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Abstract: This paper deals with piezoelectric actuators control. A fractional order fuzzy PID
controller is designed for this class of systems with the help of particle swarm optimization
(PSO) algorithm. Due to its special characteristics, the modeling and control of piezoelectric
actuators has been one of the research topics for the last decade. In this work, the fractional
order fuzzy PID controller parameters are defined as an optimization problem and the PSO is
used to find their optimal values.
First, the dynamic model is introduced based on the Bouc-Wen model which is generally used
with a second order linear model to describe piezoelectric actuators behavior. After giving its
principle, the fractional order fuzzy PID is designed using the PSO algorithm. Finally, the
proposed approach validation and their performances evaluation are done through simulation.
The major contribution of this paper is that the proposed controller structure is easy to
implement, and has the same structure with the classical PID controller, but it gives better
performances compared with classical PID and fuzzy PID controllers.

Keywords: Piezoelectric actuator control, Particle swarm optimization, Fractional order PID
controller, fuzzy PID controller

1. INTRODUCTION

The piezoelectric actuators (PEA) based on the inverse
piezoelectric effect are used in many fields due to their
properties such as: high stiffness, small volume and fast
response. They are widely used in the ultra-precision
applications (Xu and Li, 2010; Zhang and Zhu, 1997;
Haitjema, 1996). However, the hysteresis property, existing
in piezoelectric materials, makes the modeling and the
control of PEA difficult.

In order to simplify its analysis and control, many dy-
namic models are developed for piezoelectric actuators.
In (Goldfarb and Celanovic, 1997; Adriaens et al., 2000),
an electromechanical piezo-model is presented, where a
first-order differential equation is adopted to describe the
hysteresis effect, and a partial differential equation is used
to describe the mechanical behavior.

In (Xie et al., 2009; Feng et al., 2010), the piezoelectric
actuators behavior is identified as a second-order linear
model preceded by hysteretic nonlinearity that described
by the Duhem model.

In recent years, the PEA hysteresis modeling became
the subject of many research tasks. In (Xiao and Li,
2013), a novel modified inverse Preisach model featured
with weighed sum of µ-density functions is proposed to
compensate the hysteresis of a piezoelectric actuator at

varying frequency ranges. In (Peng and Chen, 2012),
a novel hysteresis operator modified from the Preisach
hysteresis operator is presented where a rate-independent
hysteresis model and a rate-dependent hysteresis model
are developed with methods to estimate their parameters.

Authors in (Hui et al., 2011) present an identification
method for dynamic hysteresis based on Duhem model.

In (Bellmunt et al., 2009), the Bouc-Wen model is used
to describe the PEA behavior and to control it where
the proposed approach is tested by numerical simulations
then experimentally. (Xiao and Li, 2014) proposes a novel
modified inverse Bouc-Wen model for the dynamic com-
pensation of the hysteresis nonlinearity. Furthermore, the
experimentation showed that the hysteresis non-linearity
in PEA is not symmetric and many models was proposed
in (Aguirre et al., 2012; Zhua and Wang, 2012; Jiang et al.,
2010) to describe the asymmetric hysteresis existing in
PEA.

To compensate the hysteresis behavior of PEA, many
intelligent techniques was used such as fuzzy logic (Li
et al., 2013, 2010), neural networks (Zhang et al., 2009;
Li and Chen, 2013), adaptive filter (Minase et al., 2010;
Liua et al., 2013), minimum variance scheme(Rebai et al.,
2014b), hybrid models (X. Zhanga, 2010), NARMAX
models (Denga and Tan, 2009; Deng and Tan, 2008),
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fractional order models (Rebai et al., 2014a) and iterative
learning control (Liu et al., 2010).

To achieve the desired performances, many works in the
literature deal with the problem of PEA control. The first
category is the fed-forward and feedback techniques based
on the inverse model of the PEA.

Indeed, authors in (Li et al., 2013) present a novel fuzzy
system based method for modeling both rate-independent
and rate-dependent hysteresis in piezoelectric actuators
where a feed-forward controller is proposed.

In (Song et al., 2005), the inverse classical Preisach model
is established and applied to cancel the hysteresis of PEA
system for the real-time microposition tracking control.
Also, a feedback controller is designed to improve the
control accuracy and to increase damping of the actuator
system. However, these strategies require the existence of
the inverse model which is, generally, difficult to obtain.

The second category is based on the classical PID con-
troller. In (Sung et al., 2008), A classical PID controller is
designed and used to regulate the output displacement of
a piezoelectric actuator that is linearized as second-order
linear dynamic model.

Another research direction is based on sliding mode control
(SMC). In (Wang and Liu, 2010), a fuzzy sliding mode
controller for piezoelectric system with a sliding mode
state estimator is introduced where the Bouc-Wen model
is used to represent the hysteresis phenomenon.

(Liawa et al., 2007) presents an enhanced sliding mode mo-
tion tracking control methodology for an electromechani-
cal model of PEA to track desired motion trajectories.

In (Liu et al., 2013), a second order sliding mode tracking
controller is proposed where the simulation results showed
the validity of the proposed method for this kind of
nonlinear systems. In (Huang et al., 2009), An adaptive
sliding mode controller for PEA with an experimental
verification of the proposed technique is investigated.

Authors in (Peng and Chen, 2014) presents so-called PID
sliding mode observer and its integration with PID sliding
mode control for the PEA tracking control, simulations
showed the performances of the proposed technique.

In (Huang et al., 2009), authors consider the adaptive
control problem for piezoelectric actuators with nonlinear
uncertainties, where the sliding mode control is used
to achieve a good tracking performance of piezo-based
motion systems in the presence of the uncertain hysteresis
dynamics. Simulation and experimental results showed the
effectiveness of the proposed controller.

Nevertheless, the major disadvantage of techniques based
on the sliding mode control is the chattering phenomenon.

Other robust techniques are proposed in (Xiao and Li,
2014; Chuang and Petersen, 2010) based on H∞. The
main limit of the H∞ strategies is obtaining ”an easy to
implement” version of the control law.

To deal with this problem, fuzzy logic control (FLC) can
be a solution. It has gained, during the last years, more
attention and became a standard solution for wide variety
of nonlinear and complex problems due to its design

simplicity. A common used version of FLC is fuzzy PID
which is characterized by a structure similar to classical
PID and several works are published about this sort of
controller. In (Pan et al., 2011), an optimal fuzzy PID is
tuned using the genetic algorithm (GA) and the particle
swarm optimization (PSO) techniques where the closed
loop performances are compared. In (Saban and Volkan,
2010), a hybrid fuzzy PID controller with coupled rules is
proposed and it illustrates more performances compared
with classical PID, fuzzy logic and hybrid fuzzy PID
controllers.

The use of fractional calculus in modeling and control of
dynamical systems attracted, recently, more attention due
to the advancements in computation power. This fact al-
lows simulation and implementation of such systems with
adequate precision. The control strategy using fractional
calculus is based on the fractional order proportional inte-
gral derivative (FOPID) controller and is a generalization
of a classical PID controller. Its output is a linear combi-
nation of the input and the fractional integrator derivative
of the error.

Authors of (Das et al., 2012) combined FOPID controller
with FLC to obtain fractional order fuzzy PID (FOFPID)
where the parameters of the controller are obtained using
the genetic algorithm technique and simulation results
show that FOFPID produces better performances com-
pared with conventional PID, fractional order PID, and
fuzzy PID controllers.

Many optimization techniques have been proposed to find
the optimal values of the FOFPID controller parameters.
In (Sheng and Bao, 2013), fruit fly optimization algorithm
is used to optimize a FOFPID controller for electronic
throttle. In (Das et al., 2013a), a FOFPID is designed
with real coded Genetic Algorithm to control the power
level of a nuclear reactor at various operating conditions.
In (Das et al., 2013b), Performance evaluation of optimal
fractional order hybrid fuzzy PID controllers is presented.
In this last study, the controller parameters are tuned
using the genetic algorithm optimization technique. In
(Sharma et al., 2014), Cuckoo Search Algorithm (CSA)
optimization technique is used to tune the FOFPID for
a robotic manipulator control purposes.Nevertheless, the
implementation question remains the main problem of
these techniques.

To deal with this drawback, others optimization tech-
niques can be used to determine the controller gains. One
of these techniques is the so-called particle swarm opti-
mization (PSO) known by its combination of simplicity
(in terms of implementation) with low computational cost
and good performances (Lazinica, 2009; Song and Gu,
2004). Indeed, compared to genetic algorithms, PSO has
some attractive characteristics. First, PSO has memory
which utilizes the knowledge of good solutions retained
by all particles, whereas in genetic algorithms, previous
knowledge on the problem is destroyed once the population
is updated. Second, PSO has constructive cooperation
between particles and particles in the swarm that share
their information (Hung et al., 2008). These are precisely
the main motivations that led us to choice the PSO for
FOFPID controller optimization.
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Fig. 1. PEA used model: Bouc-Wen model for hysteresis
behavior and second order linear model for piezo effect

In (Pan et al., 2012; Pan and Das, 2015), the FOFPID
controller gains are tuned using the PSO algorithm and re-
sults showed the effectiveness of the proposed approaches.
However, in both studies a Mamdani type of fuzzy logic
controller (FLC) is used. This type suffers from many
limitations from a control point of view. Indeed, compared
to Takagi-Sugeno (TS) type of FLC, the Mamdani one is
more difficult to implement and requires additional effort
to choice and to dispatch fuzzy sets, for the conclusion
part, on the output universe of discourse. Furthermore,
the output of TS FLC can be easily expressed analytically
and hence concepts such as stability can be proven.

This paper deals with the control of piezoelectric actuators
and an optimized fractional order TS fuzzy PID controller
is proposed. The use of PSO algorithm with TS structure
of FLC is the main contribution of this study. The choice
of this structure is motivated by its simplicity and the pos-
sibility to obtain a mathematically manipulable expression
of the fuzzy controller output. Furthermore, the proposed
controller structure is easy to implement, has the same
structure of classical PID and ensures better performances.

This paper is structured as follows: in sect. 2, the mathe-
matical model of the PEA is introduced. Then, the prin-
ciple of the fractional order fuzzy PID is described in
sect. 3. In sect. 4, the FOFPID is designed using the PSO
algorithm. The simulation results are illustrated in sect. 5
to validate the proposed approach and to evaluate their
performances.

2. MATHEMATICAL MODEL OF THE PEA

The most used model to describe the PEA dynamic
behavior is the one developed in (Low and Guo, 1995).
This model has received an increasing attention due to
its ability to capture in an analytical form the hysteresis
shape in piezoelectric actuators.

In this model, the hysteresis phenomenon and the piezo
effect are separated.

The first one is represented by the Bouc-Wen model which
is initiated by R. Bouc (Bouc, 1971), and generalized by
Y. K. Wen (Wen, 1980).

The second one is described by a linear second order model
as shown in Fig. 1.

The dynamic model of the PEA can be described by the
following expressions:

mẍ+ cẋ+ kx = k(deu− h) (1)

ḣ = α1u̇− α2|u̇|h− α3u̇|h| (2)

where x and u denote, respectively, the displacement of the
PEA and the applied voltage, m, c, k and de are the mass,
damping, stiffness and effective piezoelectric coefficient,

respectively. h is the output of the Bouc-Wen hysteresis
model. α1, α2 > 0 and α3 < 0 are parameters that affect
the shape of the hysteresis nonlinearity. For more details
on this model, the reader can refer to (Low and Guo, 1995).

The model parameters used in this paper are shown in
Table. 1. These parameters are obtained by the excitation
of the PEA by a sinusoidal signal of frequency 10Hz:
u(t) = 100sin(10t).

Table 1. PEA model parameters

Parameter Value Unit

m 1.595 × 10−2 kg
c 1.169 Ns/m
k 3.197 × 103 N/m
de 1.014 × 10−6 m/V
α1 4.357 × 10−7

α2 3.438 × 10−2

α3 −2.865 × 10−3

3. FRACTIONAL ORDER FUZZY PID

In this section, the principle of the proposed fractional
order fuzzy PID (FOFPID) is described.

The proposed structure of the FOFPID is given in Fig.2.
The parameters {Ke,Kde, α, β, µ, λ} shown in Fig. 2 are
to be determined and optimized, using the particle swarm
optimization algorithm (PSO), in the next section.

As shown in Fig. 2, the input variables of the FLC are the
error e and the error fractional differentiation dµe

dtµ . The
error signal is defined as:

e(t) = r(t)− x(t) (3)

where r(t) is the reference signal, x(t) is the displacement
of the PEA.

The TS structure (Passino and Yurkovich, 1998) is
adopted for the fuzzy controller. The choice of this struc-
ture is motivated by its simplicity and the possibility to
obtain a manipulable mathematical expression of the FLC
output. The control strategy can be defined by rules of the
form

If e is A and dµe
dtµ is B then du is C

where eand dµe
dtµ are the inputs of the FLC, du is its output.

A,B and C are the fuzzy sets.

The rules base of the fuzzy controller is shown in Fig. 3.
The linguistic variables NVB, NB, NM, NS, ZE, PS,
PM, PB, PVB shown in Fig. 3 mean Negative Very Big,
Negative Big, Negative Medium, Negative small, Zero,
Positive Small, Positive Medium, Positive Big and Positive
Very Big, respectively. The membership functions of the
fuzzy controller are illustrated in Fig. 4 and Fig. 5,
respectively. For the input variables, the NVB and PVB
linguistic variables are trapezoid membership functions
and the others are symmetric triangles. For the FLC
output, the membership functions are singletons. The
control surface describing the input-output relationship of
the FLC is given in Fig. 6.
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Fig. 3. Rules base for error and fractional rate of error

Fig. 4. Membership functions for error and fractional rate
of error

4. DESIGN OF THE OPTIMAL FRACTIONAL
ORDER FUZZY PID CONTROLLER

In this section the optimal values for parameters of the
FOFPID are determined after the description of the PSO
algorithm.

The particle swarm optimization is one of the modern
heuristic algorithms which is developed by Kennedy and
Eberhart in 1995 (Kennedy and Eberhart, 1995). It uses
the metaphor of the flocking behavior of birds to solve opti-

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

NVB NB NM NS ZE PS PM PB PVB

Fig. 5. Membership functions for FLC output

Fig. 6. Control surface

mization problems (Boussad et al., 2013). This technique is
based on the following principle: a population of particles
in the swarm is first initialized, then, the particle locations
are updated using the position and velocity equations
given by

vid(j + 1) = wvid(j) + c1r1(Pid − xid) + c2r2(Pgd − xid)(4)

xid(j + 1) = xid(j) + vid(j + 1) (5)

where j = 1, . . . , n and i = 1, . . . , d. The technique param-
eters and their correspond significations are summarized
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in Table. 2.

Table 2. PSO parameters

Parameter Signification

n population size
d problem dimension

vid(j) velocity of the particle i at the iteration j
xid(j) position of the particle i at the iteration j
Pid local best position of the particle i
Pgd global best position of the swarm
w inertia factor

c1, c2 acceleration factors
r1, r2 random numbers uniformly disturbed

between 0 and 1

From the optimal FOFPID scheme given in Fig. 7, five pa-
rameters {Ke,Kde, α, β, µ, λ} are required to be designed.
The single input single output (SISO) systems can be
transformed into the following form:

ż = f(z, u, p)
x = g(z, p)

(6)

where u, x and z denote the control input, the piezoelectric
actuator displacement and state vector, respectively. p is
a vector which contain the unknown parameters of the
controller.

The fitness function is defined as the Integral of the
Squared Error (ISE) given by

min
p
J1 =

t∫
0

e2(t)dt =

t/h∑
i=0

(r(i)− x(i))2 (7)

where r, x, t, h are the desired output displacement, actual
output of the PEA, the integration time and the sampling
period, respectively.

The steps of the PSO algorithm applied to the FOPID
controller of a piezoelectric actuator system are given as
follows:

• Step 1: choice of the algorithm parameters (search
space dimension d, population size n, number of
iterations. . .)
• Step 2: swarm initialization with a population of

random solutions. Each particle in the swarm is a
random possible set of the unknown parameters to
be optimized.
• Step 3: fitness function evaluation to determine

whether the best fitting solution is achieved.
• Step 4: set the best of the local best positions as the

global best position.
• Step 5: update the particles position and velocity

according to equations 4 and 5.
• Step 6: update the global best position from the

obtained results in Step 5.
• Step 7: verify the stop criterion which is the itera-

tions number. The steps 2 to 7 are repeated until the
verification of the stop criterion.

The global PSO algorithm flowchart is shown in Fig. 8.

5. SIMULATION RESULTS

In this section the simulation results are presented.
The FOFPID controller and the PSO algorithm are imple-
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Fig. 9. Iterative convergence curve of optimal function

mented using the Matlab environment. The selected PSO
algorithm parameters are summarized in Table. 3.

Table 3. Selected PSO parameters

Parameter Value

n 50
d 5
w 0.5

c1, c2 1.2
iterations 100

To validate it and to evaluate their performances, the
obtained results with the proposed approach (FOFPID)
are compared with those of a fuzzy PID controller {λ =
1, µ = 1} and those of optimized classical PID controller
using the same technique (PSO).

The sampling period used in this simulation is 10−3. The
iterative convergence of the fitness function is illustrated
in Fig. 9. The optimal parameters values of the classical
PID controller are: Kp = 14.338,Ki = 24151.508 and
Kd = 2.04. For the two other controllers (Optimized
FOFPID and fuzzy PID), the optimal values are shown in
Table. 4. The reference command is a unit step function
with amplitude 100µm.

Table 4. Optimal controllers parameters

Ke Kde α β λ µ

FPID 1.517 1.073 0.137 0.590 1 1
FOFPID 0.804 1.214 0.206 4.367 × 10−9 0.863 1.092

The simulation control performance of the PEA is illus-
trated in Fig. 10 and Fig. 11. From Fig. 10, its can be
showed that the piezoelectric actuator has a good per-
formances using the proposed fractional order fuzzy PID.
Fig. 12 shows the control input.

From Fig. 11, its can be seen that the fractional order fuzzy
PID has better performances compared with the classical
PID and the fuzzy PID controllers.

Fig. 13 and Fig. 14 show the staircase response and the
input control of the piezoelectric actuator system.

Table. 5 presents a comparison between the three con-
trollers.
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Fig. 7. Optimal FOFPID scheme
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As can be shown in Table. 6, the proposed approach has
a fast response capability with a small fitness function
and little overshoot. These performances can be improved

Table 5. Performance comparison between the
classical PID, fuzzy PID and FOFPID

ISE value overshoot (%) rise time (s)

PID 8.24 × 10−7 - 0.64
FPID 5.19 × 10−7 25.6 0.077

FOFPID 3.69 × 10−7 5.84 0.079
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Fig. 12. Control input
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Fig. 13. Staircase response of the piezoelectric actuator
system

using others fitness functions that take into account the
overshoot and the rise time.

6. CONCLUSION

A PSO-optimized fractional order fuzzy PID controller
for piezoelectric actuators is presented in this paper. The
controller parameters are determined using the PSO al-
gorithm with the ISE fitness function. The simulations
results validated the proposed approach and showed that
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Fig. 14. Control input of the piezoelectric actuator system

the proposed controller presents better performances com-
pared to well tuned classical PID and fuzzy PID con-
trollers. The obtained performances can be enhanced more
by taking into account other criteria in the fitness func-
tion and a trade-off between complexity and performances
should be made.
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