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Abstract: In this paper, dynamic equations of motion for a 2DoF parallel robot manipu-
lator including structured and unstructured uncertainties are considered. The application of
Backstepping technique for trajectory tracking in presence of parameter uncertainties in mass
variation is studied. The advantage of this control technique is that it imposes the desired
properties of stability by fixing initially the candidate Lyapunov functions, then by calculating
the other functions in a recursive way. Simulation results are presented in order to evaluate the
tracking performance and the global stability of the closed loop system. Obtained results show
the effectiveness of the proposed controller for 2DoF parallel robot.
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1. INTRODUCTION

Parallel robots are closed-loop mechanisms where all of the
links are connected to the ground and the moving platform
at the same time. They have high rigidity, load capacity,
precision and especially structural stiffness, since the end
effectors is linked to the movable platform at several points
Kang et al. (2001), Kang and Mills (2001), Merlet (2001),
Tsai (1999), and Uchiyama (1993). Despite of their ad-
vantages, parallel manipulators have also some drawbacks,
such as limited workspace and complex kinematic issues
caused by the presence of multiple closed loop chains and
singularities. Two categories of parallel manipulators exist,
spatial and planar robot. The first category composes of
the spatial parallel robots that can translate and rotate
in the three dimensional space. Gough-Stewart platform
Gough (1956), Stewart (1965), one of the most popular
spatial manipulator, is extensively preferred in flight simu-
lators. The planar parallel robot which comprises of second
category, translates along the x and y axes, and rotates
around the z axis, only. Although planar parallel manipu-
lators are increasingly being used in industry for micro or
nano positioning applications Hubbard et al. (2001), and
in industrial high speed applications Weck and Staimer
(2002). In this paper, we will discuss the motion control of
a planar parallel robot known as Biglid with two degrees of
freedom (DoF) Vermeiren et al. (2012), Cheung and Hung
(2005), Pierrot et al. (2011). This type of parallel robot is
used in the manufacturing industry of electronic products,
as pick and place applications Vermeiren et al. (2012).
The dynamics modelling of parallel manipulators are more

difficult because of the presence of kinematic close loop
than their serial counterparts. Therefore selection of an
efficient kinematic modelling convention is very important
for simplifying the complexity of the dynamics problem
in planar parallel manipulators. Many researchers worked
on the dynamic modelling of parallel robots Khalil and
Ibrahim (2007), Staicu et al. (2007) and Staicu (2009).
Regarding the parallel robots control, many methods are
studied in the literature. They can be classified into classi-
cal control methods, modern and intelligent control meth-
ods. The classical methods, such as simple PD and PID
linear control, are easily implemented but not suited for
nonlinear system. Modern control methods like motion
control are simple in the structure and have better per-
formance in control. The intelligent control methods can
prove the best control performance but it needs a lot of ex-
perience and is always hard to design. In recent years many
researchers are worked on the intelligent control method
for nonlinear mechanical systems Martynyuk (2000), Yang
et al. (2008), such as adaptive control Zhu et al. (2009),
fuzzy control Guo and Woo (2003), Yang et al. (2008), TS
disruptor Vermeiren et al. (2012), Sliding mode control
Mustapha et al. (2014) and computed torque Yang et al.
(2007). These types of controller work very well when all
dynamic and physical parameters are known, but when
the manipulator has variation in dynamic parameters, the
controller has no acceptable performance Vermeiren et al.
(2012). Sliding mode control, which is a new method, can
be a solution, but some bounds on system uncertainties
must be pre estimated Le et al. (2013). In this paper,
a new contribution based on backstepping approach is
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proposed to control parallel robot in the Cartesian space.
This approach is based on the direct dynamic model in
Cartesian space. Backstepping method could be utilized
for nonlinear position control in robotic systems. It guar-
antees asymptotic stability in tracking of desired position
and speed trajectories, while preserving useful system non-
linearities. Backstepping control has been used for several
applications such as Full Control of a Quadrotors Bouab-
dallah and Siegwart (2007) Backstepping-based control of
rigid robots including actuators has been studied in Su
and Stepanenko (1997) and Control of a brush DC motor
in Dawson et al. (1994). The remainder of this paper is
organized as follow. In Section2, the dynamic model of 2-
DoF parallel manipulator is formulated in the Cartesian
space. In Section3, Backstepping controller is developed
and applied to the direct dynamic model of robot in
Cartesian space. Section4 presents simulation results of
the proposed controller. Finally, some conclusions are pre-
sented in the closing section.

2. DYNAMICS MODELING OF BIGLIDE PARALLEL
ROBOT

2.1 Kinematic and geometric analysis

For the geometric and kinematics modeling of a Biglide
parallel manipulator, the following conventions are used
according to Vermeiren et al. (2012). The manipulator pro-
vides 2DOF of translation on the XY plane, the position-
ing of end effector is represented by operational variables
(x, y) driven by two prismatic active joints (q1, q2) in the
same X axis.
The operational vector is then written as follow:

P = [x y]T (1)

The generalized joint variable vector is:

q = [q1 q2]T (2)

The mechanism has two constant length struts with move-
able foot points Figure 1. Both struts have the same
lengtha. The relationship between both coordinate vectors
is written with kinematic loop-closure constraints Figure 1:

Φ(P, q) = 0, Φ(P, q) =

(
(x− q1)2 + y2 − a2
(q2 − x)2 + y2 − a2

)
(3)

The Inverse geometric model (IGM) formula is given by:

q = g (P ) (4)

with

g(P ) ≡
(
x− C(y)
x+ C(y)

)
, C (y) ≡

√
a2 − y2 (5)

The direct geometric model (DGM) can be derived from
(4):

P = g−1 (q) (6)

with

g−1(q) =


q1 + q2

2√
a2 − (q1 + q2)

2

4

 (7)

Fig. 1. kinematic schemes of Biglide robot.

 

Fig. 2. Workspace and trajectories: (T1) Low trajectory,
(T2) High trajectory, (T3) Left trajectory, and (T4)
Right trajectory.

The relation between the joint space and the operational
space is conveniently described by two Jacobian matrices
Jp(P, q) and Jq(P, q) is given as:

Jp(P, q)Ṗ = Jq(P, q)q̇ (8)

The parallel singularities occur when the Jacobian matrix
Jp is rank deficient. The Biglide has two parallel singular-
ities: Vermeiren et al. (2012)
• High singularity: q1 = q2 = x, the struts are superposed
and y = 0.07, Figure 2.
• Low singularity: y = 0, the struts are aligned, Figure 2
The kinematic relationship between end-effector velocities
and joint velocities is computed by differentiating (3) with
respect to time:

Jp(P, q)Ṗ = Jq(P, q)q̇withJp(P, q) =

[
x− q1 y
x− q2 y

]

Jp(P, q) =

[
x− q1

0

0

x− q2

]
(9)

2.2 Dynamic Model

The dynamics equations of the Biglide in operational space
are given as follows:

Γ = M(P )P̈ +N(P, Ṗ ) (10)

with

P = [x, y]
T

, M(P ) is the inertial matrix given as follow:
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M(P ) =

m1 +
1

2
(m− λ1 + λ2) f1(P )

m2 +
1

2
(m− λ2 + λ1) f2(P )

 (11)

with

λ1,2 = ms1,2/a


f1(P ) = [(2m1 − 3λ1 − λ2)y2 +mC(y)2 + J1
J2]/(2C(y)× y)
f2(P ) = −[(2m2 − 3λ2 − λ1)y2 +mC(y)2 + J1
+J2]/(2C(y)× y)

N(P, Ṗ ) = N(y, ẏ) + p(y)

N(y, ẏ) is a coriolis / centripetal matrix can be written as:

R(y, ẏ) =

[
r11
r21

r12
r22

]
(12)

r11 = r12 = 0
r12 = −[(2m1 − 3λ1 − λ2)y2 + (2m1 − 3λ1 − λ2)

C(y)
2

+ J1 + J2]ẏ/(2C(y)
3

r22 = [(2m2 − 3λ2 − λ1)y2 + (2m2 − 3λ2 − λ1)

C(y)
2

+ J1 + J2]ẏ/(2C(y)
3

p(y) is a vector containing gravity torques can be written
as:

p(y) =

(
(gC(y)(m+ λ1 + λ2))/2y

(−gC(y)(m+ λ1 + λ2))/2y

)
(13)

3. CONTROLLER DESIGN

Backstepping is a recursive procedure that guarantees
asymptotic stability by interlacing the choice of a Lya-
punov function with the design of feedback control. Back-
stepping method could be utilized for nonlinear position
control in robotic systems. It guarantees asymptotic sta-
bility in tracking of desired position and speed trajectories,
while preserving useful system nonlinearities. In this sec-
tion the control low based on Backstepping approach is
applied on the direct dynamic model in operational space
of 2DoF planar parallel manipulator Biglid type. The re-
sults obtained by Backstepping controller were compared
to results of PID and computed torque control (CTC)
presented by Vermeiren et al. (2012).

3.1 PID controller

The control law based on PID controller in the joint space
is given by the following expression:

Γ = G(s)εq (14)

Where Eq.(3) of invers geometric model is used to compute
the desired joint positions.

qd = g
(
P d
)

(15)

with εq = qd − q and the PID controller G(s) = gp +
gds+gi/s Gain gp, gd, gi are (ndof ×ndof ) positive definite

diagonal matrices.
For PID control in the operational space, the control law
is obtained by transforming the operational space error
signal into the joint space as follows:

Γ = JTG(s)εp (16)

with J = J−1
p Jq and the PID controller G(s) = gp + gds+

gi/s.
The error vector is given by

εP = P d − P (17)

3.2 CTC controller

Computed torque controller (CTC) is nonlinear controller
which it widely used in control of parallel robots. The cen-
tral idea of Computed torque controller (CTC) is feedback
linearization so, originally this algorithm is called feedback
linearization controller. This controller works very well
when all dynamic and physical parameters are known but
when the robot manipulator has variation in dynamic pa-
rameters, in this situation the controller has no acceptable
performance.
Using the differential flatness property of the model (10)
a control law that linearizes and decouples the equations
(ndofdecoupled linear systems) can be derived. Therefore,
the robot is resumed in to a double integrator equation in
the operational space:
λ(t) = P̈ Joint forces Γ obtained from inverse dynamic
model (10) depend on the new control input λ(t) and the
operational position P (t)
They are computed as follows:

Γ = M̂(P )λ+ N̂(P, Ṗ ) (18)

Typical choices for λ are linear controllers such as PID
with acceleration feedforward:

λ = P̈ d +G(s)εp (19)

3.3 Backstepping controller

From equation (10), the direct dynamic model in opera-
tional space of Biglid robot is presented as follow:

P̈ = M(P )−1[Γ−N(P, Ṗ )] (20)

with
P = [x, y]

T
is x and y vector positions of the end-effector.

Γ = [Γ1Γ2]T is a vector of input control signal.
In order to apply Backstepping method, define x1 =
P, x2 = Ṗ using (20), we obtain:

ẋ2 = P̈ = M−1(P )[Γ−N(P, Ṗ )] (21)

For the first step we consider the tracking error as follow:

e1 = x1d − x1 (22)

Its time derivative is then:

ė1 = ẋ1d − ẋ1 (23)

Then we use the Lyapunov theorem by considering the
Lyapunov function e1 positive definite and its time deriva-
tive negative semi-definite:

V1 =
1

2
eT1 e1 (24)
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Its time derivative is

V̇1 = eT1 ė1 = eT1 (ẋ1d − ẋ1) = eT1 (ẋ1d − x2) (25)

The stabilization of e1 is obtained by introducing a virtual
control input x2:

x2 = ẋ1d + k1e1, (k1 > 0) (26)

with k1 ∈ R2×2 is a positive definite matrix. The equation
(25) is then:

V̇1 = −eT1 k1e1 (27)

Let us proceed to a variable change by making:

e2 = x2d − x2 = k1e1 + ẋ1d − x2︸ ︷︷ ︸
ė1

(28)

hence ė1 = e2 − k1e1

For the second step we consider the augmented Lyapunov
function:

V2 =
1

2

2∑
i=1

eTi ei (29)

Its time derivative is then:

V̇2 = e1(e2 − k1e1) + e2(k1ė1 + ẍ1d − ẋ2) (30)

V̇2 = −k1e21 + e2(e1 + k1ė1 + ẍ1d − ẋ2) (31)

For the system to be stable it is necessary that V̇2 < 0 .
From Equation (31) we have

(e1 + k1ė1 + ẍ1d − ẋ2) = −k2e2 (32)

where k2 > 0

ẋ2 = e1 + k1ė1 + ẍ1d + k2e2 (33)

M−1(x1)[Γ−N(x1, x2)x2] = e1 + k1ė1 + ẍ1d + k2e2 (34)

The control input Γ is then extracted as:

Γ = N(x1, x2)x2 +M(x1) [e1 + k1ė1 + ẍ1d + k2e2] (35)

Taking equation (28) for e2 and substituting in (35), we
have:

Γ = N(x1, x2)x2+M(x1) [ė1(k1 + k2) + ẍ1d + e1(1 + k1k2)]
(36)

Γ = [Γ1,Γ2] is the vector of control signal input.

x1 = P = [x, y] is the position vector.

k1 =

(
k1x 0
0 k1y

)
is a diagonal positive matrix gain of

controller.

k2 =

(
k2x 0
0 k2y

)
is a diagonal positive matrix gain of

controller.

4. SIMULATION RESULT

This section presents the performance evaluation of the
proposed Backstepping controller. The reference trajec-
tory tracking is a 5thorder polynomial interpolation. The

Table 1. Parameters model of Biglide parallel
robot

Parameters Values

Strut length (m) a 0.07
Mass (kg)

m 0.034
m1 0.8040
m2 0.7940

First moment of links (kgm)
ms1 0.0045
ms2 0.0043

Second moment of links (kgm2)
J1 222.643× 10−4

J2 2.539× 10−4

Gravity acceleration (ms2)
g 9.81

Additional parameter
for the simulation model Mass (kg)

λm 0.816

2DoF Biglid parallel robot parameters used in simulation
are listed in Tab. 1.

Two cases are considered in the simulation test. In the first
case, trajectory tracking with no parameter uncertainties
is considered. When for the second case, the system is
simulated with parameter uncertainties. The structured
uncertainties are considered for a mass variation of the
end-effector corresponding to ∆m = 0.816kg; of course no
uncertainty corresponds to ∆m = 0 . Simulation results
of PID, CTC and Backstepping controllers are presented
in Figure 3 and Figure 4, Figure 7 and Figure 8 for
the trajectories T1 (near work space low boundary) and
Figure 5 and Figure 6, Figure 9 and Figure 10 for T2 (near
work space high boundary), for each figure trajectories,
parts (a) and (b) present the set Point and the response
along x and y axes and parts (c) and (d) present the control
input of both actuators. Note also that Figure 3 and
Figure 4 , Figure 5 and Figure 6 are without mass variation
∆m = 0 where as Figure 7 and Figure 8, Figure 9 and
Figure 10 uses a mass variation ∆m = 0.816kg; . The mass
variation is used to test the robustness and effectiveness of
proposed Backstepping controller, and compared to results
of PID and CTC controllers Vermeiren et al. (2012).

4.1 Discussion of simulation results

Un-modelled dynamics such as elastic joints and Stribeck
friction appear in the simulation model to provide a more
realistic behaviour is presented in appendix. Notice that
two resonant modes are added in the simulation model
simulating the elastic joint such as the lower value of the
resonant frequency is ωr = 29rad/s

BS: Backstepping Control (36);
CTC: Computed Torque Control, Vermeiren et al. (2012);
PID: proportional integral derived, Vermeiren et al.
(2012);

In the former case, ∆m = 0 going from the best to
the worst; The Backstepping and CTC Controller show
a good capability of response. Whereas PID shows impor-
tant overshoot. Based on Figure 7 and Figure 8, Figure 9
and Figure 10 by comparing response trajectory with
mass variation of platform ∆m = 0.816kg Backstepping
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Fig. 3. Control schemes for low trajectory (T1) and ∆m =
0
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Fig. 4. Control schemes for low trajectory (T1) and ∆m =
0
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Fig. 5. Control schemes for high trajectory (T2) and
∆m = 0
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Fig. 6. Control schemes for high trajectory (T2) and
∆m = 0
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Fig. 7. Control schemes for low trajectory (T1) and ∆m =
0.816
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Fig. 8. Control schemes for low trajectory (T1) and ∆m =
0.816
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Fig. 9. Control schemes for high trajectory (T2) and
∆m = 0.816
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Fig. 10. Control schemes for high trajectory (T2) and
∆m = 0.816
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Fig. 11. (a)-(c) Performance criteria (position error
and control force) computed for all displacements
(T1&T4) trajectories along x and y axes),∆m = 0

presents good results according to structured uncertainties
(parametric variation), compared to CTC which presents
some oscillation in trajectory response. PID is even worst
with unstable closed-loop. In order to quantify the be-
haviour of the controllers Backstepping, PID and CTC
controller, some well-known criteria are computed for 4
trajectories T1, T2, T3 and T4 in the work space Ver-
meiren et al. (2012). The criteria are computed over a time
simulation of T = 2s using the error vector, and the control
force input vector.
Based on Figure 11(a) and Figure 12(b), comparison is
making for obtained results of error positions. In the dif-
ferent cases (∆m = 0, ∆m = 0.816kg ) the Backstep-
ping controller shows a good trajectories tracking with
small error. However, CTC controller presents important
position error in trajectories tracking. Meanwhile, PID
has unstable behaviour with mass variations. Figure 11(c)
and Figure 12(d) present the different results of control
force. In the different cases (∆m = 0,∆m = 0.816kg),
CTC is much more sensitive to the variation than the
Backstepping.
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Fig. 12. (b)-(d) Performance criteria (position error
and control force) computed for all displacements
(T1&T4) trajectories along x and y axes),∆m = 0.816

5. CONCLUSION

This paper presents different results of a nonlinear control
approach applied to a planar 2DoF parallel manipula-
tor Biglid type. Using Backstepping control approach to
achieve a best performance and robust control for trajec-
tory tracking, the control is based on the direct dynamic
model in the Cartesian space of the parallel manipulator.
The Backstepping is employed successfully for the regula-
tion and tracking of a multi input multi output planer
parallel robot in presence of nonlinearities. Asymptotic
stability of the closed loop system is established in the
Lyapunov sense.
The obtained results for position control problem are
rather accepted and the control effort is reasonable.
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6. APPENDIX

Numerical simulations include a model with structured
and unstructured uncertainties based on the nominal
model used to design the controller. Un-modeled dynamics
such as elastic joints Vermeiren et al. (2012) between
actuators and linkages and Stribeck friction Vermeiren
et al. (2012) applied on prismatic joints appear in this
augmented model to provide more realistic simulations.
The dynamics of the actuator writes:

Γ = Maq̈a + bq̇a + Γt + Γf (37)

with qa = [qa1qa2]T , Ma = diag(mama)Z, Γf =
[Γf1Γf2]TZ, the elastic joint model:

Γt = kt(qa − q) + bt(q̇a − q̇) (38)

and the Stribeck friction model of the dry friction:

Γfi =


[Γfc + (Γfs − Γfc)e

−(q̇ai/vs)
2

]sign(q̇ai)
if |q̇ai| > 0(slip)
min(|Γi − Γti| ,Γfs)sign(Γi − Γti)
if q̇ai = 0(stick)

(39)

where ma is the actuator mass, kt kt the stiffness of the
joint, bt the damping of the joint, Γfs the static friction
force, Γfc the Coulomb friction force and vs the sliding
speed coefficient.
The linkage and effector dynamics are:

Γt = M̂(P )P̈ + N̂(P, Ṗ ) (40)

M̂(P ) =

mL1 +
1

2
(m− λ1 + λ2) f1(P )

mL2 +
1

2
(m− λ2 + λ1) f2(P )


where
f1(P ) = [(2mL1−3λ1−λ2)y2+mC(y)2+J1+J2]/(2C(y)·y)
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f2(P ) = [(2mL1−3λ1−λ2)y2+mC(y)2+J1+J2]/(2C(y)·y)

N̂(P, Ṗ ) =

[
r11 r12
r21 r22

]
Ṗ + p(y)

r11 = r21
r12 = −[(2mL1 − 3λ1 − λ2)y2 + (2mL1 − 3λ1 − λ2)C(y)2+
J1 + J2]ẏ/(2C(y)3

r22 = [(2mL2 − 3λ2 − λ1)y2 + (2mL2 − 3λ2 − λ1)C(y)2+
J1 + J2]ẏ/(2C(y)3

where the mass linkage mLi satisfies: mi = ma +mLi, i =
1, 2.


