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Abstract: Mobile networks have been quickly adopted by many companies and individuals. However, 
multiple factors such as mobility and limited resources often constrain availability and thus cause 
instability of the wireless environment. Such instability poses serious challenge for fault tolerant 
distributed mobile applications. Therefore, the classical checkpointing techniques, which make the 
applications more failure-resistant, are not always compatible with the mobile context. In fact, it is 
necessary now to think about other techniques or at least adapt those to devise effective and well suited 
techniques for the mobile environment. Considering this issue, the contribution in this paper is a proposal 
of a new checkpointing algorithm suitable for mobile computing systems. This algorithm is characterized 
by its efficiency and optimization in terms of incurred time-space overhead during checkpointing process 
and normal application running period.  

Keywords: Distributed mobile computing, Fault tolerance, Consistent global state, Coordinated 
checkpointing. 



1. INTRODUCTION 

The increasing development of wireless communication 
technology during the last decade has triggered the rapid 
growth of mobile networks. Due to the high flexibility of use, 
the latest technologies have been quickly adopted by 
companies and individuals all over the globe. In spite of all 
the advancements and quick adoptions today, a full-fledged 
ubiquitous Internet network that could widely exploit the 
capabilities of the mobile networks, is still not possible to 
build. This is because of the high cost associated with 
infrastructure building and limited transmission range. 
However, it is expected that these constraints would tend to 
decrease as the wireless technologies progress – perhaps, in 
the near future, all these obstacles would be abolished and 
Internet access will be possible from anywhere via usual 
mobile networks. 

Nevertheless, the difficulties, e.g., unavailability, instability, 
that are seen today basically come from the inherent 
characteristics of mobile networks and wireless 
communications. These negative aspects should be mitigated 
as much as possible so that the Quality of Service (QoS) 
offered to users may be satisfactory. As services delivered in 
a mobile environment are in fact, the extensions of services 
provided by the classic distributed systems, numerous 
algorithms or usual algorithms which carry out these services 
have to be modified or rethought in a better way to adapt 
them to the constrained mobile network environment.  

Among various algorithms to be adjusted to meet the 
requirements of mobile applications, we mention in particular 
the checkpointing algorithms that enable these applications 
and systems to have fault tolerance capabilities. If the 
appropriate adjustments could be done, indeed, mobile 
distributed systems will then be capable of running critical 
distributed applications within prescribed time (in accordance 
with their mission specifications). 

To be suitably adapted to this new environment, 
checkpointing algorithms have to take into account the 
following issues (Badrinath et al., 1993, 1994; Acharya and 
Badrinath, 1994; Forman and Zahorjan, 1994): 

 Low bandwidth: it is important that a checkpointing 
algorithm generates a minimum of coordinating messages, 
and minimizes the most likely extra piggybacked 
information.  

 Limitation of storage space: the lack of disk space on 
Mobile Host (MH) implies that checkpoints will be 
transferred in the Mobile Support Stations, which have 
sufficient storage size.  

 Handling of mobility: frequent movement and 
disconnection of the network put an obstacle in the 
synchronization process or the coordination of the MHs 
during the process of checkpointing or recovering. 

 Limited energy source: conservation and optimization of 
energy consumption is a paramount importance. Any use of 
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an MH has to take into account the weak life expectancy of 
the energy source. 

After this introduction, the rest of the sections are organized 
as follows: Section 2 talks about the system model and 
assumptions, Section 3 introduces various facets of the 
checkpointing algorithm, Section 4 talks about the phases of 
the algorithm, Section 5 presents the pseudocode of the 
algorithm, followed by the proof of correctness in Section 6. 
Performance evaluation is presented in Section 7 before 
concluding the paper in Section 8 with future research 
directions. 

2. SYSTEM MODEL AND ASSUMPTIONS 

The system model shown in Figure 1, which has been taken 
into consideration by various other works (Acharya and 
Badrinath, 1994; Dey and Biswas, 2012; Kiehn et al., 2014), 
consists of a set of wireless Mobile Hosts (MHs) and fixed 
base stations called Mobile Support Station (MSSs) attached 
to MHs. The static MSS is capable to provide various 
services to support MHs. The geographic region covered by 
MSS range transmissions is called a cellule (Cell). 
Bidirectional communication between an MH and MSS is 
established via a wireless link with message sending FIFO 
(First-In, First-Out) strategy. Any communication between 
any two MHs: MHi and MHj is accomplished only via 
corresponding MSSi and MSSj - no direct communication 
between MHs is allowed. A high speed wired communication 
link is assumed to connect any two MSSs. Message 
transmissions through the wired and wireless links take an 
unpredictable, but finite amount of time. 

 

Fig. 1. Mobile environment.  

An application running in a mobile computing system is 
assumed to be composed of ݊ concurrent processes, which 
collectively perform a distributed computation. It is assumed 
that each process runs on a distinct MH. The computation is 
assumed to be conformed to a piece-wise deterministic model 
in which a process always produces the same sequence of 
states in its execution for the same sequence of message-
receiving events. In this paper, we consider the transient-
failure type, that is, a process is unlikely to fail again at the 
same execution point after it recovers from a failure. Fail-
silent mode for processes is assumed, so when a process fails, 
it immediately stops the execution and does not perform any 
malicious action. This fail-silent property (Schlichting and 
Schneider, 1983) is important for considering that messages 
sent prior to a failure, are correct. Otherwise, we have to take 
into account the hard problem of checkpoints’ trustworthiness 
which can lead to propagate state restoration in a recovery 

operation similar to a domino-effect mechanism (Elnozahy et 
al., 2002).   

We also assume the presence of reliable message delivery, 
that is, there is no message loss or alteration during normal 
computation. Stable storage is assumed to survive in case of 
MH or MSS failure while volatile memory loses its content. 
The degree of fault tolerance in the wired network and the 
computation capabilities of the MSSs are supposed to be 
high.   

3. CHECKPOINTING ALGORITHM 

A checkpointing algorithm suitable for mobile environment 
has to be in accordance with the following two essential 
aspects (Badrinath et al., 1993, 1994; Acharya and Badrinath, 
1994): 

1. Taking into account the constrained mobile environment, 
notably the low bandwidth, the frequent handoff of mobile 
hosts, and their limited storage space, MHs must be given the 
option to freely set their own checkpoints. Because, only 
MHs have sufficient knowledge when it is favourable to do 
that. Therefore, the MHs may take advantage of propitious 
situations to save checkpoints, e.g., when the size of 
checkpoint is adequate, the battery level is high or a handoff 
is soon expected, etc. However, this freedom accorded to 
MHs may cause a well known domino-effect problem. On the 
other hand, the large resource availability in the MSSs and 
wired network makes the restrictions in checkpointing less 
severe and recommends the use of coordinated checkpointing 
technique. In order to comply with mobile context 
specifications and getting to implement pertinent recovery 
capabilities, hybrid checkpointing algorithms are needed. 

2. For new constraints, new directions of investigation are 
needed. Indeed, in wired networks, checkpointing algorithms 
have no need to handle handover situations especially making 
difference between a long handoff and an MH failure. In the 
case of failure caused by depletion of the battery, we may 
have to face two situations. The first one is the definitive 
shutdown of the MH making it impossible to complete the 
application. This is the common situation reported in all 
existing checkpointing algorithms until now. The second one 
is the one that tries to overcome this problem by replicating 
(in MSS) activities taking place in MH in order to recover 
energy source from changing battery. This difficult 
alternative (but which is also convenient to insure mobile 
distributed applications’ non-stop property) is under our 
current investigation. 

3.1 Technique of checkpointing used  

Our algorithm is based on the following strategies: 

1. Coordinated checkpointing technique between MSSs to 
save a consistent global state and to avoid orphan messages 
(Chandy and Lamport, 1985; Netzer ans Xu, 1995; Elnozahy 
et al., 2002). The use of this technique is aimed at getting 
simplicity in the implementation of the algorithm and the 
insurance to always have a consistent global state available 
during the recovery operation. Indeed, when a local 
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checkpoint is saved, the algorithm guarantees that this 
checkpoint is part of a global consistent state. Thus, MSSs 
have to cooperate with the object to keep only a single 
checkpoint for every MH. The storage space required for 
checkpointing is then optimized. Once failure occurs, each 
MH concerned with recovery, simply has to retry execution 
from its last permanent checkpoint.  

2. Coordination is not blocking (Cao and Singhal, 2001; 
Kanmani et al., 2007; Awasthi et al., 2014), that is, there is 
no need to momentarily stop the computation of the mobile 
distributed application during the execution of the 
checkpointing process. This significantly increases 
application performance, because the algorithm is performed 
in a transparent way. However, when a mobile host MHi 
sends a message m to its partner MHj via its associated MSSi, 
MSSi piggybacks with the message m the current value of 
MHi’s checkpoint number: Ckpti. When the MSSj station 
associated to MHj receives the message m, m is relayed (by 
MSSj) to MHj if the MHj’s checkpoint number Ckptj is 
superior or equal to the checkpoint number Ckpti of the 
sender MHi. Otherwise, MSSj sends first a checkpointing 
request to MHj before sending it the message m, and then 
updates the checkpoint number, Ckptj. 

3. Coordination is maintained minimum (Cao and Singhal, 
2001), that is, the algorithm does not force all the mobile 
hosts to take checkpoints. Only hosts having communicated 
with the initiator of the algorithm directly or indirectly after 
the last taken checkpoint have to save a checkpoint. The 
algorithm includes two phases: The first consists of an 
identification of all the MHs causally depending on the MH 
initiator (since its last checkpoint) which sends them a 
checkpointing request. On reception of this last one, every 
MH identifies all the MHs with which it had to communicate 
since the last checkpoint and sends them a checkpointing 
request, and so on until that there is no more MH to be 
identified. In the second phase, all the MHs identified during 
the first phase, go for setting their permanent checkpoint. 
Hence, the result obtained is a consistent global state with the 
cooperation of an optimal number of MHs.  

4. Our algorithm uses the message logging technique (Park 
et al., 2002) to replay messages intended for a mobile site 
MH during its disconnection. 

3.2 Abbreviations and data structure used 

Abbreviations: To simplify and to make our presentation as 
clear as possible, we use the following abbreviations:  

MovReq: moving request. 
DiscReq: disconnection request. 
RecReq: reconnection request. 
CkptReq : checkpointing request. 
ValidReq : validation request. 
TransInformReq: transmission information request.  

Data structure used: 
For every mobile host MHi we have:  
Ckpti: indicates the number of the last checkpoint 
recorded in MHi.   
DepdSitesi: set of MHs which have a causal dependence 
relation with MHi. 

Logi : set of computation messages sent to MHi during 
their disconnection. 
DiscCkpti: used to save the last disconnection checkpoint 
of MHi. 
TempCkpti: used to save the last temporary checkpoint of 
MHi. 
PermCkpti: used to save the last permanent checkpoint 
of MHi. 
For every base station MSSn we have: 
PresSitesn: set of MHs present in celln. 
DiscSitesn: set of MHs disconnected from celln.  
GlobSetn: set of MHs involved in checkpoint recording. 
TempInSetn: set of MHs identifiers internal to celln.    
TempExtSetn: set of MHs identifiers external to celln.  
Ckptn: variable for saving the number of the new 
checkpoints.  
InitMSS: used to save the identity of the initiator base 
station. 
Term: used to detect algorithm termination.  

3.3 Handling of mobile environment characteristics 

A checkpointing algorithm suitably adapted to the mobile 
context has to satisfy several criteria to integrate the specific 
characteristics of this environment and their influences on the 
distributed computation. Among these is “Mobile host 
mobility processing”. When moving from place to place, a 
mobile host MHi has to inform its basic station MSSi for all 
its movements. Hence, when MHi moves from a Celli 
(supported by MSSi) to another cellj (supported by MSSj), 
MHi has to inform about it to the former station, MSSi and the 
new one, MSSj. However, it is necessary to make sure that the 
data structure of the mobile host (Ckpti, DepdSitesi, Logi, 
DiscCkpti, TempCkpti, PermCkpti) is always available at the 
current base station.  

A. Mobile host movement processing: As shown in Figure 
2, at the time of movement, the mobile host MHi sends a 
movement request to the new base station MSSj. Upon 
reception of the request, MSSj sends a request to the former 
base station MSSi to get information concerning the mobile 
site MHi. MSSi sends then to MSSj what is requested. 

 

Fig. 2. MH Movement. 

Routine of movement handling 
-Role of the mobile host MHi: 
At the time of moving: 

Send MovReq (MHi, MSSi); 
-Role of the new base station MSSj: 
Upon receiving moving request from MHi: 

Receive MovReq (MHi, MSSi); 
PresSitesj := PresSitesj + MHi;  
Send TransInformReq (MSSi, MSSj, MHi);                                              
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Upon receiving requested information from MSSi:                                       
Receive Information (MSSj, MHi, Ckpti, DepdSitesi, Logi, 
DiscCkpti, TempCkpti, PermCkpti);                                     
Save (Ckpti, DepdSitesi, DiscCkpti, TempCkpti, 
PermCkpti);                                     

-Role of the former base station MSSi: 
Upon receiving information transmission request from MSSj:                                             

Receive TransInformReq (MSSi, MSSj, MHi); 
Send Information (MSSj, MHi, Ckpti, DepdSitesi, Logi, 
DiscCkpti, TempCkpti, PermCkpti);                                   
PresSitesi := PresSitesi - MHi;  

B. Mobile host disconnection and reconnection 
processing: As shown in Figure 3, the mobile host MHi 
records a checkpoint (DiscCkpt) before its disconnection and 
sends it to the former base station MSSi. The mobile host MHi 
sends then a request of reconnection (RecReq) to the new 
base station MSSj. The new base station MSSj sends a request 
to the former base station MSSi to get back information 
concerning the mobile host MHi. The former base station 
MSSi sends to the new base station MSSj, the information 
relating to the mobile host, MHi.  

The new base station MSSj sends the disconnection 
checkpoint (DiscCkpt) got back from MSSi, to the mobile 
host, MHi. MHi has also to get messages (sent to it during 
disconnection) from MSSi, according to the order of their 
previous reception. The mobile host MHi loads then its state 
with the received checkpoint and handles messages.  

 

Fig. 3. Disconnection/Reconnection scenario. 

Routine of disconnection handling 
-Role of the mobile host MHi: 
Before the disconnection: 

Record (DiscCkpti); 
Send DiscReq (MHi, DiscCkpti); 

-Role of the former base station MSSi: 
Upon receiving disconnction request from MHi: 

Receive DiscReq (MHi, DiscCkpti);                  
DiscSitesi := DiscSitesi + MHi;              
Until (Receive TransInformReq (MSSi, MSSj, MHi)) Do 

Upon reception of application message from MHn for 
MHi:   

Receive Message (MHi, MHn, Message);                                     
Logi := Logi + (MHi, MHn, Message);                                     

End                                                                                         
Routine of reconnection handling 
-Role of the mobile host MHi: 
At the time of reconnection to MSSj: 

Send RecReq (MHi, MSSi);  
Upon receiving disconnection checkpoint from MSSj: 

Receive Message (MHi, DiscCkpti); 

Load (DiscCkpti); 
Upon receiving application message from MHn:   

Receive Message (MHi, MHn, Message); 
Handle (Message); 

-Role of the new base station MSSj: 
Upon receiving reconnection request from MHi: 

Receive RecReq (MHi, MSSi);  
PresSitesj := PresSitesj + MHi;                                                
Send TransInformReq (MSSi, MSSj, MHi);                            

Upon receiving requested information from MSSi: 
Receive Information (MSSj, MHi, Ckpti, DepdSitesi, Logi, 
DiscCkpti, TempCkpti, PermCkpti);           
Save (Ckpti, DepdSitesi, DiscCkpti, TempCkpti, 
PermCkpti);                                                         
Send Message (MHi, DiscCkpti); 
For All (MHi, MHn, Message) ߳ Logi Do 

Send Message (MHi, MHn, Message); 
DepdSitesi := DepdSitesi + MHn;  

End  
Logi :=  ; 
DiscCkpti :=  ; 

-Role of the former base station MSSi: 
Upon receiving information transmission request from MSSj:  

Receive TransInformReq (MSSi, MSSj, MHi); 
Send Information (MSSj, MHi, Ckpti, DepdSitesi, Logi, 
DiscCkpti, TempCkpti, PermCkpti);     
PresSitesi := PresSitesi - MHi;                                                               
DiscSitesi := DiscSitesi - MHi;  

4. PHASES OF THE ALGORITHM 

The algorithm works in two phases: (i) The phase of the 
creation of the temporary checkpoints, and (ii) the phase of 
transformation of the temporary checkpoints to permanent 
ones.  

1. First phase: When a mobile host, MHr runs the 
checkpointing algorithm (it is assumed that there is only a 
single instance of checkpointing process at a time), it records 
a temporary checkpoint and sends a checkpointing request to 
its base station MSSn. Upon reception of the request, MSSn 
determines the identifier set DepdSitesr. MSSn then 
broadcasts checkpointing request to all the base stations 
(included itself). This request piggybacks the set DepdSitesr 
determined before.  

During all the execution of the algorithm, if a base station 
MSSi receives a checkpointing request CkptReq 
(TempExtSetx, Value), then MSSi in turn broadcasts a 
checkpointing request to the mobile hosts, MHi ߳ 

TempExtSetx of its own cellule, MHi ߳ Celli concerned with 
the checkpointing process. MSSi also determines the 
identifiers of the mobile hosts directly dependent on these 
mobile hosts (which are also indirectly dependent on the 
initiator host MHr). If the set so determined is empty, then the 
base station MSSi sends an acknowledgment to the initiator 
base station MSSn; otherwise, it broadcasts this set to all other 
base stations, and so on.         

2. Second phase: When the initiator base station, MSSn 
receives an answer from all the base stations MSSi (i  [1, 
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m]), then it broadcasts a request of validation to all the base 
stations. Every base station, having received the validation 
request, has to broadcast in turn, this request in its own 
cellule. So, every mobile host in the cellule, having received 
this request, has to send its temporary checkpoint (if there is 
any) to the base station to make it permanent and save it in 
the stable storage.  

5. THE ALGORITHM PSEUDOCODE 

Initialization:   
For every mobile host MHi: 

Record (PermCkpti); 
Send Message (MHi, PermCkpti) 

For every base station MSSj: 
PresSitesj := {MHi / MHi	߳ Cellj} ; 
DiscSitesj :=  ; 
GlobSetj :=  ; 
TempInSetj :=  ; 
TempExtSetj :=  ; 
InitMSS :=  ;  
Term := 0 ; 
For All (MHi PresSitesj) Do 

Receive Message (MHi, PermCkpti) 
Save (PermCkpti) 
Ckpti := 1 ; 
DepdSitesi :=  ;    
Logi :=  ; 
DiscCkpti :=  ; 
TempCkpti :=  ; 

End  
Ckptj := 1 ; 

Initiation of the algorithm 
-Role of the initiator mobile host MHr: 
Record (TempCkptr); 
Send CkptReq (MHr);  
-Role of the initiator base station MSSn: 
Upon receiving checkpointing request from the initiator 
mobile host MHr: 

Receive CkptReq (MHr); 
Ckptr := Ckptr + 1; 
Ckptn := Ckptr; 
TempExtSetn := DepdSitesr;  
Send CkptReq (MSSn, Ckptn, TempExtSetn, 1/m);    
GlobSetn := TempExtSetn;  

Upon receiving answer from a base station: 
Receive answer (MSSn, Value);  
Term :=  Term + Value; 
If (Term = 1) Then  

Send ValidReq(MSSn);  
EndIf 

During the execution of the algorithm: 
-Role of every base station MSSi: 
Upon receiving checkpointing request from a base station 
MSSx:  

If Receive CkptReq (MSSx, Ckptx, TempExtSetx, Value) 
Then 

InitMSS := MSSx; 
Ckpti := Ckptx; 

Else 
Receive CkptReq (TempExtSetx, Value); 

Endif 
TempInSeti := {MHp / MHp  TempExtSetx   MHp ߳  
PresSitesi   MHp  GlobSeti}; 
GlobSeti := GlobSeti   TempExtSetx; 
For All (MHp   TempInSeti) Do  

If (MHp   DiscSitesi) Then    
TempCkptp := DiscCkptp; 

Else 
Send CkptReq (MHp); 

Endif 
Ckptp := Ckpti; 

Endfor 
TempExtSeti := {MHt / MHt  DepdSitesp  / MHp ߳  
TempInSeti}; 
If (TempExtSeti = Ø) Then    

Send answer (InitMSS, Value); 
Else  

Send CkptReq (TempExtSeti, Value/m); 
Endif 

For reception of a validation request from MSSn: 
Receive ValidReq (MSSn); 
For All (MHi ߳ GlobSeti   MHi ߳ PresSitesi) Do  

If (MHi ߳ DiscSitesi) Then    
PermCkpti := TempCkpti ; 

Else 
Send ValidReq (MHi); 

Endif 
Endfor 

Upon receiving temporary checkpoint from MHi: 
Receive Message (MHi, TempCkpti); 
PermCkpti := TempCkpti ; 

-Role of every mobile host MHi:  
Upon receiving checkpointing request: 

Receive CkptReq (MHi); 
Record (TempCkpti); 

Upon receiving validation request: 
Receive ValidReq (MHi); 
Send Message (MHi, TempCkpti); 

During the time of execution of the algorithm, to avoid 
blocking of the execution of mobile distributed application, if 
a base station MSSi receives an application message from 
MHi for MHj, then MSSi piggybacks with the message the 
current value of MHi’s checkpoint number: Ckpti. When the 
MSSj station associated to MHj receives the message, it is 
relayed (by MSSj) to MHj if the MHj’s checkpoint number 
Ckptj is superior or equal to checkpoint number Ckpti of the 
sender MHi. Otherwise, MSSj sends first a checkpointing 
request to MHj before sending it the message, and then, 
updates the checkpoint number, Ckptj. 

-Role of every base station MSSi: 
Upon receiving application message from MHi (MHi  Celli) 
for MHj:  

Receive Message (MHj, MHi, Message);    
Send Message (MHj, MHi, Ckpti, Message);  

Upon receiving application message from MHi for MHj (MHj 
߳ Celli):  
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Receive Message (MHj, MHi, Ckpti, Message); 
If (Ckptj < Ckpti) Then    

Send CkptReq (MHj); 
Ckptj := Ckpti; 
TempExtSeti := TempExtSeti + {MHt / MHt ߳ 
DepdSitesj} 

Endif 
Send Message (MHj, MHi, Message); 
DepdSitesj := DepdSitesj + MHi; 

-Role of every mobile host MHi:  
For sending an application message to MHj:   

Send Message (MHj, MHi, Message); 
Upon receiving application message from MHj:   

Receive Message (MHi, MHj, Message); 
Handle (Message); 

6. PROOF OF CORRECTNESS 

Lemma 1: If a mobile host MHi initiates the checkpointing 
algorithm, then any other mobile host MHj directly or 
indirectly depends on MHi since its last checkpoint has to 
record a checkpoint. 

Correctness proof: Let us demonstrate with some cases. If a 
mobile host MHi records a checkpoint, then any other mobile 
host MHj, such as MHj ߳ DepdSitesi has to take a checkpoint. 

Case 1: if a mobile host MHr (initiator of the algorithm) 
sends a checkpointing request to its base station MSSn, MSSn 
sends in turn, this request to all the base stations with the set 
TempExtSetn of the identifiers of all the mobile hosts MHj 
such as MHj ߳ DepdSitesr. 

With the reception of this request, every base station MSSi 
acts as follows: 
1. Broadcasts the request to all mobile hosts in set 
TempExtSetn which belong to the Celli. With the reception of 
a checkpointing request, every mobile host records a 
temporary checkpoint. 
2. If there is a mobile host MHj such that MHj ߳ 

TempExtSetn  MHj ߳ DiscSitesi, then, its base station MSSi 
transforms its disconnection checkpoint DiscCkptj into a 
temporary checkpoint TempCkptj. 

As at any time, every mobile host is either connected to one 
of the base stations (or disconnected), if a mobile host runs 
the checkpointing algorithm, any other mobile host which 
directly depends on it (since it is the last checkpoint) has to 
establish a temporary checkpoint.  

Case 2: if a mobile host MHi is not the initiator of the 
algorithm and receives checkpointing request from its base 
station MSSi, then MSSi serves all the mobile hosts which are 
directly dependent on MHi, and sends a checkpointing request 
to all the base stations (included itself) piggybacking the 
TempExtSeti set. After receiving this request, every base 
station MSSj acts as follows:    

1. If one of these determined hosts belongs to the set 
GlobSetj, then this host has already recorded a temporary 
checkpoint, either in this station or in the other one. 

2. If there is a mobile host MHk ߳ TempExtSeti  MHk ߳ 
DiscSitesj, then the base station changes the disconnection 
checkpoint to a temporary one for this mobile host MHk.     
3. Broadcasts the request to all mobile hosts in set 
TempExtSeti which belong to the Cellj. After receiving a 
checkpointing request, every mobile host records a temporary 
checkpoint. 
At any instance of time, every mobile host is either connected 
to one of the base stations and it has previously recorded a 
checkpoint, or it is reconnected to one of the base stations 
and it did not first take a checkpoint, or it is not connected at 
all. Hence, if a mobile host records a checkpoint, any other 
mobile host would directly depend on it since it is the last 
host which recorded a checkpoint.  

From Case 1 and Case 2, we can conclude in formal terms 
that:  

If a mobile host MHi records a checkpoint, any other mobile 
host MHj such as MHj ߳ DepdSitesi has to record a 
checkpoint. Because of transitive relation dependency, if a 
mobile host MHi runs the checkpointing algorithm, any other 
mobile host MHj would directly or indirectly depend on it 
since the last checkpoint, has also to record a checkpoint. 

Lemma 2: The algorithm is convergent, that is it completes 
its execution within the prescribed amount of time.  

Correctness proof: We defined the following predicates: 

 Portion (Term, MSSn): the portion of Term actually saved 
in the initiator base station MSSn. 

 Portion (Term, CkptReq): the portion of Term piggybacked 
in a checkpointing request which is in transit. 

 Portion (Term, Answer): the portion of Term piggybacked 
by an answer request in transit.  

At the initialization phase of the algorithm, we have: Portion 
(Term, MSSn) = 0. If we can prove that after a finite time of 
the algorithm execution starting point, we get: Portion (Term, 
MSSn) = 1, we can conclude that the algorithm completes its 
execution in time. (Huang, 89).  

We have to verify the following equation through different 
periods of the checkpointing algorithm execution: 

௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	൅ 		ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	൅
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	1                                      (1)  

Period 1: the initiator base station broadcasts a checkpointing 
request to all other base stations with the value 1/݉ for each 
of it: 
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	0;    
,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ ሻݍܴ݁ݐ݌݇ܥ 	ൌ
1/݉			ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	ൌ 	1;  
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	0; thus equation (1) is 
verified. 

Period 2: When any checkpointing request is received, any 
base station MSSi has to determinate the set TempExtSeti and 
immediately send the received portion Term, either to the 
initiator base station with the answer, or to the other base 
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stations with checkpointing requests. In this scenario, two 
cases can occur: 

Case 1: if TempExtSeti = , then the current base station 
sends an answer to the initiator base station with the value of: 
Portion (Term, CkptReq). 

Case 2: if TempExtSet  , then the base station broadcasts a 
checkpointing request to all other base stations (for each one)  
with a value of: Portion (Term/m, CkptReq). 
As the two cases cannot occur at the same time in the same 
base station,  
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	0;    
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	൅
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	1; hence, equation (1) is 
verified. 

Period 3: As the number of mobile hosts in the system is 
limited, after completion time (as: MHi ߳ GlobSetj, i ߳ [1, 
m] in the worst case), the number of checkpointing requests 
in transit in the network becomes nil. Therefore, after the 
reception of the last checkpointing request for all the base 
stations, we have:  
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	0;    
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	ൌ 	0;    
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	1; Thus equation (1) is 
again verified. 

Period 4:  As transmission times of the messages in the 
wired network are arbitrary but over, after completion time, 
all the answer requests arrive at the initiator base station. 
Hence, 
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	1;    
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	ൌ 	0;  
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	0; So, equation (1) is 
verified. 

After completion (or, finished) time, from the initiation of the 
algorithm, the value of Term at the initiator base station 
becomes equal to 1. At this time, this initiator base station 
broadcasts the validation request. Upon receiving this 
request, every base station has to broadcast it in its own 
cellule. Then, every mobile host has to send its temporary 
checkpoint to its base station. Because of finished 
transmission message time, all the messages will arrive at 
their destinations. Consequently, a new global state is 
recorded, that is, the checkpointing algorithm ends after 
finished/completion time.  

Theorem: The algorithm insures recording of a consistent 
global state.             

Correctness proof: To prove this theorem, we have to prove 
what follows:  

If the reception event of a message was recorded in a 
checkpoint of a receiving mobile host, then the corresponding 
sending event of this message was also recorded in the 
checkpoint of the sender mobile host. 

Let MHi ߳ Celli is covered by MSSi, which is the mobile host 

receiving a message m, and let MHj ߳ Cellj is covered by 

MSSj, which is the sender of m. Then, MHj ߳ DepdSitesi. If 

MHi records the reception of m in MHi’s checkpoint, then 
according to Lemma 1, the mobile host MHj has also recorded 
a checkpoint. Two possible cases are there for which the 
mobile host MHj establishes its checkpoint: 

Case 1: Because of the reception of a checkpointing request 
coming from MHi: 

Send Message (MHi, MHj, Message) by MHj  Receive 
Message (MHi, MHj, Message) by MHi. 
Receive Message (MHi, MHj, Message) by MHi  Record 
(TempCkpti) by MHi. 
Record (TempCkpti) by MHi  Send CkptReq (TempExtSeti, 
Value) by MSSi. 
Send CkptReq (TempExtSeti, Value) by MSSi  Receive 
CkptReq (TempExtSeti, Value) by MSSj. 
Receive CkptReq (TempExtSeti, Value) by MSSj  Record 
(TmpCkptj) by MHj. 

Where ‘’ represents the relation between operations 
(Lamport, 1978; Alagar and Venkatesan, 1997). As the 
relation   is transitive,  

Send Message (MHi, MHj,, Message) by MHj  Record 
(TempCkptj) by MHj.  

Therefore, the sending of ݉ was saved in the checkpoint of 
the sender mobile host MHj.  

Case 2: Because of the reception of an application message s 
from a mobile host MHk, where ݇		݅, then:  

Let us suppose that ݏ was received and the local checkpoint 
was taken in MHj before MHj sends ݉ to MHi. When ݉ 
arrives at MSSi, the checkpoint number, piggybacked by ݉, is 
greater than that of the MHi. So, the base station MSSi sent to 
MHi a checkpointing request before sending the message m; 
consequently, the mobile host MHi recorded its checkpoint 
before handling the message ݉. So, the reception of ݉ is not 
recorded in this checkpoint.  

Result: If the reception event of a message was recorded in a 
checkpoint of a receiver mobile host, then the corresponding 
sending event was recorded in the checkpointing of the 
sender host. The absence of orphan message implies that the 
algorithm insures the recording of a consistent global state. 

7. PERFORMANCE EVALUATION 

7.1 Evaluation criteria 

To evaluate the performance of our algorithm, we used the 
following significant evaluation criteria: 

1. Technique of coordination used: The checkpointing 
processes are not blocking in our algorithm as the 
inconsistency is resolved by the piggyback technique. 

2. Number of checkpoints created during the execution 
of the algorithm: According to Lemma 1, the algorithm 
forces only those mobile hosts to record a checkpoint which 
are directly or indirectly dependent on the initiator mobile 
host. So, a minimum number (Nmin) of mobile hosts need to 
record checkpoints: ܰ݉݅݊	 ൏ 	݊.  
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3. The cost of coordinating messages: During the first 
phase, the mobile host which records a temporary checkpoint 
needs to send a checkpointing request to its base station and 
broadcast a checkpointing request in its cellule. Hence, the 
incurred cost of the coordinating messages transmitted in the 
system, during the first phase, is about: ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅
 .ሻݎܤݐݏܥ	
 CstWd: cost of sending a coordinating message in the wired 

network. 
 CstBr: cost of broadcasting a coordinating message in the 

wireless network to all mobile hosts. 

During the second phase, the initiator base station sends a 
request of validation to all the base stations. Every base 
station, having received the validation request, has to 
broadcast, in turn, this request in its own cellule. Every 
mobile host in the cellule, having previously recorded a 
temporary checkpoint, has to send this temporary checkpoint 
to its base station. So, the incurred cost of the coordinating 
messages transmitted in the system, during this second phase, 
is equal to: ݉	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	ܰ݉݅݊	 ൈ  .ݏܹݐݏܥ	
 CstWs: cost of sending a coordinating message in the 

wireless network. 

Thus, the total cost of coordinating messages is about: 
ሺܰ݉݅݊	 ൅ 	݉ሻ 	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ  .ݏܹݐݏܥ	

4. Time of blocking: The blocking time of our algorithm is 
nil. 

5. Distribution of the algorithm: According to the way of 
operation, the algorithm is fully distributed. 

6. Minimum Process: Our algorithm requires a minimum 
number of mobile hosts to participate in checkpointing, and 
also takes into account the limited storage available at MH. 

7. Useless Checkpoint: No local checkpoint is useless after 
the execution of our algorithm. A useless checkpoint is a 
local checkpoint that cannot be part of a consistent global 
state. 

8. Piggyback Information: The algorithm piggybacks only 
an integer checkpoint sequence number (Ckpti) with each 
application message. 

9. Concurrent Executions: Considering the low probability 
of multiple and concurrent failures, our algorithm can handle 
at most one execution at the same time. 

7.2 Comparative study with related work 

A comparison, in terms of performance, of our checkpointing 
algorithm with regard to the other algorithms with the same 
class is presented in this section. Thus, the Table 1 compares 
the performance of our algorithm with eight checkpointing 
algorithms fitting the class of coordinated checkpointing, 
using the same previous parameters. 

We notice that Koo and Toueg algorithm (Koo and Toueg, 
1987), requires only minimum number of MHs (≤ Nmin) to 
record a checkpoint, so that the cost of coordinating messages 
is reduced, but the execution of this algorithm needs to block 
the execution of the distributed application for a long time 
(ܰ݉݅݊ ൈ ܶܿ݇), which reduces the performance of the 

application. Also, the coordinated checkpointing algorithm 
proposed in (Kiehn et al., 2014) requires only a minimum 
number of MHs to take a checkpoint. This scheme designed 
by the generalization of Chandy and Lamport’s algorithm 
(Chandy and Lamport, 1985), uses a delayed checkpointing 
approach, along with partial channel blocking to achieve the 
consistent checkpoints. But, this blockage can be impossible 
for some type of distributed application.  

The Elnozahy et al. algorithm (Elnozahy et al., 1992) and 
Neogy (Neogy et al., 2004) algorithm, which are non-
blocking, force all MHs in the system (n) to take checkpoints; 
our algorithm reduces this number to nearly minimum (Nmin 
≤  n), so that the total number of checkpoints transmitted into 
the system is reduced. However, for a mobile environment, it 
is also very critical to minimize the number of coordinating 
messages transmitted. Hence, if we only consider the cost of 
coordinating messages sent to the mobile link, our algorithm 
performs fairly. 

The non-blocking algorithms in (Neves and Fuchs, 1997) and 
in (Surender et al., 2013), involve a minimum number of 
MHs (greater than the minimum involved in the Koo and 
Toueg algorithm (Koo and Toueg, 1987)) to record a 
checkpoint. At the same time, the cost of coordinating 
messages of these algorithms is the smallest compared to the 
other algorithms. This is because, these algorithms use time to 
indirectly coordinate to minimize the number of coordinating 
messages transmitted through the system. But, the timers in 
the MH cannot be perfectly synchronized – in fact, it is still 
an open research issue; therefore, the consistency between all 
the checkpoints can still be a hard problem for this type of 
algorithms. 

Biswas and Neogy design in (Biswas and Neogy, 2013) an 
algorithm based on the message logging and independent 
checkpointing. The authors also present a cryptographic 
method for securing checkpoints and logs.  In this algorithm, 
MSS logs all the messages sent to each MH in the stable 
storage. Additionally, each MH also takes checkpoints to 
reduce the extent of rollback during recovery. If a failure 
occurs, only the failed MH recovers by using the checkpoints 
and logged messages to replay the events precisely as they 
occurred during the pre-failure execution period. But, during 
this re-execution, the MH resends any message that it sent 
during this same execution stage before the failure. This 
actually incurs a real disadvantage for a mobile network, 
which has low bandwidth and limited energy resource. The 
second disadvantage of this algorithm is that when the 
mobility rate of MHs is high, the message logs of an MH 
may be distributed on several MSSs. Hence, after a failure 
occurs, the current MSS needs to collect all the message logs 
of MH. This may increase the cost of such operations which 
may be unfeasible especially for highly distributed 
applications. Li et al. propose in (Li et al., 2014) a 
checkpointing message logging scheme considering the visit 
time of the MH to the MSS. This scheme also suffers from 
the same disadvantages that were mentioned earlier. In fact, 
this scheme works efficiently only if the stay times of the 
MHs in the MSSs are long enough - in other words, if the 
mobility rate of the MHs is less.    
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Table 1. Performance comparaison. 
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An effort is made in the three phase minimum-process 
coordinated checkpointing algorithm proposed in (Nagpal et 
al., 2013) to minimize the blocking time of the distributed 
application and the useless checkpoints compared to the other 
non-blocking scheme proposed in (Koo and Toueg, 1987). 
However, this is at the expense of coordinating message cost 
(i.e., relatively higher cost compared to the other algorithms), 
which may cause exhaustion of the mobile network. 

Compared to Cao and Singhal algorithm (Cao and Singhal, 
2001) and Kumar et al. algorithm (Kumar et al., 2010), which 
are also non-blocking and offer the minimum, our algorithm 
requires almost the same number of MHs to record a 
checkpoint. However, it requires less number of coordinating 
messages. Therefore, the cost to ensure a consistent global 
state is less, in other words: 

ሺܰ݉݅݊	 ൅ 	݉ሻ 	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ
	ݏܹݐݏܥ	 ൏ 	3	 ൈ 	ܰ݉݅݊	 ൈ	ሺݏܹݐݏܥ	 ൅ 		ܹ݀ݐݏܥ	 ൅                ሻݎܤݐݏܥ	
                                                                                              (2)  
and: 

ሺܰ݉݅݊	 ൅ 	݉ሻ 	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ
	ݏܹݐݏܥ	 ൏ 	2	 ൈ 	ܰ݉݅݊	 ൈ 	ܹ݀ݐݏܥ	 ൅ 	݉݅݊	ሺܰ݉݅݊	 ൈ
	ሺܹ݀ݐݏܥ	 ൅ ,ሻݏܹݐݏܥ	  ሻ                                              (3)ݎܤݐݏܥ

From (Kumar et al., 2010), the proposed algorithm in (Kumar 
et al., 2010) generates the consistent global state with 
approximately the same message cost as in the algorithm 
proposed by (Cao and Singhal, 2001): 

3	 ൈ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ 	ݎܤݐݏܥ	 ൅ 	2	ሻݏܹݐݏܥ	 ൈ
	ܰ݉݅݊	 ൈ 	ܹ݀ݐݏܥ	 ൅ 	݉݅݊	ሺܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅
,ሻݏܹݐݏܥ	  ሻ                                                                  (4)ݎܤݐݏܥ

So, from equation (4), the certainty verification of equation 
(2) is sufficient to ensure the certainty of equation (3). It is 
known that for any minimum checkpointing algorithm, we 
have:  

	݌݁݀ܰ ൑ 	ܰ݉݅݊		ܰ݀݁݌	 ൈ 	ݏܹݐݏܥ	 ൑ 	ܰ݉݅݊	 ൈ  ݏܹݐݏܥ	
	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	
൑ 	 ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	ܰ݉݅݊	 ൈ  ݏܹݐݏܥ	
	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	
൑ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	ܰ݉݅݊	 ൈ  ݏܹݐݏܥ	
	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	
൑ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ 	ݎܤݐݏܥ	 ൅  ሻݏܹݐݏܥ	
	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	 ൏
	3	 ൈ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ 	ݎܤݐݏܥ	 ൅  ሻ                  (5)ݏܹݐݏܥ	

As, mathematically, equation (5) is always verified, it remains 
to verify equation (2) in relation to the number of base 
stations in the system, m through simulation experiments, 
presented in the following section. 

It is worth mentioning here that some other works, for 
instance, Sharma et al. (2014) show that inconsistency exists 
in Cao and Singhal’s algorithm (Cao and Singhal, 2001). 

7.3 Simulation setting and results  

This section presents the performance evaluation of our 
algorithm performed through the simulation experiments. A 

series of experiments were done to find out the efficiency of 
our scheme. The simulation environment comprises a variant 
number of MSSs and MHs. We assume that there is one 
process running on each MH. The MSSs are connected by a 
wired network with a bandwidth of 10 mbps. Each MH has a 
wireless connection with its supporting MSS with a 
bandwidth of 2 mbps, which follows IEEE 802.11 standard. 
The size of each computation message is assumed to be 2 kb. 
During checkpointing, there are coordination messages 
transmitted among the processes for checkpoint requests and 
responses. Each coordination message is assumed to be 100 
bytes. Therefore, the transmission delay of messages is: 4 ms 
and the size of a checkpoint is: 512 kb. 

The information of a particular MH gets scattered over a 
number of MSSs. So, the message cost depends on the 
number of MHs and MSSs in the system from which 
information is to be collected (Biswas and Neogy, 2011). 
Thus, in our experiments, we changed the number of MSSs 
(10, 30, and 60) and varied the number of MHs (from 10 to 
10 ൈ m) to see the corresponding changes of the message cost 
and to compare the performance of our algorithm with Cao 
and Singhal algorithm (Cao and Singhal, 2001) and Kumar et 
al. algorithm (Kumar et al., 2010). 

Fig. 4 presents the cost of coordinating messages to complete 
the checkpointing processes in the best case scenario for the 
three algorithms against the number of MHs in the system, 
with varying number of MSSs. 

From the Fig. 4, it can be noticed that the three algorithms 
require a higher message cost for determining a consistent 
state as the numbers of MSSs and/or MHs in the system 
increase. We can also see that the message costs of the 
proposed algorithm in (Cao and Singhal, 2001) and in (Kumar 
et al., 2010) are almost identical. The advantage of our 
algorithm over the other schemes is that the message cost is 
relatively much lesser as the numbers of MSSs and/or MHs 
decrease. In other words, when the system contains a less 
number of MSSs and/or MHs, our algorithm is relatively 
more suitable because it requires low message cost to save a 
consistent global state. 

A. Advantages of our algorithm: 

 More than the numbers of MSSs and/or MHs in the system 
are less, our algorithm reduces the cost of coordinating 
messages until: ሺܰ݉݅݊	 ൅ 	݉ሻ	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅
	݌݁݀ܰ	 ൈ   .ݏܹݐݏܥ	

 Our algorithm reduces the number of checkpoints until 
Nmin, knowing that: ܰ݀݁݌	 ൑ 	ܰ݉݅݊	 ൑ 	݊. 

 The time of blocking is nil. Our algorithm complies in a 
transparent way in the distributed applications, which indeed 
increases performance in a significant way. 

B. Shortcomings of our algorithm: 

 Our algorithm cannot handle concurrent failures and 
multiple executions at the same time. This is an issue that we 
have kept for our future works. 

 The cost of coordinating messages in our algorithm 
increases and reaches the cost of other schemes whenever the 
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numbers of MSSs and/or MHs in the system increase. Still, 
for most of the application scenarios, our scheme performs 
relatively better. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4. Message cost vs. number of MH in the system when:           
(a) m = 10, (b) m = 30, (c) m = 50. 

8. CONCLUSIONS AND FUTURE WORKS  

In a mobile computing environment, mobile hosts may be 
exposed to problems coming from limited and unstable 
storage supports, a weak bandwidth, a limitation of energy 
source, high rate of errors, frequent movements, and 
disconnections. A checkpointing algorithm suitably adapted 
to this context has to take into account these different 
constraints. Hence, the unavailability of a mobile host 

(because of disconnection) can establish a sufficient criterion 
to be able to invalidate the adoption of a blocking 
checkpointing algorithm, notably when application is time-
bounded. Also, to save some energy, certain mobile hosts 
involved in the computation can be in doze mode. Any 
coordinating message directed to them may lead to useless 
activation of them. Therefore, a checkpointing algorithm that 
requires all the hosts to take checkpoints systematically 
would keep some of them awake unnecessarily. This was the 
core motivation of our proposal of a checkpointing algorithm 
which brings a solution to the problems previously raised in 
this research arena.  

Our proposed algorithm belongs to the coordinated type, 
minimizes the number of recorded checkpoints, and avoids 
blocking the mobile hosts. It allows transferring all the 
payload of coordination towards the base stations of the 
wired network, which significantly decreases the amount of 
traffic on the mobile network for the benefit of other 
necessary activities. The algorithm also uses the information 
of dependence to limit, to the strict necessities, the number of 
mobile hosts to take checkpoints. Consequently, incurred 
overhead due to the activities relating to the checkpointing 
process is largely reduced. As future works, we would like to 
overcome the shortcomings of our scheme – especially, on 
handling concurrent failures and multiple executions at the 
same time, and further reducing the cost of coordinating 
messages. 
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