
CEAI, Vol.10, No. 4, pp. 55-62, 2008 Printed in Romania

Modeling In Simulink Temporal Behavior of a
Real-Time Control Application Specified in HTL

Daniel Iercan, Elza Cîrciu

“Politehnica” University of Timisoara, Department of Automation and Applied Informatics

300223 Timisoara, Bd. Vasile Parvan No.2, Romania
 e-mail:{daniel.iercan, elza.circiu}@aut.upt.ro

Abstract: Development of a real-time control application usually starts with the design of the control
algorithm using modeling tools such as Simulink. Once the control solution has been designed and
validated through simulations it is implemented using one of the existing real-time programming
technologies. Such a technology is Hierarchical Timing Language (HTL), which can specify timing and
interactions between periodic tasks. Although the control solution is tested through simulations, the
timing of the application that will implement the control solution in most of the cases it is not. This paper
presents a method of modeling in Simulink temporal behavior of a real-time control application which is
specified in HTL, thus allowing testing both functionality and temporal behavior at once.

Keywords: real-time, control application, Simulink, timing, model.

1. INTRODUCTION

In the process of development of real-time control application
offline testing plays an important role. Simulink [1], which is
a tool for modeling, simulating, and analyzing multi-domain
dynamic systems, is widely used for designing control
algorithms. Simulink offers the possibility to model both
plant and controller dynamics, thus allowing testing of a
control algorithm before it is used on the real plant.
Nevertheless even if the model of the plant is very close to
the real plant, simulating the control algorithm in Simulink it
is not enough to ensure that the implementation of the control
algorithm for a given platform will work. This is because
when the control algorithm is simulated in Simulink it does
not consider the timing of the application that will implement
the controller, thus the implementation could introduce some
unknown delays, which have not been considered in the
design of the control algorithm, and which in the end could
make the control application not to work properly.

Hierarchical Timing Language (HTL) [2] is a relatively new
programming language that can be used to specify timing of a
real-time application. HTL can not be used to specify
functionally of a real-time application, which has to be
implemented in a regular programming language (e.g.: C,
Java, etc.). HTL has been developed as an extension of Giotto
[3]. Development of a real-time control application using
HTL consists of specifying the timing of the application as an
HTL description and of implementing the functionality in a
regular programming language. Currently there are HTL
implementations for UNIX operating systems [4], for Java
[5], and for Robostix [6] (a board based on a 16 MHz
microcontroller).

In this paper it is presented a method for modeling HTL
descriptions in Simulink. The HTL compiler [2, 4] has been
extended in order to compile an HTL description into a

Simulink model. Using this new feature of the HTL compiler,
it is possible to simulate not only the control algorithm, but
also the timing of the real-time application that will
implement the controller, which should improve development
of real-time control application using HTL. Beside of being
able to simulate the control algorithm and the timing of the
application that will implement the algorithm, modeling an
HTL description in Simulink has another important
advantage: the ability to generate C code for tasks directly
from the Simulink schema, using Real-Time Workshop [7].
Thus, once the tasks have been modeled in Simulink
functional C code for them can be generated automatically.
Generated C code can then be used as tasks implementation.

The rest of the paper is structured as follows: in Section 2 we
will compare the work presented in this paper with other
similar work, in Section 3 there will be presented elements of
HTL syntax, in Section 4 it is presented a case study that will
be used to explain the modeling of an HTL description in
Simulink, in Section 5 it is presented the modeling procedure,
Section 6 presents the results of using the modeling
procedure for the case study, finally Section 7 concludes the
paper.

2. RELATED WORK

Modeling timing of a real-time application in Simulink is not
a new idea; it has been done before for Giotto [8].
Nevertheless, modeling a Giotto program is different than
modeling an HTL description, since Giotto has no
hierarchical structure and no communicators. Generating
code from a Simulink schema has been done for Giotto and
for other languages. For Lustre it has been developed a tool
chain [9] that can generate a Lustre program out of a
Simulink model, which is the opposite of what it is presented
in this paper for HTL, since in this paper from an HTL
description it is generated the Simulink model, while for

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

Lustre the Simulink model is created first and then from it the
Lustre program is generated.

3. ELEMENTS OF HTL SYNTAX

The main elements of an HTL description are represented by
communicators and tasks. A communicator is a typed
variable that can be accessed (read or written) only at
particular moments in time. A communicator has a period
associated with it, which identifies the moments in time when
the communicator can be accessed. In other words a
communicator represents a sequence of values. A
communicator instance represents the value of a
communicator at a moment when the communicator can be
accessed. Communicator instances are defined relative to the
period of the task that accesses the communicator. A task can
access a communicator only if the period of the task is a
multiple of the period of the communicator.

A task is a block of sequential code that contains no
synchronization points. A task has a set of input ports and a
set of output ports; the only way to communicate with the
environment and with other tasks is through the input and
output ports. The task model of execution used in HTL is the
so-called Logical Execution Time (LET) [3]. Tasks in HTL
can be either abstract or concrete. Abstract task are not
executed at runtime they are only used as placeholders for
concrete tasks. Concrete tasks on the other hand are executed
at runtime.

Tasks can be grouped in a so-called mode. All the tasks that
are invoked in the same mode will be executed with the same
frequency. Modes offer support for sequential composition,
namely, only one mode can be active at a particular moment
in time, i.e., only the tasks invoked in that mode will be
executed. The active mode can switch to another mode, i.e.,
tasks that are invoked in the mode that switches will be
replaced by tasks that are in the destination mode.

Modes are group in a so-called module. Modules offer
support for parallel composition. All the active modes in a set
of modules are executed in parallel.

One or more modules form a program. Programs can be used
in HTL to create a hierarchical structure. An HTL description
can contain one or many programs, but there is only one root
program. The root program specifies a generic temporal
behavior, which is further refined by the rest of the programs
in an HTL description.

The main advantage of the hierarchical structure is the
possibility to simplify static checks such as schedulability
check. Thus for an HTL description it is sufficient to check
that the root program is schedulable for a given platform in
order to say that the entire application is schedulable. This is
ensured by the refinement constraints that have to be met by
all the refining programs.

For a formal definition of the HTL semantics and for a
definition of all the constraints that have to be met by an HTL
description, please refer to [2].

As in the case of its predecessor, Giotto, HTL descriptions
are not compiled directly into machine code but into so-called
HE~code which is interpreted by a virtual machine,
Hierarchical Embedded Machine (HE machine) [4]. The HE
machine is an extension of the original E machine that has
been developed for Giotto [10].

4.CASE STUDY

The method of modeling an HTL description into a Simulink
schema will be presented by considering the HTL description
that specifies the temporal behavior for the real-time control
application for the Three Tanks System (3TS) plant.

Fig.1. Three Tanks System Plant.

The 3TS plant (Fig.1) consists of three interconnected tanks,
e.g., T1, T2, and T3. Each tank is connected to a tap that can
be used to drain water out of it; tank T2 is connected to two
such taps. Tank T1 communicates to tank T3 through an
interconnection tap; tank T2 communicates to tank T3 through
another interconnection tap. The plant also contains two
pumps, e.g., P1 and P2, which are used to feed water into the
system; P1 is connected to tank T1 and P2 is connected to tank
T2. There are also three sensors (e.g.: h1, h2, and h3)
connected to tanks T1, T2, and T3, respectively that give
information about the level of the water in each of the three
tanks.

The objective of a controller for the 3TS plant is to control
the water in tanks T1 and T2 to a prescribed target level, by
adjusting accordingly the water that is fed into the system by
the two pumps, namely, P1 and P2. Given that the 3TS plant is
highly non-linear, the use of a simple control strategy is not
enough to control the plant in any scenario. A control
solution that is able to control the plant in any scenario has
been presented in [10], the solution consists of using a
control strategy for both tanks T1 and T2 that switches
between a proportional (P) and a proportional-integral (PI)
controller.

Fig. 2 depicts in visual syntax the structure of the HTL
description that specifies temporal behavior of the application
that implements the 3TS controller. The application consists
of running in parallel the controller for tank T1 and the
controller for tank T2, thus the root program contains three
modules one for each tank controller (T1 and T2), while the

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

Fig.2. Graphical representation of the HTL description that
specifies timing for the 3TS control application.

third module specifies the timing of the communication with
the plant (IO). The two modules that specify timing for T1
and T2 controllers, respectively, are very similar; both
modules contain a single mode (m_T1 and m_T2,
respectively), which invokes one abstract task, i.e., the
control task (t_T1 and t_T2). The two control abstract tasks,
namely, t_T1 and t_T2, are refined by programs P_T1 and
P_T2, respectively, in two concrete tasks: a P control task
and a PI control task. The communication module contains
one mode (readWrite), which invokes three tasks: t_read –
reads the level of the water in tanks T1 and T2; t_write –
sends the commands to the pumps; t_ref – reads the target
values. All the modes in the description have a period of
500ms.

The flow of data between tasks in the HTL description is
presented in Fig. 3. After task t_read reads the sensors values
it writes them to communicators h1 and h2, it also estimates
if there is perturbation in tanks T1 and T2 and writes the
results into communicators v1 and v2. Task t_ref reads the
target values for each of the tanks and writes them into the
communicators h1_ref and h2_ref. Task t_T1(t_T2) reads
communicators h1(h2) and h1_ref(h2_ref) computes the
control law and writes the new command for pump P1(P2)
into communicator u1(u2). Communicators u1 and u2 are
read by task t_write, which sends the commands to the
pumps.

Fig.3. Data-flow between tasks in the 3TS control
application.

5. MODELLING HTL PROGRAMMING
CONSTRUCTS IN SIMULINK

A control application monitors sensor values of a plant based
on which it will compute a command, which will be sent to
the plant, throughout the actuators, in order to ensure that the

plant will achieve a desired state, which is defined through
the target value.

An HTL description that is to be translated into a Simulink
model consists of one and only one communication module
with the plant and with the environment, which does the
sensing and actuating, and which reads the target values.
Otherwise the program can contain as many modes, modules,
and programs as they are needed, but they will communicate
with the environment and with the plant only through the
communication module.

Bearing in mind the idea of a control application, the top
level of a Simulink model generated from an HTL description
will have two subsystems that communicate to each other.
One subsystem represents the HTL description (i.e., the
control application), this subsystem will be referred to as the
controller subsystem, while the other subsystem will
represent the plant, and it will be referred to as the plant
subsystem. The controller subsystem reads the sensor values
from the plant subsystem and the target values, and writes the
commands back to the plant subsystem. In Fig. 4. it is
presented the first level of the model that has been generated
for the 3TS aplication.

Fig 4. 3TS model - first level

For any HTL program an atomic subsystem block will be
generated. The block will contain an atomic subsystem block
for each HTL module in the HTL program and a subsystem
block for each communicator. The difference between the
root HTL program and any child HTL program consists in
the fact that for the root program a digital clock is generated,
while a child program receives the clock from the parent
program. Also the inputs and outputs of the root program
communicate with the plant, while for a child HTL program
they are connected to communicators in the parent program.
The digital clock that is generated for the root program is
used to simulate time events and it should have a period that
is at least an order of magnitude smaller than the smallest
period in the HTL description. In Fig. 5 it is presented the
content of the atomic subsystem that represents the root
program of the 3TS HTL description. An HTL communicator
is modeled in Simulink as a subsystem that contains a merge
block connected to a memory block. The subsystem always
has one input, but it can have as many inputs as modules,
since for each module that writes to a certain instance of the
communicator there has to be an input. At most one input can
carry a value at a particular moment in time; this is ensured
by HTL constraints since no communicator instance can be
written from two different modes. Fig. 6 presents the model
of the h1 communicator from the 3TS HTL description.

58 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig 5. Simulink model for 3TS root program

Fig. 6. Simulink model for communicator h1.

The Simulink model of a module consists of a set of action
subsystems, which represent the modes that belong to the
module, a mode selector, which determines the mode that
should be invoked (active mode), and for each communicator
that is written in more than one mode there has to be a merge
block in order to merge together the signals from different
modes and to produce only one signal that will be connected
to the input of the communicator. The Simulink
representation of the module receives as an input the clock
signal from the containing program, which is broadcasted to
each Simulink model of each mode in the module. Besides
the clock input, the Simulink model of a module also has as
inputs all the communicators that are read in the modes
belonging to the module. The outputs of the Simulink
representation of a module are represented by all the
communicators written in any of the modes in the module. In
order to implement mode switching each mode is associated
with a unique integer number and each mode generates a
signal that specifies which is the next mode. The mode

selector block reads the next mode signals from each mode
and activates the action subsystem that corresponds to the
mode that is to be executed. For each mode in a module, the
mode selector block has an output, which is connected to the
action port of the subsystem which models the mode. Also
for modes that can switch to other modes, the mode selector
block generates a reset signal, which ensures that a mode
does not switch in the first period when the mode is executed.
Fig. 7 presents the Simulink model of the T1_P_PI module.

A mode selector consists of a merge block that merges
together the next mode signals from all the modes in the
containing module, a memory block which stores the last
enabled mode (this block is needed in order to avoid
algebraic loops), and a switch case block which does the
mode selection based on the signal that comes from the
memory block. Beside the role of selecting the active mode,
the mode selector block has a second role, which is the
generation of reset signals. The reset signals are generated for
all modes that can switch to any other mode; thus for each
such mode there will be a reset mode generator. The reset
signal is active only in the first period a mode is active; in
order to achieve this, the value of the merged next mode
signal at the beginning of the active mode period is stored
until next mode period, the stored value is then compared to
the current value of the same signal and if they are different,
then one of the reset signal is activated based on the value of
the merged next mode signal (which actually specifies which
mode will be active); this will ensure that the reset signal for

CONTROL ENGINEERING AND APPLIED INFORMATICS 59

a mode is active only in the first period when the mode was
activated. The mode selectors that belong to modules from
other programs than the root program have a third role: to
reset the active mode to the default mode whenever one of
the parent modes switches. In order to do this a reset signal
generated by the parent mode that switches is used in order to
force the current active mode to the start mode of the module.
In Fig. 8 it is presented the mode selector for the T_P_PI
module.

The Simulink model of a mode consists of a set of blocks that
implement mode clock generator, a set of blocks that
implement tasks invoked in the mode, and a set of blocks that
implement mode switches. Instead of task invocations, the
Simulink representation of a mode can contain a subsystem
representing the program that is refining the current mode.
This is the case of mode m_T1 that will be refined by
program P_T1 as it can be seen in Fig. 9. The Simulink
model for module T1_P_PI presented above belongs actually
to the subsystem representing program P_T1.

Fig. 7. Simulink model for module T1_P_PI.

Fig. 8. Simulink model for mode selector for T_P_PI module

The mode clock generator computes modulo function
between the system clock scaled with 10000 and the period
of the mode expressed in milliseconds. The mode clock has
to be scaled by 10000 in order to achieve high precision.

For modes that are not in the root program, the mode clock is
generated by the parent mode (i.e., the parent mode and the
child mode have the same period in a well-formed HTL
program). For each task in a mode there is an atomic
subsystem that reads the mode clock signal and the
communicators read by the task; the task block has an output
port for each output port of the task being modeled. If two
task invocations write to two different instances of the same
communicator, then the two outputs will be merged by a
merge block. For each mode switch in a mode a trigger
subsystem, which implements the switch condition, is
generated. The switch block has an input for each

communicator read by a mode switch and one single output,
which can take two values: 0 when the switch is not enabled
and 1 when the switch is enabled. The switch block executes
only at the beginning of the period; this is ensured by a block
that reads the mode clock and if the clock is between 0 and
10, then the switch block execution will be triggered. The
output of each switch block is read by an action subsystem
which computes the next mode based on all the switch blocks
outputs. If a mode contains at least one switch, then it also
has to read a reset signal, which is active in the first period
the mode is executed and which is used to disable mode

Fig. 9. Simulink model for mode m_T1

switch logic and to force the next mode signal to the integer
value that is associated with he mode modeled by the block.
Fig. 10 presents the model for the mode m_T1_P in program
P_T1. An HTL task invocation is modeled as an atomic
subsystem, which contains a triggered subsystem for each
task input and output; the implementation of the task
functionality is also done in a triggered subsystem. Logic

60 CONTROL ENGINEERING AND APPLIED INFORMATICS

based on the mode clock and on the communicator instance
that is read/written is generated to activate the corresponding
triggered subsystem. For the activation of the inputs a delay
block is used in order to allow a communicator to be written
before it is read. The delay is very small as compared to the
entire period of a mode, thus the timing is not affected. The
triggered subsystem that represents the task functionality has
to be activated when the latest communicator is read, for
tasks with dependencies activation of the triggered subsystem
that implements the functionality has to consider the latest
communicator read by any task in the dependency list. In Fig.
12 it is presented the Simulink model for the invocation of
task t_T1_P, which reads instance four of communicators h1
and h1_ref and writes back to instance five of communicator
u1. An HTL mode switch is modeled as a triggered
subsystem, which is activated at the beginning of the period

of a mode. A mode switch block consists of an if block which
implements the switch condition and which activates one of
two blocks. If the condition is true, then a block that has
always value “1” at output is activated, otherwise a block that
has always value “0” at output is activated. The outputs of the
two blocks are merged and written to a single output. In Fig.
11 it is presented the Simulink model of the mode switch that
switches from mode m_T1_P to mode m_T1_PI.

Fig. 10. Simulink model for mode m_T1_P

Fig. 11. Simulink model for mode switch m_T1_P to m_T1_PI

CONTROL ENGINEERING AND APPLIED INFORMATICS 61

Fig. 12. Simulink model for task t_T1_P

6.RESULTS

In order to validate and test the modeling method presented
above we have implemented a real-time control application
for the 3TS plant using this modeling method. We have used
the generated Simulink model to implement the functionality
of all the tasks in the application and we have used the Real-
Time Workshop Embedded Coder to generate functional
code directly from the Simulink model. We have simulated
the Simulink model that models both the timing and the
functionality of the application. In Fig.13 it is presented the
evolution of the level of water in tank T1 when simulating the
Simulink model. After we have obtained the HTL real-time
control application by compiling together timing of the
application represented by the HE code program and
functionality generated directly from the Simulink model, we
have used the application to control a simulated version of
the 3TS plant. In Fig. 14 it is presented the evolution of the
water in tank T1 when using the HTL control application.

In both scenarios we have started without any perturbation in
tank T1 (no tap was open), then at moment t=200s we have
opened the evacuation tap. In Fig. 13 and Fig. 14 it can be
seen that in both cases the control time is the same and that
both controllers react the same way to the perturbation. Thus
we can say that the Simulink model of the HTL real-time
control application is accurate enough.

Fig. 13. Water level in tank T1 when simulating in Simulink.

Fig. 14. Water level in tank T1 when using the HTL control
application.

7. CONCLUSION

We have presented a method of modeling an HTL description
into a Simulink model. We have extended the HTL compiler
so that it can compile an HTL description into a Simulink
model. We have tested the method by implementing a real-
time control application for the 3TS plant. The results
obtained by simulating the Simulink model and those
obtained by running the control application are very similar,
thus we can conclude that the modeling method is accurate.

Using this modeling method, a new methodology for
developing real-time control applications with HTL can be
defined. The methodology consists of the following steps.
Based on the initial specifications for the control application,
the timing of the application can be extracted and
implemented as an HTL description. From the HTL
description using the HTL compiler it can be generated both
the HE~code (represented as C code) and a Simulink model.
The Simulink model of the HTL description will be used to
develop the control algorithm, and it can also be used to
simulate and test timing of the application; in case of errors
the HTL description can be reviewed. After the control
solution has been developed and tested in Simulink, the Real-
Time Embedded Coder can be used to generate C code for
those blocks that implement tasks, which represent the

62 CONTROL ENGINEERING AND APPLIED INFORMATICS

functionality of the application. In the last step the HE~code
and the functionality are compiled together with the C
implementation of the E~machine and it results the real-time
control application which can be tested on the real plant. If
this test fails then either the functionality or the timing of the
application can be reviewed. The process is repeated until a
stable application results.

REFERENCES

Auerbach, J., Bacon, D.F., Iercan, D., Kirsch, C.M., Rajan,
V.T., Rock, H., and Trummer, R., Java takes flight:
Time-portable real-time programming with exotasks. In
Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools, San
Diego, California, USA, 51--62, 2007.

D. Iercan, and M. Mezin, A Distributed Multimode Real-
Time Controller for the Three Tanks System.
ReNeCoSy'2008, Proc. Of the 8th International
Conference On Tehnical Informatics - CONTI'08,
ISSN: 1844-539X, Vol. 3, pag. 67-70, 5-6 June, 2008.

Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C.M., and
Sangiovanni-Vincentelli, A.L., A Hierarchical
Coordination Language for Interacting Real-Time

Tasks. In Proc. EMSOFT, Seoul, South Korea, 134--
141, 2006.

Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C.M., and
Sangiovanni-Vincentelli, A.L., Separate Compilation of
Hierarchical Real-Time Programs into Linear-Bounded
Embedded Machine Code, In Workshop Proc. APGES,
Salzburg, Austria, 2007.

Henzinger, T.A., and Kirsch, C.M., The Embedded Machine:
Predictable, Portable Real-Time Code. ACM TOPLAS,
29(6), 33--61, 2007.

Henzinger, T.A., Horowitz, B., and Kirsch, C.M., Giotto: A
Time-triggered Language for Embedded Programming.
Proceedings of the IEEE, 91(1), 84--99, 2003.

Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A., and Pree,
W.. From Control Models to Real-Time Code using
Giotto. IEEE Control Systems Magazine, 23(1), 50--64,
2003.

Real-Time Workshop.
http://www.mathworks.com/products/rtw/.

Robostix.http://docwiki.gumstix.org/index.php/Robostix.
Simulink. http://www.mathworks.com/ products/ simulink/.
Tripakis, S., Sofronis, C., Caspi, P., and Curic, A.,

Translating Discrete-Time Simulink to Lustre. ACM
Transactions on Embedded Computing Systems,
4(4),779--818, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

