit averaging method involves 
averaging the waveforms of the signals and manipulations of 
the circuit diagram (different circuit parts are replaced with 
equivalent ones), which requires a physical insight of the 
system (Erickson et al., 2001). The state space averaging 
method provides a more general framework, with a simpler a 
more straightforward methodology, by averaging directly the 
equations of the state space model associated to the system 
([11]). The results obtained with the state space averaging 
method are equivalent with those obtained by averaging 
based on perturbation theory (Khalil, 2000, ch. 10) or through 
the Krylov-Bogoliubov-Mitropolsky (KBM) averaging 
method of 1st order (Krein et al., 1990); however both of 

these methods provide additional theoretical guarantees on 
the approximation error involved in the averaging process. 
An increase in the accuracy of the approximation (with the 
price of increased complexity of the averaged model) is 
obtained either by using a KBM averaging method of 2nd 
order (Bass et al., 1998), or through a multifrequency 
averaging approach (Caliskan et al., 1999; Almér et al., 
2012), which implies the use of a generalized average defined 
based on Fourier series. When the periodic behavior is 
induced by a relatively high-frequency signal at the input of a 
static nonlinearity, other approaches are that of the dithering 
technique  – (Iannelli et al., 2006; Iannelli et al., 2008), or the 
incremental-input describing function (an extension of the 
describing function method) – (Gelb et al., 1968), which both 
finally lead to replacing the original nonlinearity by an 
equivalent (averaged) nonlinearity. Finally, recent studies 
focus on developing averaging methods for hybrid systems 
(Pedicini et al., 2011; Wang et al., 2012), and systems with 
disturbances (Wang et al., 2010).  

Pulse modulated systems are widely encountered in both 
technical control applications (Gelig et al., 2006) and 
biological control mechanisms (Jones et al., 1961). Although 
many averaging methods have been proposed in conjunction 
with pulse modulated systems, most of them actually deal 
with pulse-width modulation (used especially in power 
electronics). However, some control applications use pulse-
frequency modulation (e.g. Todo et al., 1999), while many 
biological systems also exhibit pulse-frequency modulation 
(neural structures) – (Jones et al., 1961). As it will be shown 
through the case study presented in this paper (referring to 
the cardiovascular system – regarded as a pulse-frequency 
modulated system - Codrean et al., 2013 - controlled by the 
nervous system), there are even some situations when the 
pulse-frequency modulation is with constant duty ratios and 
the moving-averages of the system’s trajectories are 
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dependent on the modulation frequency (or period). In such a 
context, conventional averaging approaches usually lead to 
frequency independent averaged models, which can not 
properly approximate the original periodic system.  

In addressing this issue, the current study proposes a new 
period-weighted averaging approach, which leads to a period-
dependent averaged model, while also maintaining the 
averaged model as simple as possible. In the first part of the 
study a theoretical framework is developed for the period-
weighted averaging method using perturbation theory, in 
order to ensure an error bound for the approximation between 
the original systems and the averaged system, and also to 
relate the stability of the averaged system with that of the 
original system. In the second part of the study, a step-by-
step description is provided, on how the proposed averaging 
method can be used in the case study referring to the 
cardiovascular system, while pointing out ways of copping 
with the practical issues that emerge. 

The remainder of the paper is structured as follows. Section 2 
presents the problem formulation for the weighted averaging 
approach, and shows when the standard averaging approach 
fails. Section 3 presents the theoretical framework 
encompassing the proposed averaging method. The case 
study is presented in Section 4, along with simulation results. 
The concluding remarks are given in Section 5.  

2. PROBLEM FORMULATION 

Consider the class of nonlinear systems 

),( xfx t   (1) 

characterized by a periodic regime of period T, such that 
f(t,x)=f(t+T,x). 

Assumption 1 f is piecewise continuous in t and locally 
Lipschitz in x. 

Assumption 2 The system (1) can be approximated by a 
piecewise continuous system, with a finite number of points 
of discontinuity, and with the left hand side expressed as  
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where the duty ratios di are considered to be constant. 

In order to state the main problem addressed in this paper, the 
system (1) is rewritten- with the right hand side (2) - as 
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 (4) 

Moreover, in accordance with Assumption 2, the system can 
be recasted as a pulse-modulated switched system, with a 
switching function q:[0,){1,2,...m}: 
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Next, through a time scaling of the form =t, system (3) 
becomes 
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where dd /xx  and ),2(
~
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xfxf   . Finally, by 

adopting the small positive parameter =1/, (6) can be 
brought to the “standard” form 

),(
~

xfx  ,   0)0( xx  . (7) 

The trajectories of (7) describe a periodic orbit, which is 
dependent on the modulation period T. It will be further 
considered, as a working hypothesis, that the (geometric) 
center  of the periodic orbit  is also dependent on the 
modulation period T (i.e. Δ=(T)); the center corresponds to 
an average operation point  of the periodic system.  

In the above presented context, the problem addressed in the 
current study is as follows: 

Problem statement Determine an averaged system which 
approximates the original periodic system (7) within a certain 
error bound and which is dependent on the modulation period 
T. 

The novelty of the current problem formulation consists in 
the fact that the averaged system has to be dependent on the 
modulation period T. Standard averaging approaches (like the 
one from (Khalil, 2000, ch. 10.4)) fail in addressing this 
problem. In particular, for the periodic system (7), the 
standard averaging method associates the following averaged 
system 
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Returning to the absolute time (t=/), yields  
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By taking into account that f
~

was defined also through (4), 

one further obtains  
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Therefore, the averaged system (10) is independent of the 
modulation period T, and can not properly approximate the 
original periodic system (3) when the average operation point 
 changes as function of the period T. 



CONTROL ENGINEERING AND APPLIED INFORMATICS    93 

     

 
 

Remark 1 Even though the study deals with pulse-frequency 
modulated systems, in which the period T actually varies in 
time, it is considered that these variations are relatively slow 
in respect with the duration of a period T, and as a 
consequence the averaging approach considers T to be 
constant (T=Tmax). However, the emphasis is that the 
resulting averaged model should be T dependent, such that T 
becomes a new slow-varying input of the averaged system. 

3. THEORETICAL FRAMEWORK 

In addressing the problem stated in the previous section, a 
period-weighting averaging approach for system (7) will be 
considered. First, an additional simplifying assumption is 
imposed. 

Assumption 3 Suppose f
~

 can be decomposed as 

)(g~)x,(f
~

)x,(f
~

0   , where the piecewise continuous 

functions 0f
~

and g~  are also periodic, and defined in a similar 

manner as f . 

Next, the following time averaged functions are defined: 
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where m(s,T) is a weighting function with the (fixed) 
parameter T, on the interval s(-2,); e.g. m(s,T)=eaT(s-

+2)/(2), with a as a tuning parameter. One can note that for 
a=0, the standard averaging approach can be recovered. 

Remark 2 Although a weighted average directly for the 

function f
~

 could have been defined, i.e. without the 

decomposition given by Assumption 3, the mixed averaging 
approach given by (12) has been chosen instead because it 
leads to a simpler averaged model. Moreover, it is expected 
that the g~  component is the main cause for why the average 

operation point  changes as function of the period T.  

Let us associate to (7) the following averaged system: 
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Tavavav xfx  ,    0)0( avav xx  ,  (13) 

where the left hand side is obtained through (12) as 
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Finally, by returning to the absolute time, one obtains the 
averaged system associated to (1): 
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Assumption 4 fav is locally Lipschitz in respect with xav. 

Remark 3 Considering the particular choice of the weighting 
function m(s,T)=eaT(s-+2)/(2), and that the function g~  is 

defined in a similar piecewise manner as f , it is sometimes 
useful to approximate de averaged function avg~  from (12) as: 
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where the coefficients of i can be determined either through 
a first order Taylor series expansion or linear interpolation. 
Such an approximation further simplifies the resulting 
averaged model, and holds for a sufficiently small range of T. 
Moreover, the theoretical results further presented hold even 
when this approximation is used, instead of the original 
function avg~  from (12). 

Next, the following theorem provides a bound on the 
closeness between the trajectories of the averaged system and 
original system. The proof is inspired from (Khalil, 2000, ch. 
10.4), and adapted for the weighted averaged case defined 
through (12). 

Theorem 1 If the initial conditions for (7) and (13) are such 
that )()0()0( Oav  xx , then for a sufficiently small , 
there exists a positive constant b, such that (13) represents an 
O() approximation of (7) on the time interval ]/,0[ b , i.e.: 

)()/()/(  Oav  xx ,   ]/,0[  b . (16) 

Proof The following functions are defined: 
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Assumption 5 The function   is locally Lipschitz in respect 

with T. 

Remark 4 It can be shown that for the class of weighting 
functions m(s,T)=eaT(s-+2)/(2), the function   is of class C1, 

and as a result it is also locally Lipschitz.  

By taking into account how  was defined, it can be noticed 
that   is actually a function of : )2()(  T . Thus,   

is also Lipschitz in respect with .  
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The functions u and h are periodic in , and u is bounded. It 
can be shown that the partial derivatives of u 
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are also periodic in  and bounded. 

Next, consider the system (7), with the following change of 
variables: 
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Differentiating both the left hand side and the right hand side 
in respects with  leads to 
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Further using (7), (17) and (20), expression (22) becomes 
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Because f
~

 is Lipschitz in y and   is Lipschitz in  , the 

differences of the right hand side can be expressed as 
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nonsingular for sufficiently small , and its inverse can be 
written as 
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As a result, (23) becomes 
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~ 2  yqyfy  av ,  (25) 

where q is a periodic function in  , bounded, with first 
partial derivatives with respect to y and   continuous and 

bounded.  

Further on, (25) is compared with the averaged system (13). 
By integrating both sides and subtracting the resulting 
equations yields 

   








0

2

0

)),(,()),((
~

))((
~

)0()0()/()/(

dsssdsTss avavav

avav

yqxfyf

xyxy

.  (26) 

Taking the norm of the above expression and applying the 
triangle inequality leads to 
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The following notation can be introduced 

)/()/()/(  ξxy  av . Using the fact that avf
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 is 

Lipschitz (with Lipschitz constant L) and that q is bounded 
(i.e. the norm is bounded by a positive constant ), (27) 
becomes 
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The further use of Gronwall-Belman’s inequality with respect 
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change of variables (21) it result that 
)()/()/(  O yx . By further using the triangle 

inequality one obtains 
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thus finally reaching the result (16), with Lb /1 .          

In order to extend this result to the infinite time interval, one 
must add a stability condition.  

Theorem 2 If the system (13) is exponentially stable and 
)()0()0( Oav  xx , then for sufficiently small , (13) 

represents an O() approximation of (7): 
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Proof Through the change of variables v , (25) is 
brought the form of a perturbed system 
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associated to the nominal system 
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This is now a standard perturbation problem. Therefore, 
Theorem 9.1 from (Khalil, 2000, ch. 9) can be used for 
proving the O() closeness between the solutions of (32) and 
(33), when the term q denotes a persistent perturbation, but 
bounded. The basic idea is to build a system given by the 
difference between (32) and (33), with the error between the 
two corresponding trajectories as state variable. Assuming 
that the corresponding unperturbed system is exponentially 
stable, and that the perturbation is bounded in a certain sense, 
the comparison method provides an upper bound for the 
solution of the perturbed system. Finally, this means that also 
the solutions in the  time scale are O() close. 

Finally, from the stability of the averaged system, the 
stability of the original (periodic) system can be inferred. 
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Theorem 3 If the system (13) is exponentially stable, then for 
sufficiently small , the system (7) is orbitally exponentially 
stable. 

Proof Again, one can make use of the system in perturbed 
form, given through (32), and its nominal version (33). This 
is now regarded as a periodic perturbation problem. In this 
case, Theorem 10.3 from (Khalil, 2000, ch. 10) provides the 
desired stability result. The basic idea is to regard the term q 
as a periodic perturbation. A change of variables of the form 
z=y-yp (yp is the periodic solution of (32)), and then a 
linearization at the origin, brings the system to a perturbed 
form (still linearized) with a vanishing perturbation. The 
stability is inferred from the stability of the unperturbed 
system. Moreover, because one deals with exponential 
stability, the stability of the linearized system finally implies 
that of the original nonlinear system.  

4. CASE STUDY 

Consider the averaging problem for the dynamics of the 
cardiovascular system, modelled as a pulse frequency 
modulated switched system as in (Codrean et al., 2013) - (the 
cardiovascular system is regarded as a plant controlled 
through pulse modulation by the nervous system): 
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The parameters have the following interpretation: T 
represents the duration of the heart period (with the two 
subintervals denoting duration of systole and diastole); R0, R1 
and R2 represent hydraulic resistances; C1, C2 represent 
hydraulic capacitance (compliance), while Es and Ed 
represent systolic and diastolic elastances (inverse of 

compliance); xT represents total stressed blood volume. 
Finally, as a remark, it should be noted that the model 
captures only the systemic circulation (large arteries, 
peripheral circulation, large veins), along with the left heart 
(left ventricle). 

First, the averaged output equation (34b) is defined as  

1100)( ,
1

CCCxCxCy ddds
T avavav

T

Tt

tqav 

 



.  (35) 

Next, the output equations are temporarily dropped, 
proceeding with the averaging method for the state equations, 
and ensuring an error bound for the approximation in respect 
with the state variables. The stability inferred for the state 
equations will extend also to the final case when the output 
equations are reattached (i.e. in this particular case, internal 
stability implies external stability). 

By time scaling the state equation (34a), one obtains 

 )()(
1

 qq bxAx  .  (36) 

Adopting the small parameter =1/ yields  

 )()(  qq bxAx  .  (37) 

Obviously, (37) is a particular case of (7), and respects 

Assumption 3, by considering xAxf )(0 ),(
~

 q  

and )()(~
 qbg  . The averages of these components, 

according to (12) are: 
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with        TaeeTaeT dTaaTdTa /,/1)( 00
10   . 

The weighting terms 0 and 1 can be further approximated 
through linear interpolation: 

TTT 111000 ,)(   ,  (39) 

which are now affine functions of the period T. 

The averaged system is  

 )(Tavavavav bxAx   ,  (40) 

where 11001100 )()()(, bbbAAA TTTdd avav   .  

Finally, by scaling back, one obtains the weighted averaged 
system associated to the original system (34a): 
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)(Tavavavav bxAx  .  (41) 

According to Theorem 1, for a constant nominal value of T, 
the error between the original and the averaged systems is 
O() on a finite time interval. To extend this to the infinite 
time interval, one needs to check the stability of (40).  

By making use of aproximation (39), the system (40) can be 
written as 

   Tavavav 11001100 bbbbxAx   ,  (42) 

which is now a linear system with two constant input terms. 
This means that exponential stability follows if and only if 
the matrix avA  is Hurwitz. Additionally, the system would 

be stable even as T varies (slowly), and thus T could be 
further regarded as the new input of the averaged system.  

For the cardiovascular model parameters given in Table I 
(Appendix A), a=-0.7 (adopted such that the averaged 
system’s trajectories follow the variations of the moving 
averages of the original system’s trajectories to step changes 
in T), d0=1/3, d1=2/3, T=1 s (nominal value), and 

TTT 18.061.0,03.033.0)( 10    (on the 

physiological domain ]2,3.0[T s), it can be easily checked 

that avA  is Hurwitz. Hence, the averaged system is 

exponentially stable, and as a result of Theorem 2, the error 
between the original system and the averaged system is O() 
on an infinite time interval. Moreover, according to Theorem 
3, also the original system is orbitally exponentially stable. 
Lastly, it should be mentioned that the results are conserved 
even when taking the maximal value of T (i.e. T=2s ), instead 
of the nominal value. 

Remark 5 In this particular case, the stability of the original 
system (34a) can be alternatively investigated using Floquet 
Theory (Richards, 1983), adapted to switched linear systems. 
Thus, by using the results from (Gökçek, 2004), it can be 
proved that system (34a), rearranged as  

   


























1)0(
)0(

,
0

0xxx
0

bAx
aa

tqtq

a xxx



 ,  (43) 

is in fact orbitally exponentially stable. Here xa is a support 
state variable. 

In many practical applications an offset steady state error was 
observed between the signals of the averaged system, and the 
(real) moving averages of the signals of the original system 
(see examples in power electronics – Krein et al., 1990, 
Caliskan et al., 1999, Lehman et al., 1996). This is a generic 
issue, specific to most averaging methods (including the one 
presented here), and usually attributed to a large ripple of the 
signal of interest, for a relatively low frequency range. While 
in some applications this error can be neglected, in our 
particular application this is not the case. Moreover, because 
this error can not be expressed analytically, there are no 
systematic methods to correct it without substantially 
increasing the complexity of the averaged model (Codrean et 
al., 2013). Consequently, in an attempt to minimize the error 
as much as possible, a multiplicative type correction is 
considered for the system matrix by introducing the corrector 

matrix - Mc= diag (0, 1), with 0>0 and 1>0. Hence, (42) 
becomes 

   Tavcavav 11001100 bbbbxMAx   .  (44) 

In the numerical context stated above, these tuning 
parameters were adopted as 0=0.6 and 1=1.0, so as to 
ensure that the equilibrium point of (44) is as close as 
possible to the moving average of (37) in a nominal steady 
state scenario. For a more detailed discussion on how to 
determine the set of tuning parameters {a, 0, 1} see 
(Codrean et al., 2013). 

Remark 6 Note that, despite the correction that transforms the 
system (42) into (44), the stability is preserved: because the 
main diagonal elements of avA  are always negative (from 

a physiological interpretation) and the elements of Mc are 
positive, the Hurwitz determinants of avA and cavMA  

have the same signs. In other words, for this particular 
application (2nd order system), (42) is stable if and only if 
(44) is stable. This result can be generalized for higher order 
systems by further taking into account the fact that we are 
actually dealing with a positive linear system (most models 
of the cardiovascular system have as state variables either 
volumes or pressure, which can not take negative values). By 
considering the correction matrix Mc as a known 
multiplicative perturbation, it can be shown through the D-
stability theorem (see Theorem 16 from Farina et al., 2000) 
that the nominal system – given here by (42) – is stable if and 
only if the perturbed system – given here by (44) – is stable. 
Furthermore, one can intuitively expect that the correction 
would lower the error bound O() between the trajectory of 
the averaged system and the original system. 

Finally, a scenario for the resulting averaged system is 
considered - with the output equation (35) reattached 

   
avavav

avcavav T

xCy

bbbbxMAx


 11001100 

,  (45) 

when the input T varies as in Fig. 1 (note that this variations 
are considered large from a physiological point of view). The 
trajectories of the averaged system follow relatively close the 
real moving averages of the original system as the 
modulation period changes (the spikes of y0 are due to 
numerical errors, and do not influence the averaging process 
– Codrean et al., 2013). Without a weighted averaging 
approach as the one presented here, i.e. through a standard 
averaging approach, the averaged system would have been 
invariant in respect with the modulation period, and thus the 
trajectories would remain constant during the entire scenario 
(see also Codrean et al., 2013). 

Remark 7 As shown in (Codrean et al., 2013), the averaged 
system (45) can be obtained more straightforwardly through a 
state space weighted averaging approach, but without any 
theoretical guarantees for the result. 

5. CONCLUSIONS 

The current paper has presented a novel averaging approach 
for pulse-frequency modulated systems with constant duty 
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ratios. The approach involves a period-weighting component 
that makes the resultant averaged system dependent on the 
modulation period, which is important for situations when the 
average operating point of the original periodic system is also 
dependent on the modulation period. In such cases the 
standard averaging approach fails because it leads to a 
period-independent averaged model, which can not provide a 
suitable approximation for the original system.  

A theoretical framework was developed for the period-
weighted averaging method, which ensures an error bound 
for the approximation between the original systems and the 
averaged system, and which relates the stability of the 
averaged system with that of the original system. Finally, the 
new averaging method is used for a case study involving a 
model of the cardiovascular system. Simulation results show 
that the period-dependent average model of the 
cardiovascular system represents a good approximation of the 
original periodic systems. Because the averaged model is 
simpler than the original periodic one, it could be further used 

for closed-loop analysis of cardiovascular regulation - the 
cardiovascular model coupled with a model for the nervous 
control loop (among which the most important is the 
baroreflex feedback mechanism). Such a coupling would be 
straightforward because, as in the case of many technical 
control systems, the (nervous) feedback control loop actually 
regulates the time-averages of key state variables of the plant 
(cardiovascular system), instead of instantaneous values 
(Heldt et al., 2005). 
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Fig. 1. Trajectories of the averaged system and the original system as T varies from 1 s to 0.5 s, and from 0.5 s to 1.5 s. 
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Appendix A. FIRST APPENDIX 

Table 1.  Parameter values of the cardiovascular model 
(adapted from Heldt et al., 2005). 

Parameter Value Measure unit 
R0 
R1 
R2 
Ed 
Es  
C1  
C2  
xT  

x0(0) 
x1(0) 

0.01  
1.0  

0.03  
0.1  
2.5  
2.0  

100.0  
1734  
22.4  
112 

mmHg ml-1 s 
mmHg ml-1 s 
mmHg ml-1 s 
mmHg ml-1 
mmHg ml-1 
ml mmHg-1 
ml mmHg-1 

ml 
ml 
ml 

 


