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Abstract: In this paper we describe the structure of an artificial neuron designed using only basic 
electronic components such as transistors, resistors, capacitors and diodes which could be successfully 
implemented as the computation unit for a neural analogue integrated chip. Being able to associate 
between temporal events and to extract similarities from physical data, these neurons could be used as a 
tool for speech recognition or image processing problems. To test the performance of the electrical neural 
network under real conditions it was developed a tool which could perform speaker independent vowel 
recognition. The final goal of this approach is to manufacture an analogue integrated chip with similar 
behaviour as the neocortical column which is the basic functional unit of the biological brain.  
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1. INTRODUCTION 

The neuron represents the processing unit of the neural 
networks, its operation properties being inspired from the 
natural neuron physiology. In concordance with the biological 
behaviour, the spiking neurons generate trains of impulses 
when they are stimulated by changes of the external 
conditions [1]. Being able to detect events and generate a 
response when these events are concurrent, the spiking 
neurons have a great potential for obtaining good results in 
physical environment understanding. Moreover, offering the 
possibility of synaptic activity direct observation, the use of 
these neurons helps in understanding of the interactions that 
take place inside the biological neural network.  

The behaviour of these artificial neurons could be 
programmed in software by developing a mathematical model 
or by implementing an electrical scheme which operation 
mimics the main features of the natural neuron. The hardware 
approach offers real time computation speed while using low 
energy. Moreover, the high degree of parallelism implied by 
electrical scheme offers high reliability to the network.  

The principle of computation using spiking neurons is that 
they integrate the incoming positive and negative trains of 
impulses, the synapses being potentiated by almost concurrent 
stimulation [3]. Moreover, by delaying the information 
received from some sensors the neurons could associate 
events which happen at different time intervals. Therefore 
such neural networks learn to detect patterns of temporal 
events.  

The use of the electronic neuron as computation unit for 
artificial neural networks offers a good alternative for 
developing the control modules of the intelligent machines. 
Providing a very good accuracy in modelling the natural 
neuron physiology, it could be, also, used to understand the 
mechanisms which determine some neurological diseases. 

2. NATURAL NEURON 

The connections between neurons are known as synapses. 
The neural message inside the neural network propagates 

unchanged through the neurons and altered through the 
synapses [1]. Thus the intensity of each stimulus depends on 
the synaptic transmission efficiency which depends on 
neurons activity. Therefore, the processing power of the 
natural neural networks is given by the synapses. The 
structural components of the biological synapse are the 
presynaptic and postsynaptic membranes as well as the ion 
channels. These components provide the neuron with the 
ability to transmit the information inside the network and to 
learn from previous experience.  

2.1. Information processing 

The signals inside the natural network are carried by different 
types of mediator which are released from presynaptic 
membrane. The mediator molecules are driven through 
synaptic gap to the postsynaptic membrane where they are 
opening the ion channels. The mediating substances are able 
to increase the postsynaptic membrane potential (PMP) by 
opening +2Ca  and +Na  ion channels or to decrease it by 
stimulating the −Cl  ion channels [1]. The neurons which 
stimulate the positive ion channels are excitatory while in the 
other are inhibitory. One neuron could produce only one type 
of mediator and could receive stimulation from both types of 
neurons.  

The basic principle of the neural information processing 
represents the spatial and temporal integration of the 
incoming stimulation. This means that the PMP depends on 
the stimulation moment and on the place from where this 
stimulation comes. The increasing of the PMP above a 
threshold known as action potential, determines the 
postsynaptic neuron activation. During activation, the neuron 
releases the mediator from the presynaptic membrane into 
synaptic gap determining excitation or inhibition of the 
postsynaptic neurons. After neuron firing, the postsynaptic 
membrane is polarised under the equilibrium potential for a 
short period of time known as refractory period. During this 
time interval the sensitivity of the membrane decreases 
lowering the neuron capacity to fire [1].  
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Despite the fact that the action potential inside the neuron’s 
body propagates instantly, the migration of the mediating 
molecules inside the synaptic gap induces a delay in the 
neural message transmission. This latency period between the 
mediator releasing and the postsynaptic action potential is one 
of the important aspects of the natural neuron physiology [1].  

2.2. Associative learning 

The natural neural networks have the ability to detect 
concurrent stimulation by modifying its synaptic efficiency in 
order perform events association. During neuron activation 
the mediator released from presynaptic membrane opens the 
specific ion channels from the postsynaptic membrane. This 
fact triggers some structural alterations of the stimulated 
synapses which determine their temporary potentiation [2]. 
The action potential of a postsynaptic neuron fixes at the 
current values the efficacies of the synapses which contribute 
to its activation. The long-term potentiation represents the 
basic mechanism of the associative learning [2]. This 
increases the weights of the synapses which were activated 
synapses in a period of time preceding the postsynaptic 
neuron action potential. Considering multiple impulses and 
the synaptic behaviour described above, it is clear that the 
concurrent activated synapses which participate to neuron 
activation will be more strengthened than the ones which 
have no contribution to any postsynaptic activity. 

Another behaviour which determines synaptic efficiency 
alteration represents the increasing of the quantity of mediator 
released per neuron activation [1]. This feature and the long-
term potentiation bring a great contribution to synaptic 
dynamics which are responsible for neural networks long-
term learning. 

3. NEURON MODEL 

There are two models of spiking neurons which could 
represent the starting point in developing the hardware 
implementation of the artificial neuron. One is the 
conductance model (Hodgin – Huxley) which offers better 
accuracy in simulating the natural neuron physiology but the 
high complexity of the scheme increases the costs for large 
neural networks. In contrast, the integrate-and-fire model 
(McGregor) has a simplified spike generation mechanism 
while providing an accurate membrane potential 
approximation, neuron excitation and inhibition, as well as 
learning from previous experience [4]. The basic principle of 
the integrate-and-fire model consists of a capacitor C charged 
by a current I implying a potential U. The increasing of the 
potential U above a threshold V will make the artificial 
neuron to fire by generating an electrical impulse to each of 
the following neurons [3].  

A model of spiking neurons which combines the biologically 
plausibility of Hodgin-Huxley model and the computationally 
efficiency of integrate-and-fire model was developed by 
Izhichevich (2003) [14]. Another model which is one of the 
newest models of spiking neurons was developed by Lovelace 
(2008) [15]. These two models were developed to decrease 
the network response time when the activity of thousands of 
neurons is simulated on a single processor.  

On the other hand the artificial neurons developed for this 
work were designed to provide independency between 
network response time and the number of neurons. Therefore, 
due to the fact that operation of these neurons is based on 
physical laws which governs the electronic components – 
such as resistors, capacitors, transistors and diodes – an 
analogue network offers real time computation independent 
of the number of neurons.  

3.1. Neuron structure 

The electronic neuron whose structure is presented in figure 1 
was designed to model the critical features of the biological 
synapse physiology while being suitable for silicon 
integration. 

 
Fig. 1. The basic structure of the artificial neuron 

The artificial neuron’s body implemented using only simple 
circuit elements is divided functionally into three modules. 
These are the input module (IM) responsible with simulation 
of the postsynaptic membrane features, the spike generation 
module (SGM) responsible with information transmission and 
the efficiency control module (ECM) which models the 
natural mechanisms of learning.  

3.2. Neuron stimulation  

The IM – whose electrical circuit is presented in figure 2 – 
integrates the incoming impulses by charging the capacitor C 
through resistors R. It also activates the SGM when the 
integrated voltage from C reaches the NPN transistor base-
emitter voltage.  

 
Fig. 2. Input module scheme. The capacitor C integrates the 
incoming impulses through resistors R and the neuron 
activation threshold is given by base-emitter voltage of the 
NPN transistor. 

 
During development process the equilibrium potential of the 
artificial neuron was set to 0.4 V. The duration of the 
refractory period which begins after the neuron activation 
depends on the value of the resistor RF which limits the 
charging current of the capacitor C. Being composed only of 
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resistors, capacitors, transistors and diodes this module is 
suitable for IC manufacture which is an important goal of the 
future work. 

3.3. Synaptic weights adjustment  

One important aspect of the biological neural networks 
physiology is the ability to learn from previous experience. 
Thus, the natural synapses could change their efficiency by 
increasing the mediator quantity released from presynaptic 
membrane or by improving the postsynaptic membrane 
sensibility. 

The scheme of the efficiency control module (ECM) of the 
electronic neuron is shown in figure 3. An important task 
solved by the ECM represents the simulation of the natural 
mechanism of synaptic weights adjustment using only basic 
electronic components while keeping the scheme as simple as 
possible [12].  

 
Fig. 3. The artificial neuron learning mechanism. The 
integration module (IM) triggers the STP and PTP by 
saturating the NPN transistor and the postsynaptic neuron 
(PSN) triggers the LTP. The synaptic efficacy stored by the 
capacity LC is given as input for spike generation module 
(SGM). 

As presented by previous chapter, the short-term potentiation 
(STP), long term potentiation (LTP) and posttetanic 
potentiation (PTP) bring an important contribution to network 
weights dynamics. The synaptic efficiency is stored in a 
learning capacitor (LC) whose charge is a consequence of the 
neuron previous activity [5]. To simplify the electrical 
scheme design, the maximum charge of the LC represents 
minimum efficiency of the synapse, and the minimum voltage 
reached by LC during electronic neuron normal operation 
models maximum weight of the synapse. When the neuron is 
activated the charge stored by LC affects the impulse 
duration, the corresponding voltage being used as input by the 
SGM. The variation of the synaptic strength is modelled by 
exponential and logarithmic functions which describe the 
capacitor’s charging and respectively, discharging.  
 
The stimulation from presynaptic neurons integrated by the 
IM saturates the NPN transistor which opens the PNP 
transistor. This triggers the processes which simulate the 
natural synapses efficiency alteration. For the STP modelling, 
the LC is temporary discharged during neuron activation with 

an amount determined by STP learning rate. Because the STP 
is a reversible process, the charge lost by LC is stored in 
another capacitor CS. For this work it is considered that the 
postsynaptic neuron (PSN) activation triggers the mechanism 
which transforms the STP in LTP. If this mechanism is not 
initiated the potentiation of the electrical synapse is 
continuously decreased to almost its pre-firing efficiency. 
This process is determined by recharging the LC from CS 
through resistor RS. Therefore the duration of the temporary 
potentiation of the artificial synapse is proportional with 
resistor RS value and the STP rate is given by the parameter 
CS [5].   

The presynaptic component of learning PTP is modelled by 
the current limited by resistor RV which discharges the 
capacitor LC when the neuron is activated. To model another 
important aspect of the natural neuron physiology, the PTP 
rate – determined by RV parameter – was chosen much lower 
than the STP rate [1]. If the postsynaptic neuron is activated 
during STP the capacitor LC voltage is fixed at the current 
value by the sudden discharge of CS. This will stop the 
synaptic strength decreasing which determines the LTP of the 
synapse. 

Because the mechanisms which underlie the natural synapses 
depression are a subject of debate for neurosciences [1], this 
biological feature was modelled by continuous charge of the 
LC through diode D. The very low reverse current of the 
diode makes the synaptic depression a very slow process 
which happens in case of no synaptic activity. Being the 
reverse process of the synaptic potentiation the synaptic 
depression implies the decreasing of the synaptic weights. 

3.4. Spike generation 

Another important aspect regarding biological neuron 
behaviour is the activity of the natural presynaptic membrane 
which transmits the neural message to the following neurons. 
Thus, the SGM of the artificial neuron generates electrical 
impulses during neuron activation. The strength of every 
impulse depends on the ECM module output. Therefore, the 
weight of the synapse is proportional with the impulse 
duration. The variation of the stimulation intensity could also 
be modelled by spike amplitude alteration. However, the 
SPICE simulations of the circuit showed that the neuron 
discrimination power was lower than that obtained by spike 
duration modelling. Moreover, this would introduce a 
limitation in lowering the neuron operating voltage which is 
in contradiction with the future goals of analogues integrated 
chip development.   

The spike generation module SGM – whose scheme is shown 
by figure 4 – generates a voltage impulse during neuron 
activation. The duration of each spike is given by the ECM 
and depends on the charge stored by the LC. Thus, the spike 
lasts longer if the voltage given by ECM is lower.   

One biological feature simulated using the capacity CF and 
resistor RF is the fatigability. CF is charged during PNP 
transistor saturation with an amount which depends on the 
capacitor value. This will lower the power of the following 
stimulation by decreasing the amplitude and duration of the 
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Fig. 4.  The spike generation module (SGM) scheme 
with fatigue mechanism. The efficiency control module 
(ECM) opens the PNP transistor which will generate a 
spike to the PSN. 

impulse. During idle state of the electronic neuron the CF is 
discharged by a current limited by resistor RF. High 
frequencies of stimulation will break the equilibrium between 
CF charging and discharging lowering the potential from PNP 
emitter. Therefore, the neuron will not be able to fire until the 
charge from CF is lost. This property makes the neuron a 
filter for high frequency stimulation. 

3.5. Artificial Neuron Implementation 

First step in natural neuron physiology modelling was the 
SPICE simulations of the circuit operation which provided 
good results for neuron development, but for large networks 
the simulation became time consuming. Therefore, a board 
design represented a better solution for network studying and 
testing under real conditions. However, because of the big 
physical dimensions, this approach in hardware 
implementation becomes difficult to handle when we deal 
with large networks of such neurons.  

To solve this problem the electrical scheme of the artificial 
neuron was developed using only electronic components such 
as transistors, diodes, resistors, and capacitors which are 
suitable for silicon integration [6], [7]. Therefore, this will 
help in designing an analogue integrated chip with the same 
operation characteristics as the board, while taking the 
advantage of a substantially reduced size. Moreover, the 
SPICE simulations of the circuit showed that the values of the 
critical components could vary more than ±20% for 
capacitors and more than ±30% for resistors without affecting 
the overall operation of the neuron. This parameter variation 
is in concordance with the tolerance needed when designing 
the integrated chip which is an important aspect considered 
for the future work. The neuron model uses nanofarads of 
capacitance which is more than a single die could 
economically include during normal fabrication process [6]. 
Therefore, the manufacture of the integrated chip requires a 
special dielectric such as barium strontium titanate (BST) [9]. 
Another aspect that will be taken into consideration is the 
replacing of the LC with a floating-gate transistor which 
represents a better solution for on-chip non-volatile storage of 
the synaptic weights [10].  

In the biological brain the neurons are organised into basic 
functional units which communicate between them, each 
containing about 10 000 highly connected neurons. These 
units known as neocortical columns are repeated million of 
times across the cortex [13]. The electronic model of one of 
these basic neural volumes containing ten thousand neurons 
could be integrated on approximately four square centimetres 
of die area when BST material is used for capacities 
implementation.   

4. NEURON OPERATION 

The main properties of the electronic neuron operation which 
are in concordance with the biological neuron physiology 
were illustrated using the board implementation of the 
artificial neuron. It were tested the spatial and temporal 
integration of the incoming stimulation, as well as the 
presynaptic and postsynaptic components of learning. 
Therefore, the signal diagrams presented forward spot on the 
posttetanic potentiation, short-term potentiation and long term 
potentiation of the artificial synapse. 

4.1. Spatial and temporal integration of the incoming 
stimulation 

The output layer of the artificial network shown in figure 5 is 
composed of one postsynaptic neuron which receives voltage 
spikes from two presynaptic neurons as it is illustrated by the 
signal diagrams from figure 6. Therefore, the diagrams (a) 
and (b) shows the input potential of the presynaptic neurons 
Pre 1 and respectively, Pre 2 which are activated by the input 
neurons IN1 and IN2.  

 
Fig 5. The structure of a network composed of two 
presynaptic neurons (Pre1 and Pre2) and one postsynaptic 
neuron (Post1) 

The waveform (c) represents the input voltage of the 
postsynaptic neuron Post 1 which integrates the incoming 
stimulation from the Pre1 and Pre2. Thus, the neuron Pre2 
whose activity is illustrated by diagram (b) increases the input 
potential of the Post1 without triggering its action potential. 
The postsynaptic neuron will fire as a consequence of neuron 
Pre1 activation. This behaviour is illustrated by the Pre1 input 
potential shown in figure 6 (a) and by the Post1 input 
potential presented by figure 6 (c). 

Another property modelled by the artificial neuron is the 
refractory period which begins after the neuron firing is 
characterised by a temporary decrease of the input voltage 
below the equilibrium potential. The equilibrium potential is 
set to 400 mV below the BEV  voltage of the NPN transistor, 
while the beginning of the refractory period pulls down the 
input voltage of the neuron at 300 mV. 
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a)  

b)  

c)  

vertical div.= 100mV; horizontal div.= 1ms 

Fig. 6. (a) and (b) the input potential for two presynaptic 
neurons; (c) the input of a postsynaptic neuron. 

For all signal diagrams shown in this paper the corresponding 
voltage of one vertical division is 100 mV and is shown 
below the diagram after ‘CH1’. The corresponding time for 
one horizontal division is specific for every waveform and is 
shown below the diagram after letter ‘M’.  

4.2. Artificial mechanism of learning 

The main rule of the synaptic weighs adjustment which is 
inspired from biology is that all the synapses which 
participate to the postsynaptic neuron activation are 
potentiated. On the other hand, the efficiency of the activated 
synapses after the postsynaptic action potential remains the 
same. 

To illustrate the ability of the electronic synapses to change 
their efficiency, it was considered a network of electronic 
neurons whose topology is presented in figure 7 (a).  

a)  

b)  

c)  

vertical div.= 100mV; horizontal div.= 2.5ms 

Fig. 7.  a) Network topology for underlying the rule which 
governs the synaptic potentiation; b) The influences of the 
presynaptic neurons on the postsynaptic input potential when 
during training the second one triggers the LTP only for  
previous activated neuron. c) The inverted proportionality 
between the potentiation rate of the synapses and the time 
elapsed until postsynaptic action potential was triggered by 
the third neuron. 

The aim of the simulation was to spot on the importance of 
the LTP when almost concurrent events stimulate the network 
input. Thus, each of the presynaptic neurons PN1, PN2 and 
PN3 stimulates the postsynaptic neuron a number of times, 
each time the PN2 activating the postsynaptic neuron. The 
time intervals between the PN1 and PN2 activations, and 
respectively, between PN2 and PN3 activations are the same 
for all iterations.  The action potential of the PN2 triggers the 
LTP only for previously activated PN1. Thus, after the 
network training the PN1 synapse should be more potentiated 
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than the PN3. The second goal of the simulation was to spot 
the dependency between the gain in synaptic efficiency and 
the time elapsed until the postsynaptic neuron activation. The 
training is started again from null synaptic weights for PN1 
and PN2, but this time PN3 activates the postsynaptic neuron 
triggering the LTP for the previous activated neurons. After 
the second phase of the experiment the first activated synapse 
should be less potentiated than the second one.  

The signal diagram from figure 7 (b) confirms the supposition 
made showing the significant difference between the 
potentiation of the PN1 and the PN3 synapses when the 
postsynaptic neuron is stimulated by sets of three excitatory 
impulses. For the neuron PN1 the increase in synaptic 
strength was determined by the LTP which was triggered by 
the postsynaptic neuron activation, while for PN2 the synaptic 
efficacy was increased only by the PTP process. The 
waveform (c) confirms the inverted proportionality between 
the gain in synaptic strength and the time interval elapsed 
from presynaptic neuron activation and the postsynaptic 
action potential. Thus, the PN1 synapse is less potentiated 
than the PN2 synapse due to the fact that the PN2 activation 
moment is closer to postsynaptic action potential. This 
behaviour of the artificial neurons learning mechanism is used 
as the basic principle for the word recognition process which 
will be detailed in the next chapter. 

5. WORD RECOGNITION EXPERIMENT 

To test the ability of the artificial neurons in association of 
temporal events it was considered a network which performs 
vowel classification by frequencies association. The neural 
network which will be presented in the sequel is stimulated by 
sets of concurrent impulses which represent the activation of 
frequency channels specific for each vowel. After training, 
reception of each vowel will be signalled by activation of a 
hidden neuron [12]. Moreover the output neuron will be able 
to detect a word formed by these vowels.  

The word recognition using spiking neurons was previously 
done by Hopfield and Brody with their mus silicium. That 
was an integrated chip containing about 1000 neurons which 
could be trained to recognise ten spoken words [16].  The 
speech was split into 20 frequency channels, each channel 
stimulating 20 neurons with different frequency decay rates. 
The word recognition was made by detection of the almost 
concurrent impulses generated by different frequency 
channels which activates neurons with different frequency 
decay rates [17].  

In contrast, the network used for the experiment described in 
the sequel learns to detect words using same type of neurons 
which were described previously in this paper. Moreover, the 
neurons are generating singular impulses per stimulation. The 
successions of spoken sounds – i.e. vowels – are detected 
using delaying neurons. Therefore, the main differences 
between Hopfield approach and my approach is that my 
neural network uses the same parameters for all the neurons 
which provides generality to the use of the neural network. 
Another difference is that these neurons fires once per 
channel stimulation while the Hopfield’s neurons generates a 
frequency which decays in time with different rates. For word 

detection my network uses delaying neurons which 
compensates the time intervals between spoken sounds. This 
will shorten the time intervals between the corresponding 
stimulations on the word detection neuron. Another original 
aspect regarding my network represents the use of previously 
trained neural paths in order to improve the learning rate. 

5.1. Biological background 

The biological ear splits the audio signal into frequency 
channels using the resonance of different segments of the 
basilar membrane and sends channel dependent impulses to 
the brain [11]. Some experiments on human subjects showed 
that high performance in speech understanding does not 
require a detailed spectral representation of the speech signal. 
Therefore, asymptotical performance in speech understanding 
was obtained when only 8 frequency channels were presented 
to the subjects [8]. Thus, each sound could be identified by its 
specific audio frequencies and considering that spoken vocals 
are some of these sounds, the experiment presented forward 
focuses on the basic aspect of the speech recognition. The 
output of the activated channels is suitable to be processed by 
networks of spiking neurons which perform events 
association. 

5.2. Audio module 

For the performed experiment the vocal spectrum of the audio 
signal is split into frequency channels using band-pass 
resonant filters. Each of these channels sends voltage 
impulses to an input neuron of the artificial network when the 
specific frequency is received.  Obviously, the specific 
channels for one vowel will stimulate the network almost 
concurrently increasing the weighs of the activated synapses. 
Figure 8 presents the structure of the audio module which 
transforms the audio signal into impulses which stimulate the 
input layer of the neural network. The amplified signal from 
the microphone is split into frequencies by the resonant filters 
(RF) and the positive peaks of each channel are transformed 
into spikes suitable for network stimulation.   
 

 
Fig 8. The structure of the audio module which converts 
audio signal into voltage impulses for the input layer of the 
neural network. 

The output of each RF is amplified using a ßA741 operational 
amplifier and transformed into impulses by a LM324. The 
peak threshold for each channel could be modified by 
variable resistors connected to the negative input of the 
LM324 op-amps. 
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Fig. 9. Input neuron of the neural network; its main role is to 
make spike amplitude and duration adaptation. 

For proper operation of the network, the input neurons make 
the limitation of the impulse amplitude to 1.6 V and of the 
spike duration to 30us. Considering the electrical scheme 
shown by figure 9, it is clear that the voltage adaptation is 
made by the NPN and PNP transistors, while the impulse 
duration is proportional with the capacity C value. 

5.3. Network topology 

To test the classification power of the electronic neurons 
presented in this work it was considered a network of 
excitatory neurons able to perform audio channels 
classification into spoken vowels. Moreover, the output layer 
of the network is able to associate the two vowels if they are 
said almost concurrently to form a word. To easily asses the 
results, for each vowel were chosen the most significant pair 
of frequency channels. Thus, based on direct observation on 
the oscilloscope of the audio module behaviour, the ‘a’ vowel 
activates the frequency channels: 

fa1 = 828 Hz; fa2 = 1260 Hz 

while the ‘e’ vowel is mainly characterised by  the 
frequencies: 

fe1 = 1808 Hz; fe2 = 2134 Hz 

As it was previously supposed in our work [12], the activated 
channels do not depend on the speaker or the voice tone 
which is an important aspect of the speaker independent 
speech recognition. 

It is clear that any speech sound – by unique activated 
channels configuration – will make a unique alteration to the 
synaptic weighs configuration of a large neural network. 
However, the simple topology of network presented in figure 
10 helps in understanding the basic principles of almost 
concurrent events association. 

The presynaptic neurons aFN1 and aFN3 are stimulated by 
the input neurons IN1 and respectively, IN3, while the 
neurons eFN5 and eFN7 receive impulses from IN5 and 
respectively, IN7. Each channel activates one of the 
presynaptic neurons and the time interval between the spikes 
received is specific to every vowel. This time interval 
depends also on the amplitude of the audio signal. The short 
duration of this interval helps in illustrating the ability of the 
artificial network to associate concurrent events. After 
network training, the neurons aFN1 and aFN3 activate the 
neuron aN when vowel ‘a’ is said at the microphone. The 

vowel ‘e’ is recognised similarly by the action potential of eN 
which is stimulated by neurons eFN5 and eFN7.  

 

 
Fig. 10. The topology of a network composed of two hidden 
layers of excitatory neurons which classifies frequency 
channels into spoken vowels and vowels into words. The 
WMN action potential activates eaN neuron. 

5.4. Network training 

Network training is made by repetitive stimulation of the 
network input layer by pairs of spikes that are specific for 
every vowel. The neurons eFN5 and eFN7 will be activated 
for ‘e’ vowel reception when the fe1 and fe2 frequency 
channels stimulate the input layer of the network. Similarly, 
the neurons aFN1 and aFN2 will be activated by vowel ‘a’ 
reception signalled by fa1 and fa2 channels. At the beginning 
of the experiment, all the synaptic strengths were set to 
minimum that means that they have no influence on the 
postsynaptic neurons in case of presynaptic activity.  

When the input layer receives the specific stimulation for ‘e’, 
the synaptic efficiencies of the synapses eS1 and eS3 are 
increased only by PTP which is a low power component of 
learning. After several stimulations of the network input layer 
by ‘e’ vowel specific channels the postsynaptic neuron eN 
reaches its activation threshold triggering the LTP for 
participating synapses eS5 and eS7. This strong potentiation 
of the synapses will make the neuron eN to be the vowel ‘e’ 
detector. Similarly, the ‘a’ vowel is detected by the hidden 
neuron aN, which triggers the LTP for synapses aS1 and aS3.  

Thus, the reception of ‘e’ vowel will make the neuron eN to 
fire while the ‘a’ vowel will activate the neuron aN. Because 
of the great complexity and diversity of the biological neural 
network it is supposed that exists a third neuron eaN which is 
able to associate the almost concurrent activations of the 
neurons eN and aN with a third supraliminal stimulus which 
activates the postsynaptic neuron eaN. Therefore this neuron 
is able to detect the vowel combinations ‘ea’ or ‘ae’ by 
triggering the LTP for previous activated neurons eN and aN. 
For this experiment it was considered only de word ‘ea’ 
recognition because in Romanian language during normal 
speech the ‘a’ vowel is easier to link after ‘e’ vowel.  The 
activation of the input neuron INx simulates the receiving of 
an external stimulus which is considered to be previously 
known by the network. As an example, the external stimulus 
represents an image which could be associated with the word 
received. Taking into account the similarity with the 
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experience gained in time by a biological neural network, the 
neural path which is activated by this stimulus is previously 
trained. Therefore, the synapse wmS is able to activate the 
neuron eaN. However, the activation of this neural path could 
be obtained by repeated stimulation of the input neuron INx 
which determines the potentiation of the synapse wmS by 
PTP mechanism. This process could be repeated until the 
neuron WMN is able to trigger eaN action potential. 

5.4. Experimental results  

The network behaviour proves our supposition that the 
neurons make the vowel detection by synaptic strength 
adaptation to the input stimulation. The experiment proves 
also the ability of the neurons to make word detection by 
vowel association.  

5.4.1. Vowel detection  

The signal diagrams (a) and (b) from figure 11 show the input 
potential of the neuron aN during the network training. The 
sudden decrease of the voltage illustrates the neuron 
activation determined by the concurrent action of the 
synapses aS1 and aS3. The waveform (a) illustrate the 
integration of the incoming stimulation which determines the 
first activation of aN is illustrated by the waveform (a). After 
this training iteration, the efficiency of the aS1 and aS3 is 
increased by the LTP until it determines the neural activations 
shown by signal diagram (b). 

The illustrations of the network behaviour after frequency 
classification is illustrated in figure 11 (b) and (c). The 
waveform (b) represents the input potential of the neuron aN 
activated by the ‘a’ vowel reception. Similarly, waveform (c) 
illustrates the activation of the neuron eN after network 
training when the frequency channels which are specific for 
‘e’ vowel stimulate the input layer of the network.  

Therefore, eN makes the vowel ‘e’ detection while the ‘a’ 
vowel is detected by aN neuron. The eN and aN neurons 
activations are illustrated by the sudden decreases of the 
voltage which represents the beginning of the refractory 
period. The successive pronunciation of these vowels implies 
successive activations of these two neurons which could be 
associated by a third neuron in order to perform word 
detection.   

 

a)  
 

b)  
 

c)  

vertical div.= 100mV; horizontal div.= 10ms 
 
Fig. 11. a) The influence of the presynaptic neurons on aN 
input potential during first activation of the aN; b) and c) The 
input potentials of the neurons eN and aN after training. The 
sudden decreases of the input voltage illustrate the neuron 
activations. 

5.4.2. Word detection 

As it is shown by the network topology from figure 8 the eN 
and aN neurons are connected to a postsynaptic neuron eaN. 
The last one receives voltage impulses from both presynaptic 
neurons during the ‘e’ vowel and respectively ‘a’ vowel 
receptions.  

The signal diagram (a) from figure 12 shows the input 
potential for the eaN during network training when the eN 
and aN presynaptic neurons are not powerful enough to 
activate the postsynaptic neuron. The LTP process increases 
the gain in synaptic efficiency per neuron activation. Thus, 
the potentiation of the synapses eS and aS is stronger when 
the mechanisms of LTP are triggered by the postsynaptic 
neuron. The eN and aN presynaptic neurons are stimulating 
the neuron eaN prior to activation of the neuron WMN. 
During the eN and aN activity the corresponding synapses aS 
and respectively, eS are temporary potentiated by the STP 
process. The last one will determine the postsynaptic action 
potential which will fix the temporary potentiated synapses. 

Thus, after few repetitions of the corresponding stimulations 
for vowel ‘e’ followed by ‘a’ and than ‘external stimulus’, the 
action potential of aN neuron which activation is closer to 
supraliminal influence of WMN, will activate the neuron eaN. 
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a)  
 

b)  

vertical div.= 100mV; horizontal div.= 25ms 

Fig. 12. The input potential for neuron eaN which detects the 
‘ea’ vowel combination; a) before training was finished; b) 
after training. The gap between the first three voltage steps 
which is longer on diagram (a) illustrates the pause between 
‘e’ and ‘a’ vowels. 

This means that the successive spoken vowels ‘ea’ have the 
same response inside the neural network as the external 
stimulus (activation of the neuron eaN). From this point, the 
stimulation of the input neuron INx is not necessary because 
aN will trigger the LTP for eN like in figure 12 (b). First three 
voltage steps are caused by the vowel ‘e’ reception, while the 
last voltage steps illustrates the neuron aN influence on the 
eaN input. Therefore, the neural network learns to make an 
association between the vowel combination and the external 
stimulus which could be an previously known image. 

 
Fig 13. The insertion of a delaying neuron into neural path of 
‘e’ vowel detection. 

The sensitivity of word detection increases when the gap 
between vowel receptions is shorter. This fact could happen 
when the neural path from the network input to the word 
detection neuron for vowel ‘e’ is longer than the neural path 
for vowel ‘a’. Due to latency period of the neuron, the length 
of a neural path is proportional with the delay introduced in 
neural message transmission. Thus, the time interval between 

successive receptions of spoken vowels could be 
compensated by the neural path delay. This will shorten the 
time interval between the vowels stimulations on the word 
detection neuron. The topology of the network tested for this 
experiment (figure 10) could be modified by introducing 
some neurons on vowel ‘e’ neural path like in figure 13. 
These neurons will delay the stimulation of the postsynaptic 
neuron eaN by the eN, improving word detection due to the 
shorter time interval between stimulations implied by the two 
vowels reception. 

The operation of this artificial network encourages us to 
extend it successfully to recognise all vowels and speech 
sounds. Moreover, the behaviour of the output neuron 
demonstrates the ability of this neural network to recognise 
words which makes it suitable for speaker independent speech 
recognition.   

6. CONCLUSIONS 

This paper describes a new biologically inspired electronic 
model of neurons. The main goal of this new design is to 
obtain large neural networks without the disadvantage of 
computation time increasing. This model uses simple 
electronic components which makes it suitable for analogue 
integrated chip design while providing good simulation of 
natural neuron crucial features. The basic electronic 
components could be seen as high-complexity program 
functions governed by physical laws with parallel execution, 
which linked in a circuit provides the overall operation of the 
neuron. Same neuron behaviour could be obtained when this 
circuit is simulated in software, but in this case the 
computation time increases substantially. The analogue 
design of electronic neuron offers almost unlimited power for 
temporal events discrimination. The external events will be 
reflected in neural network activity and the concurrent 
stimulation will modify the synaptic configuration of the 
network. The artificial synaptic efficiency depends on a 
capacitor charge which is a simple solution to model the 
activity dependent alteration of the synaptic geometry. 
However, for the analogue IC development this capacitor will 
be replaced with a floating gate transistor which is a better 
solution for on-chip non-volatile storage.  

As was shown by the performed classification experiment, the 
efficiency of the concurrent activated synapses which 
participate to postsynaptic neuron activation is substantially 
increased, while the sensitivity of the unused ones remains the 
same or decreases. Thus, the network could develop in an 
unsupervised manner its own topology which depends only 
on its previous activity. Considering that the brain synaptic 
configuration is a consequence of the natural selection (along 
generations by environment validation of the fittest genetic 
mutations), it is possible for an electronic network having 
electricity as source of energy to build the same synaptic 
configuration as the biological one. This would be useful for 
neurosciences when it is needed the activity simulation of the 
different parts of the brain, or for developing the control 
modules of the intelligent machines.  

The neocortical column (NCC) which contains about 10 000 
neurons connected in an intricate way represents the 
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functional unit of the biological brain. The main difference 
between the human brain and the mice brain represents the 
number of such processing units. Therefore, it may be 
possible that the intelligence degree will increase 
proportionally with the number of such units which build the 
biological brain. The development of a system that provides 
more intelligence than human brain hits the problem of 
parallel activity simulation of billions of high complexity 
neurons. Based on the biological neuron physiology and 
providing real time operation the silicon integration of the 
electronic neuron could be successfully used to model the 
behaviour of the NCC.  Considering that 10 000 electronic 
neurons could be integrated on about four square centimetres 
of silicon, it is clear that a computing architecture of 100 000 
neural ICs will take approximately 40 m² of die area. Due to 
the low current consumed by the artificial neuron, the power 
needed for proper operation of such a system oscillates 
around 480 Watt.   

Thus, despite the production costs of the integrated chips and 
the difficulties which could appear in making the connections 
between all the artificial NCC, the real time operation of the 
electronic neuron makes the brain like artificial neural 
network containing one billion neurons, to be practically 
feasible.  
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