
CEAI, Vol.17, No.2 pp. 43-54, 2015 Printed in Romania

A New Efficient Checkpointing Algorithm for Distributed Mobile Computing

Houssem Mansouri1, Nadjib Badache2, Makhlouf Aliouat3, Al-Sakib Khan Pathan4


1Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, 06000, Bejaia, Algeria, (e-mail:
mansouri_houssem@yahoo.fr).

2Research Center on Scientific and Technical Information CERIST, Ben-Aknoun, Algiers, 16000, Algeria, (e-mail:
badache@mail.cerist.dz).

3Laboratory of Networks and Distributed Systems, Computer Science Department, University of Ferhat Abbas Sétif1, Sétif,
19000, Algeria, (e-mail: aliouat_m@yahoo.fr).

4Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, 53100, Malaysia, (e-mail:
sakib@iium.edu.my).

Abstract: Mobile networks have been quickly adopted by many companies and individuals. However,
multiple factors such as mobility and limited resources often constrain availability and thus cause
instability of the wireless environment. Such instability poses serious challenge for fault tolerant
distributed mobile applications. Therefore, the classical checkpointing techniques, which make the
applications more failure-resistant, are not always compatible with the mobile context. In fact, it is
necessary now to think about other techniques or at least adapt those to devise effective and well suited
techniques for the mobile environment. Considering this issue, the contribution in this paper is a proposal
of a new checkpointing algorithm suitable for mobile computing systems. This algorithm is characterized
by its efficiency and optimization in terms of incurred time-space overhead during checkpointing process
and normal application running period.

Keywords: Distributed mobile computing, Fault tolerance, Consistent global state, Coordinated
checkpointing.



1. INTRODUCTION

The increasing development of wireless communication
technology during the last decade has triggered the rapid
growth of mobile networks. Due to the high flexibility of use,
the latest technologies have been quickly adopted by
companies and individuals all over the globe. In spite of all
the advancements and quick adoptions today, a full-fledged
ubiquitous Internet network that could widely exploit the
capabilities of the mobile networks, is still not possible to
build. This is because of the high cost associated with
infrastructure building and limited transmission range.
However, it is expected that these constraints would tend to
decrease as the wireless technologies progress – perhaps, in
the near future, all these obstacles would be abolished and
Internet access will be possible from anywhere via usual
mobile networks.

Nevertheless, the difficulties, e.g., unavailability, instability,
that are seen today basically come from the inherent
characteristics of mobile networks and wireless
communications. These negative aspects should be mitigated
as much as possible so that the Quality of Service (QoS)
offered to users may be satisfactory. As services delivered in
a mobile environment are in fact, the extensions of services
provided by the classic distributed systems, numerous
algorithms or usual algorithms which carry out these services
have to be modified or rethought in a better way to adapt
them to the constrained mobile network environment.

Among various algorithms to be adjusted to meet the
requirements of mobile applications, we mention in particular
the checkpointing algorithms that enable these applications
and systems to have fault tolerance capabilities. If the
appropriate adjustments could be done, indeed, mobile
distributed systems will then be capable of running critical
distributed applications within prescribed time (in accordance
with their mission specifications).

To be suitably adapted to this new environment,
checkpointing algorithms have to take into account the
following issues (Badrinath et al., 1993, 1994; Acharya and
Badrinath, 1994; Forman and Zahorjan, 1994):

 Low bandwidth: it is important that a checkpointing
algorithm generates a minimum of coordinating messages,
and minimizes the most likely extra piggybacked
information.

 Limitation of storage space: the lack of disk space on
Mobile Host (MH) implies that checkpoints will be
transferred in the Mobile Support Stations, which have
sufficient storage size.

 Handling of mobility: frequent movement and
disconnection of the network put an obstacle in the
synchronization process or the coordination of the MHs
during the process of checkpointing or recovering.

 Limited energy source: conservation and optimization of
energy consumption is a paramount importance. Any use of

44 CONTROL ENGINEERING AND APPLIED INFORMATICS

an MH has to take into account the weak life expectancy of
the energy source.

After this introduction, the rest of the sections are organized
as follows: Section 2 talks about the system model and
assumptions, Section 3 introduces various facets of the
checkpointing algorithm, Section 4 talks about the phases of
the algorithm, Section 5 presents the pseudocode of the
algorithm, followed by the proof of correctness in Section 6.
Performance evaluation is presented in Section 7 before
concluding the paper in Section 8 with future research
directions.

2. SYSTEM MODEL AND ASSUMPTIONS

The system model shown in Figure 1, which has been taken
into consideration by various other works (Acharya and
Badrinath, 1994; Dey and Biswas, 2012; Kiehn et al., 2014),
consists of a set of wireless Mobile Hosts (MHs) and fixed
base stations called Mobile Support Station (MSSs) attached
to MHs. The static MSS is capable to provide various
services to support MHs. The geographic region covered by
MSS range transmissions is called a cellule (Cell).
Bidirectional communication between an MH and MSS is
established via a wireless link with message sending FIFO
(First-In, First-Out) strategy. Any communication between
any two MHs: MHi and MHj is accomplished only via
corresponding MSSi and MSSj - no direct communication
between MHs is allowed. A high speed wired communication
link is assumed to connect any two MSSs. Message
transmissions through the wired and wireless links take an
unpredictable, but finite amount of time.

Fig. 1. Mobile environment.

An application running in a mobile computing system is
assumed to be composed of ݊ concurrent processes, which
collectively perform a distributed computation. It is assumed
that each process runs on a distinct MH. The computation is
assumed to be conformed to a piece-wise deterministic model
in which a process always produces the same sequence of
states in its execution for the same sequence of message-
receiving events. In this paper, we consider the transient-
failure type, that is, a process is unlikely to fail again at the
same execution point after it recovers from a failure. Fail-
silent mode for processes is assumed, so when a process fails,
it immediately stops the execution and does not perform any
malicious action. This fail-silent property (Schlichting and
Schneider, 1983) is important for considering that messages
sent prior to a failure, are correct. Otherwise, we have to take
into account the hard problem of checkpoints’ trustworthiness
which can lead to propagate state restoration in a recovery

operation similar to a domino-effect mechanism (Elnozahy et
al., 2002).

We also assume the presence of reliable message delivery,
that is, there is no message loss or alteration during normal
computation. Stable storage is assumed to survive in case of
MH or MSS failure while volatile memory loses its content.
The degree of fault tolerance in the wired network and the
computation capabilities of the MSSs are supposed to be
high.

3. CHECKPOINTING ALGORITHM

A checkpointing algorithm suitable for mobile environment
has to be in accordance with the following two essential
aspects (Badrinath et al., 1993, 1994; Acharya and Badrinath,
1994):

1. Taking into account the constrained mobile environment,
notably the low bandwidth, the frequent handoff of mobile
hosts, and their limited storage space, MHs must be given the
option to freely set their own checkpoints. Because, only
MHs have sufficient knowledge when it is favourable to do
that. Therefore, the MHs may take advantage of propitious
situations to save checkpoints, e.g., when the size of
checkpoint is adequate, the battery level is high or a handoff
is soon expected, etc. However, this freedom accorded to
MHs may cause a well known domino-effect problem. On the
other hand, the large resource availability in the MSSs and
wired network makes the restrictions in checkpointing less
severe and recommends the use of coordinated checkpointing
technique. In order to comply with mobile context
specifications and getting to implement pertinent recovery
capabilities, hybrid checkpointing algorithms are needed.

2. For new constraints, new directions of investigation are
needed. Indeed, in wired networks, checkpointing algorithms
have no need to handle handover situations especially making
difference between a long handoff and an MH failure. In the
case of failure caused by depletion of the battery, we may
have to face two situations. The first one is the definitive
shutdown of the MH making it impossible to complete the
application. This is the common situation reported in all
existing checkpointing algorithms until now. The second one
is the one that tries to overcome this problem by replicating
(in MSS) activities taking place in MH in order to recover
energy source from changing battery. This difficult
alternative (but which is also convenient to insure mobile
distributed applications’ non-stop property) is under our
current investigation.

3.1 Technique of checkpointing used

Our algorithm is based on the following strategies:

1. Coordinated checkpointing technique between MSSs to
save a consistent global state and to avoid orphan messages
(Chandy and Lamport, 1985; Netzer ans Xu, 1995; Elnozahy
et al., 2002). The use of this technique is aimed at getting
simplicity in the implementation of the algorithm and the
insurance to always have a consistent global state available
during the recovery operation. Indeed, when a local

CONTROL ENGINEERING AND APPLIED INFORMATICS 45

 ``

checkpoint is saved, the algorithm guarantees that this
checkpoint is part of a global consistent state. Thus, MSSs
have to cooperate with the object to keep only a single
checkpoint for every MH. The storage space required for
checkpointing is then optimized. Once failure occurs, each
MH concerned with recovery, simply has to retry execution
from its last permanent checkpoint.

2. Coordination is not blocking (Cao and Singhal, 2001;
Kanmani et al., 2007; Awasthi et al., 2014), that is, there is
no need to momentarily stop the computation of the mobile
distributed application during the execution of the
checkpointing process. This significantly increases
application performance, because the algorithm is performed
in a transparent way. However, when a mobile host MHi
sends a message m to its partner MHj via its associated MSSi,
MSSi piggybacks with the message m the current value of
MHi’s checkpoint number: Ckpti. When the MSSj station
associated to MHj receives the message m, m is relayed (by
MSSj) to MHj if the MHj’s checkpoint number Ckptj is
superior or equal to the checkpoint number Ckpti of the
sender MHi. Otherwise, MSSj sends first a checkpointing
request to MHj before sending it the message m, and then
updates the checkpoint number, Ckptj.

3. Coordination is maintained minimum (Cao and Singhal,
2001), that is, the algorithm does not force all the mobile
hosts to take checkpoints. Only hosts having communicated
with the initiator of the algorithm directly or indirectly after
the last taken checkpoint have to save a checkpoint. The
algorithm includes two phases: The first consists of an
identification of all the MHs causally depending on the MH
initiator (since its last checkpoint) which sends them a
checkpointing request. On reception of this last one, every
MH identifies all the MHs with which it had to communicate
since the last checkpoint and sends them a checkpointing
request, and so on until that there is no more MH to be
identified. In the second phase, all the MHs identified during
the first phase, go for setting their permanent checkpoint.
Hence, the result obtained is a consistent global state with the
cooperation of an optimal number of MHs.

4. Our algorithm uses the message logging technique (Park
et al., 2002) to replay messages intended for a mobile site
MH during its disconnection.

3.2 Abbreviations and data structure used

Abbreviations: To simplify and to make our presentation as
clear as possible, we use the following abbreviations:

MovReq: moving request.
DiscReq: disconnection request.
RecReq: reconnection request.
CkptReq : checkpointing request.
ValidReq : validation request.
TransInformReq: transmission information request.

Data structure used:
For every mobile host MHi we have:
Ckpti: indicates the number of the last checkpoint
recorded in MHi.
DepdSitesi: set of MHs which have a causal dependence
relation with MHi.

Logi : set of computation messages sent to MHi during
their disconnection.
DiscCkpti: used to save the last disconnection checkpoint
of MHi.
TempCkpti: used to save the last temporary checkpoint of
MHi.
PermCkpti: used to save the last permanent checkpoint
of MHi.
For every base station MSSn we have:
PresSitesn: set of MHs present in celln.
DiscSitesn: set of MHs disconnected from celln.
GlobSetn: set of MHs involved in checkpoint recording.
TempInSetn: set of MHs identifiers internal to celln.
TempExtSetn: set of MHs identifiers external to celln.
Ckptn: variable for saving the number of the new
checkpoints.
InitMSS: used to save the identity of the initiator base
station.
Term: used to detect algorithm termination.

3.3 Handling of mobile environment characteristics

A checkpointing algorithm suitably adapted to the mobile
context has to satisfy several criteria to integrate the specific
characteristics of this environment and their influences on the
distributed computation. Among these is “Mobile host
mobility processing”. When moving from place to place, a
mobile host MHi has to inform its basic station MSSi for all
its movements. Hence, when MHi moves from a Celli
(supported by MSSi) to another cellj (supported by MSSj),
MHi has to inform about it to the former station, MSSi and the
new one, MSSj. However, it is necessary to make sure that the
data structure of the mobile host (Ckpti, DepdSitesi, Logi,
DiscCkpti, TempCkpti, PermCkpti) is always available at the
current base station.

A. Mobile host movement processing: As shown in Figure
2, at the time of movement, the mobile host MHi sends a
movement request to the new base station MSSj. Upon
reception of the request, MSSj sends a request to the former
base station MSSi to get information concerning the mobile
site MHi. MSSi sends then to MSSj what is requested.

Fig. 2. MH Movement.

Routine of movement handling
-Role of the mobile host MHi:
At the time of moving:

Send MovReq (MHi, MSSi);
-Role of the new base station MSSj:
Upon receiving moving request from MHi:

Receive MovReq (MHi, MSSi);
PresSitesj := PresSitesj + MHi;
Send TransInformReq (MSSi, MSSj, MHi);

46 CONTROL ENGINEERING AND APPLIED INFORMATICS

Upon receiving requested information from MSSi:
Receive Information (MSSj, MHi, Ckpti, DepdSitesi, Logi,
DiscCkpti, TempCkpti, PermCkpti);
Save (Ckpti, DepdSitesi, DiscCkpti, TempCkpti,
PermCkpti);

-Role of the former base station MSSi:
Upon receiving information transmission request from MSSj:

Receive TransInformReq (MSSi, MSSj, MHi);
Send Information (MSSj, MHi, Ckpti, DepdSitesi, Logi,
DiscCkpti, TempCkpti, PermCkpti);
PresSitesi := PresSitesi - MHi;

B. Mobile host disconnection and reconnection
processing: As shown in Figure 3, the mobile host MHi
records a checkpoint (DiscCkpt) before its disconnection and
sends it to the former base station MSSi. The mobile host MHi
sends then a request of reconnection (RecReq) to the new
base station MSSj. The new base station MSSj sends a request
to the former base station MSSi to get back information
concerning the mobile host MHi. The former base station
MSSi sends to the new base station MSSj, the information
relating to the mobile host, MHi.

The new base station MSSj sends the disconnection
checkpoint (DiscCkpt) got back from MSSi, to the mobile
host, MHi. MHi has also to get messages (sent to it during
disconnection) from MSSi, according to the order of their
previous reception. The mobile host MHi loads then its state
with the received checkpoint and handles messages.

Fig. 3. Disconnection/Reconnection scenario.

Routine of disconnection handling
-Role of the mobile host MHi:
Before the disconnection:

Record (DiscCkpti);
Send DiscReq (MHi, DiscCkpti);

-Role of the former base station MSSi:
Upon receiving disconnction request from MHi:

Receive DiscReq (MHi, DiscCkpti);
DiscSitesi := DiscSitesi + MHi;
Until (Receive TransInformReq (MSSi, MSSj, MHi)) Do

Upon reception of application message from MHn for
MHi:

Receive Message (MHi, MHn, Message);
Logi := Logi + (MHi, MHn, Message);

End
Routine of reconnection handling
-Role of the mobile host MHi:
At the time of reconnection to MSSj:

Send RecReq (MHi, MSSi);
Upon receiving disconnection checkpoint from MSSj:

Receive Message (MHi, DiscCkpti);

Load (DiscCkpti);
Upon receiving application message from MHn:

Receive Message (MHi, MHn, Message);
Handle (Message);

-Role of the new base station MSSj:
Upon receiving reconnection request from MHi:

Receive RecReq (MHi, MSSi);
PresSitesj := PresSitesj + MHi;
Send TransInformReq (MSSi, MSSj, MHi);

Upon receiving requested information from MSSi:
Receive Information (MSSj, MHi, Ckpti, DepdSitesi, Logi,
DiscCkpti, TempCkpti, PermCkpti);
Save (Ckpti, DepdSitesi, DiscCkpti, TempCkpti,
PermCkpti);
Send Message (MHi, DiscCkpti);
For All (MHi, MHn, Message) ߳ Logi Do

Send Message (MHi, MHn, Message);
DepdSitesi := DepdSitesi + MHn;

End
Logi :=  ;
DiscCkpti :=  ;

-Role of the former base station MSSi:
Upon receiving information transmission request from MSSj:

Receive TransInformReq (MSSi, MSSj, MHi);
Send Information (MSSj, MHi, Ckpti, DepdSitesi, Logi,
DiscCkpti, TempCkpti, PermCkpti);
PresSitesi := PresSitesi - MHi;
DiscSitesi := DiscSitesi - MHi;

4. PHASES OF THE ALGORITHM

The algorithm works in two phases: (i) The phase of the
creation of the temporary checkpoints, and (ii) the phase of
transformation of the temporary checkpoints to permanent
ones.

1. First phase: When a mobile host, MHr runs the
checkpointing algorithm (it is assumed that there is only a
single instance of checkpointing process at a time), it records
a temporary checkpoint and sends a checkpointing request to
its base station MSSn. Upon reception of the request, MSSn
determines the identifier set DepdSitesr. MSSn then
broadcasts checkpointing request to all the base stations
(included itself). This request piggybacks the set DepdSitesr
determined before.

During all the execution of the algorithm, if a base station
MSSi receives a checkpointing request CkptReq
(TempExtSetx, Value), then MSSi in turn broadcasts a
checkpointing request to the mobile hosts, MHi ߳

TempExtSetx of its own cellule, MHi ߳ Celli concerned with
the checkpointing process. MSSi also determines the
identifiers of the mobile hosts directly dependent on these
mobile hosts (which are also indirectly dependent on the
initiator host MHr). If the set so determined is empty, then the
base station MSSi sends an acknowledgment to the initiator
base station MSSn; otherwise, it broadcasts this set to all other
base stations, and so on.

2. Second phase: When the initiator base station, MSSn
receives an answer from all the base stations MSSi (i  [1,

CONTROL ENGINEERING AND APPLIED INFORMATICS 47

 ``

m]), then it broadcasts a request of validation to all the base
stations. Every base station, having received the validation
request, has to broadcast in turn, this request in its own
cellule. So, every mobile host in the cellule, having received
this request, has to send its temporary checkpoint (if there is
any) to the base station to make it permanent and save it in
the stable storage.

5. THE ALGORITHM PSEUDOCODE

Initialization:
For every mobile host MHi:

Record (PermCkpti);
Send Message (MHi, PermCkpti)

For every base station MSSj:
PresSitesj := {MHi / MHi	߳ Cellj} ;
DiscSitesj :=  ;
GlobSetj :=  ;
TempInSetj :=  ;
TempExtSetj :=  ;
InitMSS :=  ;
Term := 0 ;
For All (MHi PresSitesj) Do

Receive Message (MHi, PermCkpti)
Save (PermCkpti)
Ckpti := 1 ;
DepdSitesi :=  ;
Logi :=  ;
DiscCkpti :=  ;
TempCkpti :=  ;

End
Ckptj := 1 ;

Initiation of the algorithm
-Role of the initiator mobile host MHr:
Record (TempCkptr);
Send CkptReq (MHr);
-Role of the initiator base station MSSn:
Upon receiving checkpointing request from the initiator
mobile host MHr:

Receive CkptReq (MHr);
Ckptr := Ckptr + 1;
Ckptn := Ckptr;
TempExtSetn := DepdSitesr;
Send CkptReq (MSSn, Ckptn, TempExtSetn, 1/m);
GlobSetn := TempExtSetn;

Upon receiving answer from a base station:
Receive answer (MSSn, Value);
Term := Term + Value;
If (Term = 1) Then

Send ValidReq(MSSn);
EndIf

During the execution of the algorithm:
-Role of every base station MSSi:
Upon receiving checkpointing request from a base station
MSSx:

If Receive CkptReq (MSSx, Ckptx, TempExtSetx, Value)
Then

InitMSS := MSSx;
Ckpti := Ckptx;

Else
Receive CkptReq (TempExtSetx, Value);

Endif
TempInSeti := {MHp / MHp  TempExtSetx  MHp ߳
PresSitesi  MHp  GlobSeti};
GlobSeti := GlobSeti  TempExtSetx;
For All (MHp  TempInSeti) Do

If (MHp  DiscSitesi) Then
TempCkptp := DiscCkptp;

Else
Send CkptReq (MHp);

Endif
Ckptp := Ckpti;

Endfor
TempExtSeti := {MHt / MHt  DepdSitesp / MHp ߳
TempInSeti};
If (TempExtSeti = Ø) Then

Send answer (InitMSS, Value);
Else

Send CkptReq (TempExtSeti, Value/m);
Endif

For reception of a validation request from MSSn:
Receive ValidReq (MSSn);
For All (MHi ߳ GlobSeti  MHi ߳ PresSitesi) Do

If (MHi ߳ DiscSitesi) Then
PermCkpti := TempCkpti ;

Else
Send ValidReq (MHi);

Endif
Endfor

Upon receiving temporary checkpoint from MHi:
Receive Message (MHi, TempCkpti);
PermCkpti := TempCkpti ;

-Role of every mobile host MHi:
Upon receiving checkpointing request:

Receive CkptReq (MHi);
Record (TempCkpti);

Upon receiving validation request:
Receive ValidReq (MHi);
Send Message (MHi, TempCkpti);

During the time of execution of the algorithm, to avoid
blocking of the execution of mobile distributed application, if
a base station MSSi receives an application message from
MHi for MHj, then MSSi piggybacks with the message the
current value of MHi’s checkpoint number: Ckpti. When the
MSSj station associated to MHj receives the message, it is
relayed (by MSSj) to MHj if the MHj’s checkpoint number
Ckptj is superior or equal to checkpoint number Ckpti of the
sender MHi. Otherwise, MSSj sends first a checkpointing
request to MHj before sending it the message, and then,
updates the checkpoint number, Ckptj.

-Role of every base station MSSi:
Upon receiving application message from MHi (MHi  Celli)
for MHj:

Receive Message (MHj, MHi, Message);
Send Message (MHj, MHi, Ckpti, Message);

Upon receiving application message from MHi for MHj (MHj
߳ Celli):

48 CONTROL ENGINEERING AND APPLIED INFORMATICS

Receive Message (MHj, MHi, Ckpti, Message);
If (Ckptj < Ckpti) Then

Send CkptReq (MHj);
Ckptj := Ckpti;
TempExtSeti := TempExtSeti + {MHt / MHt ߳
DepdSitesj}

Endif
Send Message (MHj, MHi, Message);
DepdSitesj := DepdSitesj + MHi;

-Role of every mobile host MHi:
For sending an application message to MHj:

Send Message (MHj, MHi, Message);
Upon receiving application message from MHj:

Receive Message (MHi, MHj, Message);
Handle (Message);

6. PROOF OF CORRECTNESS

Lemma 1: If a mobile host MHi initiates the checkpointing
algorithm, then any other mobile host MHj directly or
indirectly depends on MHi since its last checkpoint has to
record a checkpoint.

Correctness proof: Let us demonstrate with some cases. If a
mobile host MHi records a checkpoint, then any other mobile
host MHj, such as MHj ߳ DepdSitesi has to take a checkpoint.

Case 1: if a mobile host MHr (initiator of the algorithm)
sends a checkpointing request to its base station MSSn, MSSn
sends in turn, this request to all the base stations with the set
TempExtSetn of the identifiers of all the mobile hosts MHj
such as MHj ߳ DepdSitesr.

With the reception of this request, every base station MSSi
acts as follows:
1. Broadcasts the request to all mobile hosts in set
TempExtSetn which belong to the Celli. With the reception of
a checkpointing request, every mobile host records a
temporary checkpoint.
2. If there is a mobile host MHj such that MHj ߳

TempExtSetn  MHj ߳ DiscSitesi, then, its base station MSSi
transforms its disconnection checkpoint DiscCkptj into a
temporary checkpoint TempCkptj.

As at any time, every mobile host is either connected to one
of the base stations (or disconnected), if a mobile host runs
the checkpointing algorithm, any other mobile host which
directly depends on it (since it is the last checkpoint) has to
establish a temporary checkpoint.

Case 2: if a mobile host MHi is not the initiator of the
algorithm and receives checkpointing request from its base
station MSSi, then MSSi serves all the mobile hosts which are
directly dependent on MHi, and sends a checkpointing request
to all the base stations (included itself) piggybacking the
TempExtSeti set. After receiving this request, every base
station MSSj acts as follows:

1. If one of these determined hosts belongs to the set
GlobSetj, then this host has already recorded a temporary
checkpoint, either in this station or in the other one.

2. If there is a mobile host MHk ߳ TempExtSeti  MHk ߳
DiscSitesj, then the base station changes the disconnection
checkpoint to a temporary one for this mobile host MHk.
3. Broadcasts the request to all mobile hosts in set
TempExtSeti which belong to the Cellj. After receiving a
checkpointing request, every mobile host records a temporary
checkpoint.
At any instance of time, every mobile host is either connected
to one of the base stations and it has previously recorded a
checkpoint, or it is reconnected to one of the base stations
and it did not first take a checkpoint, or it is not connected at
all. Hence, if a mobile host records a checkpoint, any other
mobile host would directly depend on it since it is the last
host which recorded a checkpoint.

From Case 1 and Case 2, we can conclude in formal terms
that:

If a mobile host MHi records a checkpoint, any other mobile
host MHj such as MHj ߳ DepdSitesi has to record a
checkpoint. Because of transitive relation dependency, if a
mobile host MHi runs the checkpointing algorithm, any other
mobile host MHj would directly or indirectly depend on it
since the last checkpoint, has also to record a checkpoint.

Lemma 2: The algorithm is convergent, that is it completes
its execution within the prescribed amount of time.

Correctness proof: We defined the following predicates:

 Portion (Term, MSSn): the portion of Term actually saved
in the initiator base station MSSn.

 Portion (Term, CkptReq): the portion of Term piggybacked
in a checkpointing request which is in transit.

 Portion (Term, Answer): the portion of Term piggybacked
by an answer request in transit.

At the initialization phase of the algorithm, we have: Portion
(Term, MSSn) = 0. If we can prove that after a finite time of
the algorithm execution starting point, we get: Portion (Term,
MSSn) = 1, we can conclude that the algorithm completes its
execution in time. (Huang, 89).

We have to verify the following equation through different
periods of the checkpointing algorithm execution:

௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	൅ 		ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	൅
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	1 (1)

Period 1: the initiator base station broadcasts a checkpointing
request to all other base stations with the value 1/݉ for each
of it:
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	0;
,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ ሻݍܴ݁ݐ݌݇ܥ 	ൌ
1/݉			ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	ൌ 	1;
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	0; thus equation (1) is
verified.

Period 2: When any checkpointing request is received, any
base station MSSi has to determinate the set TempExtSeti and
immediately send the received portion Term, either to the
initiator base station with the answer, or to the other base

CONTROL ENGINEERING AND APPLIED INFORMATICS 49

 ``

stations with checkpointing requests. In this scenario, two
cases can occur:

Case 1: if TempExtSeti = , then the current base station
sends an answer to the initiator base station with the value of:
Portion (Term, CkptReq).

Case 2: if TempExtSet  , then the base station broadcasts a
checkpointing request to all other base stations (for each one)
with a value of: Portion (Term/m, CkptReq).
As the two cases cannot occur at the same time in the same
base station,
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	0;
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	൅
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	1; hence, equation (1) is
verified.

Period 3: As the number of mobile hosts in the system is
limited, after completion time (as: MHi ߳ GlobSetj, i ߳ [1,
m] in the worst case), the number of checkpointing requests
in transit in the network becomes nil. Therefore, after the
reception of the last checkpointing request for all the base
stations, we have:
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	0;
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	ൌ 	0;
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	1; Thus equation (1) is
again verified.

Period 4: As transmission times of the messages in the
wired network are arbitrary but over, after completion time,
all the answer requests arrive at the initiator base station.
Hence,
௡ሻܵܵܯ,݉ݎሺܶ݁	݊݋݅ݐݎ݋ܲ 	ൌ 	1;
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݍܴ݁ݐ݌݇ܥ 	ൌ 	0;
	ܲ݊݋݅ݐݎ݋	ሺܶ݁݉ݎ, ሻݎ݁ݓݏ݊ܣ 	ൌ 	0; So, equation (1) is
verified.

After completion (or, finished) time, from the initiation of the
algorithm, the value of Term at the initiator base station
becomes equal to 1. At this time, this initiator base station
broadcasts the validation request. Upon receiving this
request, every base station has to broadcast it in its own
cellule. Then, every mobile host has to send its temporary
checkpoint to its base station. Because of finished
transmission message time, all the messages will arrive at
their destinations. Consequently, a new global state is
recorded, that is, the checkpointing algorithm ends after
finished/completion time.

Theorem: The algorithm insures recording of a consistent
global state.

Correctness proof: To prove this theorem, we have to prove
what follows:

If the reception event of a message was recorded in a
checkpoint of a receiving mobile host, then the corresponding
sending event of this message was also recorded in the
checkpoint of the sender mobile host.

Let MHi ߳ Celli is covered by MSSi, which is the mobile host

receiving a message m, and let MHj ߳ Cellj is covered by

MSSj, which is the sender of m. Then, MHj ߳ DepdSitesi. If

MHi records the reception of m in MHi’s checkpoint, then
according to Lemma 1, the mobile host MHj has also recorded
a checkpoint. Two possible cases are there for which the
mobile host MHj establishes its checkpoint:

Case 1: Because of the reception of a checkpointing request
coming from MHi:

Send Message (MHi, MHj, Message) by MHj  Receive
Message (MHi, MHj, Message) by MHi.
Receive Message (MHi, MHj, Message) by MHi  Record
(TempCkpti) by MHi.
Record (TempCkpti) by MHi  Send CkptReq (TempExtSeti,
Value) by MSSi.
Send CkptReq (TempExtSeti, Value) by MSSi  Receive
CkptReq (TempExtSeti, Value) by MSSj.
Receive CkptReq (TempExtSeti, Value) by MSSj  Record
(TmpCkptj) by MHj.

Where ‘’ represents the relation between operations
(Lamport, 1978; Alagar and Venkatesan, 1997). As the
relation  is transitive,

Send Message (MHi, MHj,, Message) by MHj  Record
(TempCkptj) by MHj.

Therefore, the sending of ݉ was saved in the checkpoint of
the sender mobile host MHj.

Case 2: Because of the reception of an application message s
from a mobile host MHk, where ݇		݅, then:

Let us suppose that ݏ was received and the local checkpoint
was taken in MHj before MHj sends ݉ to MHi. When ݉
arrives at MSSi, the checkpoint number, piggybacked by ݉, is
greater than that of the MHi. So, the base station MSSi sent to
MHi a checkpointing request before sending the message m;
consequently, the mobile host MHi recorded its checkpoint
before handling the message ݉. So, the reception of ݉ is not
recorded in this checkpoint.

Result: If the reception event of a message was recorded in a
checkpoint of a receiver mobile host, then the corresponding
sending event was recorded in the checkpointing of the
sender host. The absence of orphan message implies that the
algorithm insures the recording of a consistent global state.

7. PERFORMANCE EVALUATION

7.1 Evaluation criteria

To evaluate the performance of our algorithm, we used the
following significant evaluation criteria:

1. Technique of coordination used: The checkpointing
processes are not blocking in our algorithm as the
inconsistency is resolved by the piggyback technique.

2. Number of checkpoints created during the execution
of the algorithm: According to Lemma 1, the algorithm
forces only those mobile hosts to record a checkpoint which
are directly or indirectly dependent on the initiator mobile
host. So, a minimum number (Nmin) of mobile hosts need to
record checkpoints: ܰ݉݅݊	 ൏ 	݊.

50 CONTROL ENGINEERING AND APPLIED INFORMATICS

3. The cost of coordinating messages: During the first
phase, the mobile host which records a temporary checkpoint
needs to send a checkpointing request to its base station and
broadcast a checkpointing request in its cellule. Hence, the
incurred cost of the coordinating messages transmitted in the
system, during the first phase, is about: ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅
 .ሻݎܤݐݏܥ	
 CstWd: cost of sending a coordinating message in the wired

network.
 CstBr: cost of broadcasting a coordinating message in the

wireless network to all mobile hosts.

During the second phase, the initiator base station sends a
request of validation to all the base stations. Every base
station, having received the validation request, has to
broadcast, in turn, this request in its own cellule. Every
mobile host in the cellule, having previously recorded a
temporary checkpoint, has to send this temporary checkpoint
to its base station. So, the incurred cost of the coordinating
messages transmitted in the system, during this second phase,
is equal to: ݉	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	ܰ݉݅݊	 ൈ .ݏܹݐݏܥ	
 CstWs: cost of sending a coordinating message in the

wireless network.

Thus, the total cost of coordinating messages is about:
ሺܰ݉݅݊	 ൅ 	݉ሻ 	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ .ݏܹݐݏܥ	

4. Time of blocking: The blocking time of our algorithm is
nil.

5. Distribution of the algorithm: According to the way of
operation, the algorithm is fully distributed.

6. Minimum Process: Our algorithm requires a minimum
number of mobile hosts to participate in checkpointing, and
also takes into account the limited storage available at MH.

7. Useless Checkpoint: No local checkpoint is useless after
the execution of our algorithm. A useless checkpoint is a
local checkpoint that cannot be part of a consistent global
state.

8. Piggyback Information: The algorithm piggybacks only
an integer checkpoint sequence number (Ckpti) with each
application message.

9. Concurrent Executions: Considering the low probability
of multiple and concurrent failures, our algorithm can handle
at most one execution at the same time.

7.2 Comparative study with related work

A comparison, in terms of performance, of our checkpointing
algorithm with regard to the other algorithms with the same
class is presented in this section. Thus, the Table 1 compares
the performance of our algorithm with eight checkpointing
algorithms fitting the class of coordinated checkpointing,
using the same previous parameters.

We notice that Koo and Toueg algorithm (Koo and Toueg,
1987), requires only minimum number of MHs (≤ Nmin) to
record a checkpoint, so that the cost of coordinating messages
is reduced, but the execution of this algorithm needs to block
the execution of the distributed application for a long time
(ܰ݉݅݊ ൈ ܶܿ݇), which reduces the performance of the

application. Also, the coordinated checkpointing algorithm
proposed in (Kiehn et al., 2014) requires only a minimum
number of MHs to take a checkpoint. This scheme designed
by the generalization of Chandy and Lamport’s algorithm
(Chandy and Lamport, 1985), uses a delayed checkpointing
approach, along with partial channel blocking to achieve the
consistent checkpoints. But, this blockage can be impossible
for some type of distributed application.

The Elnozahy et al. algorithm (Elnozahy et al., 1992) and
Neogy (Neogy et al., 2004) algorithm, which are non-
blocking, force all MHs in the system (n) to take checkpoints;
our algorithm reduces this number to nearly minimum (Nmin
≤ n), so that the total number of checkpoints transmitted into
the system is reduced. However, for a mobile environment, it
is also very critical to minimize the number of coordinating
messages transmitted. Hence, if we only consider the cost of
coordinating messages sent to the mobile link, our algorithm
performs fairly.

The non-blocking algorithms in (Neves and Fuchs, 1997) and
in (Surender et al., 2013), involve a minimum number of
MHs (greater than the minimum involved in the Koo and
Toueg algorithm (Koo and Toueg, 1987)) to record a
checkpoint. At the same time, the cost of coordinating
messages of these algorithms is the smallest compared to the
other algorithms. This is because, these algorithms use time to
indirectly coordinate to minimize the number of coordinating
messages transmitted through the system. But, the timers in
the MH cannot be perfectly synchronized – in fact, it is still
an open research issue; therefore, the consistency between all
the checkpoints can still be a hard problem for this type of
algorithms.

Biswas and Neogy design in (Biswas and Neogy, 2013) an
algorithm based on the message logging and independent
checkpointing. The authors also present a cryptographic
method for securing checkpoints and logs. In this algorithm,
MSS logs all the messages sent to each MH in the stable
storage. Additionally, each MH also takes checkpoints to
reduce the extent of rollback during recovery. If a failure
occurs, only the failed MH recovers by using the checkpoints
and logged messages to replay the events precisely as they
occurred during the pre-failure execution period. But, during
this re-execution, the MH resends any message that it sent
during this same execution stage before the failure. This
actually incurs a real disadvantage for a mobile network,
which has low bandwidth and limited energy resource. The
second disadvantage of this algorithm is that when the
mobility rate of MHs is high, the message logs of an MH
may be distributed on several MSSs. Hence, after a failure
occurs, the current MSS needs to collect all the message logs
of MH. This may increase the cost of such operations which
may be unfeasible especially for highly distributed
applications. Li et al. propose in (Li et al., 2014) a
checkpointing message logging scheme considering the visit
time of the MH to the MSS. This scheme also suffers from
the same disadvantages that were mentioned earlier. In fact,
this scheme works efficiently only if the stay times of the
MHs in the MSSs are long enough - in other words, if the
mobility rate of the MHs is less.

CONTROL ENGINEERING AND APPLIED INFORMATICS 51

 ``

Table 1. Performance comparaison.

52 CONTROL ENGINEERING AND APPLIED INFORMATICS

An effort is made in the three phase minimum-process
coordinated checkpointing algorithm proposed in (Nagpal et
al., 2013) to minimize the blocking time of the distributed
application and the useless checkpoints compared to the other
non-blocking scheme proposed in (Koo and Toueg, 1987).
However, this is at the expense of coordinating message cost
(i.e., relatively higher cost compared to the other algorithms),
which may cause exhaustion of the mobile network.

Compared to Cao and Singhal algorithm (Cao and Singhal,
2001) and Kumar et al. algorithm (Kumar et al., 2010), which
are also non-blocking and offer the minimum, our algorithm
requires almost the same number of MHs to record a
checkpoint. However, it requires less number of coordinating
messages. Therefore, the cost to ensure a consistent global
state is less, in other words:

ሺܰ݉݅݊	 ൅ 	݉ሻ 	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ
	ݏܹݐݏܥ	 ൏ 	3	 ൈ 	ܰ݉݅݊	 ൈ	ሺݏܹݐݏܥ	 ൅ 		ܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	
 (2)
and:

ሺܰ݉݅݊	 ൅ 	݉ሻ 	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ
	ݏܹݐݏܥ	 ൏ 	2	 ൈ 	ܰ݉݅݊	 ൈ 	ܹ݀ݐݏܥ	 ൅ 	݉݅݊	ሺܰ݉݅݊	 ൈ
	ሺܹ݀ݐݏܥ	 ൅ ,ሻݏܹݐݏܥ	 ሻ (3)ݎܤݐݏܥ

From (Kumar et al., 2010), the proposed algorithm in (Kumar
et al., 2010) generates the consistent global state with
approximately the same message cost as in the algorithm
proposed by (Cao and Singhal, 2001):

3	 ൈ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ 	ݎܤݐݏܥ	 ൅ 	2	ሻݏܹݐݏܥ	 ൈ
	ܰ݉݅݊	 ൈ 	ܹ݀ݐݏܥ	 ൅ 	݉݅݊	ሺܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅
,ሻݏܹݐݏܥ	 ሻ (4)ݎܤݐݏܥ

So, from equation (4), the certainty verification of equation
(2) is sufficient to ensure the certainty of equation (3). It is
known that for any minimum checkpointing algorithm, we
have:

	݌݁݀ܰ ൑ 	ܰ݉݅݊		ܰ݀݁݌	 ൈ 	ݏܹݐݏܥ	 ൑ 	ܰ݉݅݊	 ൈ ݏܹݐݏܥ	
	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	
൑ 	 ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	ܰ݉݅݊	 ൈ ݏܹݐݏܥ	
	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	
൑ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	ܰ݉݅݊	 ൈ ݏܹݐݏܥ	
	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	
൑ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ 	ݎܤݐݏܥ	 ൅ ሻݏܹݐݏܥ	
	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅ 	݌݁݀ܰ	 ൈ 	ݏܹݐݏܥ	 ൏
	3	 ൈ 	ܰ݉݅݊	 ൈ	ሺܹ݀ݐݏܥ	 ൅ 	ݎܤݐݏܥ	 ൅ ሻ (5)ݏܹݐݏܥ	

As, mathematically, equation (5) is always verified, it remains
to verify equation (2) in relation to the number of base
stations in the system, m through simulation experiments,
presented in the following section.

It is worth mentioning here that some other works, for
instance, Sharma et al. (2014) show that inconsistency exists
in Cao and Singhal’s algorithm (Cao and Singhal, 2001).

7.3 Simulation setting and results

This section presents the performance evaluation of our
algorithm performed through the simulation experiments. A

series of experiments were done to find out the efficiency of
our scheme. The simulation environment comprises a variant
number of MSSs and MHs. We assume that there is one
process running on each MH. The MSSs are connected by a
wired network with a bandwidth of 10 mbps. Each MH has a
wireless connection with its supporting MSS with a
bandwidth of 2 mbps, which follows IEEE 802.11 standard.
The size of each computation message is assumed to be 2 kb.
During checkpointing, there are coordination messages
transmitted among the processes for checkpoint requests and
responses. Each coordination message is assumed to be 100
bytes. Therefore, the transmission delay of messages is: 4 ms
and the size of a checkpoint is: 512 kb.

The information of a particular MH gets scattered over a
number of MSSs. So, the message cost depends on the
number of MHs and MSSs in the system from which
information is to be collected (Biswas and Neogy, 2011).
Thus, in our experiments, we changed the number of MSSs
(10, 30, and 60) and varied the number of MHs (from 10 to
10 ൈ m) to see the corresponding changes of the message cost
and to compare the performance of our algorithm with Cao
and Singhal algorithm (Cao and Singhal, 2001) and Kumar et
al. algorithm (Kumar et al., 2010).

Fig. 4 presents the cost of coordinating messages to complete
the checkpointing processes in the best case scenario for the
three algorithms against the number of MHs in the system,
with varying number of MSSs.

From the Fig. 4, it can be noticed that the three algorithms
require a higher message cost for determining a consistent
state as the numbers of MSSs and/or MHs in the system
increase. We can also see that the message costs of the
proposed algorithm in (Cao and Singhal, 2001) and in (Kumar
et al., 2010) are almost identical. The advantage of our
algorithm over the other schemes is that the message cost is
relatively much lesser as the numbers of MSSs and/or MHs
decrease. In other words, when the system contains a less
number of MSSs and/or MHs, our algorithm is relatively
more suitable because it requires low message cost to save a
consistent global state.

A. Advantages of our algorithm:

 More than the numbers of MSSs and/or MHs in the system
are less, our algorithm reduces the cost of coordinating
messages until: ሺܰ݉݅݊	 ൅ 	݉ሻ	ൈ	ሺܹ݀ݐݏܥ	 ൅ ሻݎܤݐݏܥ	 	൅
	݌݁݀ܰ	 ൈ .ݏܹݐݏܥ	

 Our algorithm reduces the number of checkpoints until
Nmin, knowing that: ܰ݀݁݌	 ൑ 	ܰ݉݅݊	 ൑ 	݊.

 The time of blocking is nil. Our algorithm complies in a
transparent way in the distributed applications, which indeed
increases performance in a significant way.

B. Shortcomings of our algorithm:

 Our algorithm cannot handle concurrent failures and
multiple executions at the same time. This is an issue that we
have kept for our future works.

 The cost of coordinating messages in our algorithm
increases and reaches the cost of other schemes whenever the

CONTROL ENGINEERING AND APPLIED INFORMATICS 53

 ``

numbers of MSSs and/or MHs in the system increase. Still,
for most of the application scenarios, our scheme performs
relatively better.

(a)

(b)

(c)

Fig. 4. Message cost vs. number of MH in the system when:
(a) m = 10, (b) m = 30, (c) m = 50.

8. CONCLUSIONS AND FUTURE WORKS

In a mobile computing environment, mobile hosts may be
exposed to problems coming from limited and unstable
storage supports, a weak bandwidth, a limitation of energy
source, high rate of errors, frequent movements, and
disconnections. A checkpointing algorithm suitably adapted
to this context has to take into account these different
constraints. Hence, the unavailability of a mobile host

(because of disconnection) can establish a sufficient criterion
to be able to invalidate the adoption of a blocking
checkpointing algorithm, notably when application is time-
bounded. Also, to save some energy, certain mobile hosts
involved in the computation can be in doze mode. Any
coordinating message directed to them may lead to useless
activation of them. Therefore, a checkpointing algorithm that
requires all the hosts to take checkpoints systematically
would keep some of them awake unnecessarily. This was the
core motivation of our proposal of a checkpointing algorithm
which brings a solution to the problems previously raised in
this research arena.

Our proposed algorithm belongs to the coordinated type,
minimizes the number of recorded checkpoints, and avoids
blocking the mobile hosts. It allows transferring all the
payload of coordination towards the base stations of the
wired network, which significantly decreases the amount of
traffic on the mobile network for the benefit of other
necessary activities. The algorithm also uses the information
of dependence to limit, to the strict necessities, the number of
mobile hosts to take checkpoints. Consequently, incurred
overhead due to the activities relating to the checkpointing
process is largely reduced. As future works, we would like to
overcome the shortcomings of our scheme – especially, on
handling concurrent failures and multiple executions at the
same time, and further reducing the cost of coordinating
messages.

ACKNOWLEDGMENT

This work was partially supported by Networking and
Distributed Computing Laboratory (NDC Lab.), KICT,
IIUM.

REFERENCES

Acharya, A. and Badrinath, B.R. (1994). Checkpointing
distributed applications on mobile computers. In: Proc.
3rd International Conference on Parallel and Distributed
Information Systems, Texas, USA, 73–80.

Alagar, S. and Venkatesan, S. (1997). Causal ordering in
distributed mobile systems. IEEE Transactions on
Computers, Special issue on Mobile Computing, 46 (3),
353–361.

Awasthi, L.K., Misra, M. and Joshi, R.C. (2014). Minimum
mutable checkpoint-based coordinated checkpointing
protocol for mobile distributed systems. International
Journal of Communication Networks and Distributed
Systems, 12 (4), 356–380.

Badrinath, B.R., Acharya, A. and Imieliński, T. (1993).
Impact of mobility on distributed computations. ACM
SIGOPS Operating Systems Review, 27 (2), 15–20.

Badrinath, B.R., Acharya, A. and Imieliński, T. (1994).
Structuring distributed algorithms for mobile hosts. In:
Proc: 14th International Conference on Distributed
Computing Systems, Pozman, Poland, 21–28.

Biswas, S. and Neogy, S. (2011). A handoff based
checkpointing and failure recovery scheme in mobile
computing system. In: Proc: 2011 IEEE International

54 CONTROL ENGINEERING AND APPLIED INFORMATICS

Conference on Information Networking, Barcelona,
Spain, 441–446.

Biswas, S. and Neogy, S. (2013). Improving recovery
probability of mobile hosts using secure checkpointing.
In: Proc: 2nd International Conference on Advances in
Computing, Communication and Informatics, Mysore,
India, 984–989.

Cao, G. and Singhal, M. (2001). Mutable checkpoints: A new
checkpointing approach for mobile computing systems.
IEEE Transactions on Parallel and Distributed Systems,
12 (2), 157-172.

Chandy, K.M. and Lamport, L. (1985). Distributed
snapshots: determining global states of distributed
systems. ACM Transactions on Computer Systems, 3 (1),
63–75.

Dey, P. and Biswas, S. (2012). Handoff based secure
checkpointing and log based rollback recovery for
mobile hosts. International Journal of Network Security
& Its Applications, 4 (5), 25–41.

Elnozahy, E.N., Alvisi, L., Wang, Y.M. and Johnson, D.B.
(2002). A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys, 34
(3), 375–408.

Elnozahy, E.N., Johnson, D.B. and Zwaenepoel, W. (1992).
The performance of consistent checkpointing. In: Proc.
11th Symposium on Reliable Distributed Systems, Texas,
USA, 39–47.

Forman, G.H. and Zahorjan, J. (1994). The challenges of
mobile computing. IEEE Computer, 27 (4), 38–47.

Huang, S.T. (1989). Detecting termination of distributed
computations by external agents. In: Proc. 9th
International Conference on Distributed Computing
Systems, California, USA, 79–84.

Kanmani, P., Anitha, R. and Ganesan, R. (2007). Coordinated
checkpointing with avalanche avoidance for distributed
mobile computing system. In: Proc. International
Conference on Computational Intelligence and
Multimedia Applications, Tamilnadu, India, 461–463.

Kiehn, A., Raj, P. and Singh, P. (2014). A causal
checkpointing algorithm for mobile computing
environments. In: Proc. 15th International Conference on
Distributed Computing and Networking, Coimbatore,
India, 134–148.

Koo, R. and Toueg, S. (1987). Checkpointing and rollback-
recovery for distributed systems. IEEE Transactions on
Software Engineering, 13 (1), 23–31.

Kumar, S., Chauhan, R.K. and Kumar, P. (2010). A low
overhead minimum process global snapshot collection
algorithm for mobile distributed systems. The
International Journal of Multimedia & Its Applications,
2 (2), 12–30.

Lamport, L. (1978). Time, clocks, and the ordering of events
in a distributed system. Communication of the ACM, 21
(7), 558–565.

Li, X., Yang, M., Men, C.G., Jiang, Y.T. and Udagepola, K.
(2014). Access-Pattern aware checkpointing data storage
scheme for mobile computing environment. In: Proc. 11th
International Conference on Mobile Systems and
Pervasive Computing, Niagara Falls, Canada, 330–337.

Nagpal, M., Kumar, P. and Jangra, S. (2013). Three phases
coordinated checkpointing scheme for mobile distributed
systems. International Journal of Latest Transactions in
Engineering and Science, 1 (2), 1–8.

Neogy, S., Sinha, A. and Das, P.K. (2004). A checkpointing
protocol for distributed system processes. In: Proc. IEEE
Region 10 Conference, B (2), Bangkok, Thailand, 553–
556.

Netzer, R.H.B. and Xu, J. (1995). Necessary and sufficient
conditions for consistent global snapshots. IEEE
Transactions on Parallel and Distributed Systems, 6 (2),
165–169.

Neves, N. and Fuchs, W.K. (1997). Adaptive recovery for
mobile environments. Communication of the ACM, 40
(1), 68–74.

Park, T., Woo, N. and Yeom, H.Y. (2002). An efficient
optimistic message logging scheme for recoverable
mobile computing systems. IEEE Transactions on
mobile computing, 1 (4), 265–277.

Schlichting, R.D. and Schneider, F.B. (1983). Fail-stop
processors: An approach to designing fault tolerant
distributed computing systems. ACM Transactions on
Computer Systems, 1 (3), 222–238.

Sharma, P.K., Kumar, P. and Jangra, S. (2014). Proxy MSS
based synchronous checkpointing approach for mobile
distributed systems. International Journal of Innovations
in Engineering and Technology, 3 (4), 194–202.

Surender, J., Arvind, S., Anil, K. and Yashwant, S. (2013).
Low overhead time coordinated checkpointing algorithm
for mobile distributed systems. In Chaki, N.,
Meghanathan, N. and Nagamalai, D. (ed.), Computer
Networks & Communications (NetCom), 173–182.
Springer, New York.

