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Abstract: In this paper stabilisation of a second order system with a time delay 
output feedback u(t) = Ky(t  h) is analysed. Considered class of second order systems is described, that 

can be physically modeled as LC  ladder networks, and at the same time can be used as an approximation 
of a distributed parameter system with undamped oscillations. It is followed with stability analysis of 
resulting infinite dimensional system. It is shown that application of transfer functions is justified and 
apply the Padé approximation in order to obtain approximated stability regions via constrained 
optimisation. Then the formulas for derivatives are given, along with their numerical effectiveness 
comparison. Finally the obtained stability regions are used to optimise the impulse response of closed 
loop system determining the appropriate values of performance index with James-Nichols-Philips 
theorem. All these results are illustrated with simulations and optimisation results for different sizes of 
LC  ladder. Also, the merits and limitations of Padé approximation are briefly discussed. 
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1. INTRODUCTION 

Second order matrix systems are important mathematical 
models in analysis of vibrations and oscillations. They can be 
described by the following equation  
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 In this paper the following properties are 

considered nRt )(x , Rtu )( , Rty )( , nnR A , 1 nRB  

and nR  1C . The solution stylof (1) is given by (see for 
example (Turowicz, 2005):  
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where matrix sine and cosine function are given by (see for 
example Higham, 2008):  
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As it can be observed when substituted to (2) matrix A  is 
present either in even powers or as a product of its odd power 

and its inverse, resulting in even power. That is why A  
does need to be explicitly computed when using series 
expansion. 

Systems with positive definite matrix A , are of special 
interest, as they exhibit undamped oscillations. Systems of 
this kind were considered among the others by (Kaczorek, 
2007; Mitkowski and Skruch, 2009). 

In this paper the following matrices are considered  
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As it can be easily verified A  is positive definite. 

These matrices correspond naturally to the mathematical 
model of uniform LC  ladder network such as one given in 
the figure 1. Such networks are often used as electrical 
analogs used in analysis of spacial discretisations of 
hyperbolic partial differential equations. 

For example consider lossless transmission cable, which can 
be described by the following equations  
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Fig. 1. LC  ladder network. 

where n1/=  and /21)(2= kz  for 1=k , 2 , ,  n  one 

obtains system  

)(=)()( tutt BAxx 
 (4) 

where  
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2. STABILISATION 

System (1) is oscillatory. It has n2  imaginary eigenvalues 

from the set )}(,=:{ Azzss . For similar LC  

networks many schemes of stabilisation were discussed in 
(Mitkowski, 2004), with a conclusion, that only dynamic 
output feedback can stabilise this system. In this paper an 
infinite dimensional feedback in the form of proportional, 
time delayed controller will be considered  

)(=)( htKytu   (6) 

where K  is the gain and 0>h  is the time delay. Usually, in 
control application focus is on elimination of the influence of 
delay (which is usually negative), what leads to difficult 
control problems. On the other hand, introducing or 
increasing a delay to the system is very simple - it can be 
implemented with appropriate buffers. That is why such 
controller can be easily applied. This control system structure

is presented in the figure 2. 

Results presented in this paper are a substantial development 
of those obtained in (Baranowski and Mitkowski, 2009) and 
represent an alternative approach to the one presented in 
(Baranowski and Mitkowski, 2012b). 

2.1 Stability of time delay systems 

System (1) with feedback (6) can be equivalently written as:  
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where  
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with CBA ,,  given by (3).  

System (7) is exponentially stable iff roots is  of the equation  

0=)e(det 10
shs  AAI  (9) 

fulfill  

isi 0,<Re  (10) 

(see for example (Klamka, 1990 p. 166)). More detailed 
analysis can be found in (Baranowski and Mitkowski, 
2012b). Different approaches to time delay system stability 
can be seen for example in (Duda, 2010, 2013; Iotga, 2014; 
Yeroglu, 2015). 
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Fig. 2. Control loop structure. 

3. STABILITY REGIONS 

In previous works regarding applications of (6) to oscillatory 
systems two approaches were dominant. The first one, based 
on matrix pencils was considered in (Abdallah et al., 1993; 
Niculescu and Abdallah, 2000) where some general results 
were derived. The other approach used Nyquist stability 
criterion and its results were shown in (Mitkowski and 
Skruch, 2009). As it was shown in cited works, for simple 
cases an analytical solution can be obtained. Let us consider 
system (1) with controller (6) with 1=n . System  
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Using Nyquist criterion one can determine the stability region 
analytically for 21,0,=l   
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Both of these directions were characterized by two aspects:  

- only positive feedbacks were considered ( 0>K ),  

- the focus was on finding such h  for which given K  will 
cause the closed loop system to be asymptotically stable.  

Approach presented in this paper considers both positive and 
negative feedbacks and represents K  as a function of h . It 
leads to some interesting geometric properties of stability 
regions which will be discussed in following sections. For 
analysis of stability the transfer function of system (1) will be 
considered, i.e.  
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where 0>=)( 0lsl  and )(sm  is a polynomial of order n2  

with only positive coefficients, and imaginary roots. It can be 
verified that )(m  is a characteristic polynomial of 0A  and 

also that )(=)( 2LCswsm , where )(w  is a characteristic 

polynomial of A  (see (Baranowski and Mitkowski, 2012b)). 

As it was shown in section 2.1, stability analysis is equivalent 
to appropriate location of roots of characteristic 
quasipolynomial. In earlier research Padé approximations of 
(13) were considered in (Baranowski et al., 2009) in order to 
reduce the problem to simple polynomial stability (for 
example see (Kaczorek, 2007)). 

3.1 Padé approximation 

Padé approximations of the exponential function shs  e  of 
order ],[ qq  with Nq  are considered. These 

approximations are rational functions in a form  
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with qQ  is a polynomial of q -th order given by  
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also recurrence formulas are possible. Padé approximations 
have two interesting properties:  

- )(qQ  has roots in left open complex half plane for any q .  

- frequency characteristics of system in a form (13) can be 

approximated with arbitrary precision in the sense of )(RL  

norm.  

One can then approximate the controller (13)  
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Closing the feedback loop of (12) and (14) one will get a 
closed loop system transfer function  
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with a denominator  

d(s) = m(s)Qq (sh)Kl0Qq (sh)  (16) 

Analysis of stability of (16) will allow to find approximate 
region of stability in the set of possible h  and K . 

Investigation of numerical properties of Padé approximation 
leads to interesting results. Noticeably the approximated 
system gives a very good approximation of dominating poles, 
which can be seen in the figure 3 (true spectrum was 
computed with approximation of infinitesimal generator of 
appropriate semigroup as in (Breda et al., 2004)). Moreover, 
the approximation of low order is correct only for short 
delays. It introduces an effect of collapsing stability regions 
(see figure 4) - it means that for longer delays low order 
approximations introduce larger (and false) regions of 
stability. However convergence is observed. One cannot rise 
the order of approximation too high, because it leads to ill 
conditioned polynomial, which roots are not reliable (see 
figure 5). 

3. DETERMINATION OF STABILITY REGIONS 

For this analysis it is assumed that for given h  the set 
of stabilizing K  is connected or empty - this is based on 
numerical analysis, because there are no general theorems 
allowing to assure connectedness of Hurwitz sectors. From 
this assumption and because for 0=K  system will never 
be asymptotically stable system can be stabilised either 
by positive or by negative feedback, but never by both. 
It is also assumed, that the value of maximal possible gain 
ensuring stability depends continuously on h , which also can 
be justified numerically. In that case it is only necessary to 
determine boudary values of K  and it can be performed 
through constrained optimisation. 
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Fig. 3. Comparison of approximated (roots of (16)) and true 
spectrum of system (12)-(13). 

 

Fig. 4. Collapsing of approximate stability regions - the 
lighter colors correspond to higher orders. 

 

Fig. 5. Comparison of approximated (roots of (16)) and true 
spectrum of system (12)-(13) – ill conditioned approximation 
(approximation of order 50>n ). 

To determine the region of stability, cyclic minimisation of 
performance index will be performed, for different h   
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The constraints are devised from the variant of Hurwitz 
criterion and are represented as follows. a  and c  are 
used to ensure that last 1q  coefficients of )(sd  are 

positive (first 2n are always positive and not influenced 
by K ) - a  is a vector consisting of coefficients of )( shQq   

multiplied by 0l , c  is vector of last 1q  coefficients of 

)()( shQsm q . Inequalities )(Khi  are appropriately even or 

odd principal minors of Hurwitz matrix, depending on 
oddity of q , multiplied by 1 . Because usually order of 

Padé approximation is high the number of constraints is 
about 30. 

Because the constraints ih  are highly nonlinear, especially 

for high qn 2  it is necessary to compute their gradients 

in some other way than through forward differences. A 
method of such computation can be devised from the 
formulas for the derivative of determinant. Principal minors 
are essentially determinants of lower order matrices. 
Because of that only the reasoning for derivative of 
determinant of Hurwitz matrix )(KH  is presented. One 

wants to find  
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Let us denote )(' KH  the matrix, whose elements are 

derivatives of elements of )(KH  with respect to K . It can 

be easily seen, that this is a Hurwitz matrix of polynomial 
)(0 shQl q   treated as the polynomial of order qn 2 . 

Then from Jacobi’s Formula  
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where )(tr A  is the trace of matrix A , and )(Adj A  is the 

adjugate matrix of A . Because of astronomical 
computational complexity of adjugate matrices this formula 
has little use in gradient computations. It can be however 
reformulated into  
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which is much easier to compute but has a one serious 
drawback - it is useless for singular matrices. Other method 
free from that drawback is the following formula (see 
(Turowicz, 2005)):  
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where )(KiH  is a matrix )(KH  in which the i -th column 

was replaced by the i -th column of )(' KH . Both these 

formulas were tested statistically regarding their computation 
time. Such comparison for derivatives of determinant of 50 
  50 matrices is illustrated in the figure 6. 

As it can be seen, matrix inversion algorithm is faster, and the 
difference rises with the matrix dimension. That is why a 
compromise solution was proposed. Because determinants of 

)(KH  or its minors can become 0  – which corresponds to 

reaching the desired boundary value – matrix inversion 
algorithm (20) cannot be used directly. 

 

Fig. 6. Histogram of gradient computation speed - 
determinant and matrix inversion algorithms. The horizontal 
axis is the time of computation, and the vertical is percentage 
of occurrence. Both graphs have outliers removed. 

So in order to quickly compute necessary gradients, an 
algorithm was constructed that used matrix inversion (20) in 
nonsingular cases and determinants (21) in singular ones. 

To ensure fast convergence for different h  from the 
assumption of continuous dependence of boundary K  on h a 
linear extrapolation was used as a way of finding next initial 
value for optimisation along with necessary contractions to 
stay in the feasible set. Also maximal line search step was 
strictly bounded, to avoid leaving the feasible set by accident. 
It was observed in some cases that constraints resulting from 
Hurwitz criterion can become arbitrarily small, but positive - 
keeping algorithm in the desired, even very strict constraint 
violence level but with unstable closed loop system. 

4.1 Examples of results 

In figures 7 to 9 the stability regions for ladders with 
32,1,=n  are presented. For those [0,10]h  is analysed, 

and for this interval approximation with 16=q  shown 

appropriate correctness. Results were verified through 
simulation of a system (1) with a delay controller (6). As it 
was mentioned before some interesting graphical properties 
can be observed. For 1=n  almost for every h  there exists a 
stabilising controller. Moreover areas of stability are bounded 
by the continuous curves. 

 

Fig. 7. Stability region for 1=n . 

 

Fig. 8. Stability region for 2=n . 

 

Fig. 9. Stability region for 3=n . 

The most interesting aspect occurs for 2n . One can clearly 
see, that in order to stabilise system, one have to use delays 
with a high value. Small delays, which were usefull in 1=n  
now can lead to destabilisation. It leads to nearly 
philosophical conclusion that in some situations you have to 
act no sooner than after some time - too fast reaction can be 
disastrous. Moreover, there are now entire intervals where 
stabilisation is not possible - it leads to conclusion that 
information from some periods in the past is useless. This 
approach for finding stability regions was considered in 
(Baranowski et al., 2009). 
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For 3=n  and higher the stability regions become more and 
more irregular, with very ’thin’ regions where stabilisation is 
possible, and generally smaller gains are available.  

5. OPTIMISATION OF IMPULSE RESPONSE 

Determination of stability region is not sufficient to obtain a 
good stabilising controller for the system. The choice of 
appropriate values of K  and h  becomes a problem of 
controller tuning. One of the criteria that can be used for such 
tuning is the requirement that impulse response of the system 
should consist of only brief transitional behaviour. One of the 
method of ensuring such situation is the minimisation of 

)[0,2 L  norm of output (also known as ISE criterion): 

ttyJ d)(= 2
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
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Finding the optimal pair ),( Kh  requires minimising the 

performance index (22) for impose response. Having 
information regarding stability regions one can perform such 
minimisation. A classical result can be considered (see for 
example (Grabowski, 1996)). 

Theorem 1 (James-Nichols-Philips) Let  
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and LH  is the Hurwitz matrix of )(sL  polynomial treated as 

a n -th order polynomial (for mi > , 0=ib ). This theorem 

provides means of determining performance index of finite 
dimensional systems without simulation. Closed loop system 
is infinite dimensional, however can be approximated with 
the Padé approximation of the controller in order to get the 
approximation of impulse response  
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for which theorem 1 can be used. Now one can use the 
constraints of stability regions and formula for performance 
index to construct a nonlinear programing problem. In order 
to improve finding the minimiser one can present the 
analytical formula for gradient of (22). 
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where 1!=  q
n hqq . Derivatives of determinants are given 

by formulas (20) and (21). Arguments of ),( KhH  and 

)(han  were dropped to increase clarity. 

Because of the nature of the process one needs to search for 
optimum only inside the stability region. Moreover, optimal 
value is never on the boundary, because then 0=)(det H . 

That is why one can simplify the optimisation using the 
spline approximations of the boundary as constraints, which 
is much easier than multiple constraints arising from Hurwitz 
criterion. Moreover stability regions are not connected. That 
is why natural approach is to optimise in every connected set 
separately and then choose the global minimiser. 

5.1 Examples of results 

The results of optimisation are presented in figures 10, 11 and 
12 for 21,=n  and 3  respectively. 

Optimisation of system with 1=n  provides most regular 
results. In the figure 10a one can observe, that the “valley” of 
optimal values of performance index (22) is smooth, much 
smoother than the boundary of stability region. As one can 
see in the figure 10b the optimal results are located in the 
interior of stability region approaching the boundary leads to 
generally higher values of (22) approaching infinity for such
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h  that no stabilising gains exist (points of changing the sign 
of stabiliser). Impulse response presented in the figure 10c is 
well damped, with just a few oscillations before steady state. 
What is interesting, the optimal stabilisation is obtained by 
using a positive feedback loop. 

For higher orders ( 32,=n ) more complicated stability 

regions influence the optimisation. However global 
minimisers are located in the interior of stability region. This 
is advantageous, because errors in determination of stability 
region caused by Padé appriximation are located mostly at 
the boundary. What is interesting, is that global minimiser is 
located in the second stability region, and while for 2=n  
values are close, for 3=n  global optimum is significantly 

smaller for larger h . Impulse responses are however much 
more oscillating than for the 1=n  case. It can be justified, 
by the fact that frequencies of natural oscillations in systems 
are not multiplicities of each other. For 1=n  there was only 
one frequency, and stabilisation by delayed feedback could 
be compared to influencing the system with phase shifted 
sine wave. One can see it as similar to wave interference. In 
case of higher orders there is no such possibility. 

6. CONCLUSIONS 

In this paper a new methodology of time delay controller 
parameter analysis was presented. This methodology 
allows to compute stability regions easily using Padé 
approximation. Determined stability regions were also 
used for determination of optimal impulse response (for 
the approximation). In this optimisation a new application of 
classical James-Nichols-Philips theorem. Also new methods 
of gradient computations are presented along with numerical 
analysis of their effectiveness. 

It should be noted, that validity of Padé approximation is 
limited, as it is correct only for delays relatively small with 
respect to order. Increasing order on the other hand leads to 
ill conditioning of polynomials and instability. 

 

(a) Minimal values of performance index in relation to 
stability regions. 

 

(b) Optimal performance index values for differing delay h. 

 

(c) The impulse response of global minimiser. 

Fig. 10. Optimisation of impulse response for n = 1. 

 

(a) Minimal values of performance index in relation to  
stability regions. 
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(b) Optimal performance index values for differing delay h. 

 

(c) The impulse response of global minimiser. 

Fig. 11. Optimisation of impulse response for n = 2. 

 

(a) Minimal values of performance index in relation to 
stability regions. 

 

(b) Optimal performance index values for differing delay h. 

 

(c) The impulse response of global minimiser. 

Fig. 12. Optimisation of impulse response for n = 3. 

In order to obtain exact stability regions one should consider 
other author’s work (Baranowski and Mitkowski, 2012b) 
where D-partition method was analysed. Optimisation of the 
non approximated system is more complicated, as the 
formulas require either computing complex variable integrals 
or solving Lyapunov operator equations. 

Further research will also attempt different approximations. 
Very good results were obtained for approximation of delay 
in nonlinear glucose dynamics system (see (Baranowski, 
2010)) using Legendre polynomials. This approach can also 
be very useful for stability analysis, as the same basis was 
used in (Breda et al., 2004) in analysis of true spectrum of 
time delay system. Different approximation approach is 
based on impulse response approximation. This approach 
approximates impulse responses that are located in 

)[0,)[0, 21  LL  with Laguerre orthonormal functions. 

This approach cannot be used for stability analysis, but for 
stable systems can be a great method for optimisation - 
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coefficients of approximation are the 2L  norm of the impulse 
response. This approach was used with much success in 
analysis of non-integer order systems (see (Bania and 
Baranowski, 2013; Baranowski et. al, 2014; 2016). For other 
results on ladder network application for control of 
distributed parameter systems see (Baranowski and 
Mitkowski, 2012a). 

Work partially realized in the scope of project titled ”Design 
and application of non-integer order subsystems in control 
systems”. Project was financed by National Science Centre 
on the base of decision no. DEC-2013/09/D/ST7/03960. 
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