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Abstract: In this paper, a new approach to design a control law for a missile guidance problem, based on 
desirable behavior of the state variables is proposed. The state variables in this problem may have three 
desirable behaviors, which are stability, asymptotically stability and even un-stability. The proposed 
approach enables the missile to intercept a maneuverable target within a finite interception time which is 
less than existing approaches. Indeed, the main purpose of this paper is to decrease the interception time 
and it is shown that this new approach is realistic for missile guidance problems. Finally, the designed 
guidance law is simulated to show the effectiveness of the proposed method for interception of 
maneuvering and non-maneuvering targets. 
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1. INTRODUCTION 

Partial stabilization problems have been introduced in 
applications that asymptotic stability is not an appropriate 
behavior for all the states (Fergola et al., 1970; Rumyantsev, 
1971; Oziraner et al., 1972; Silakov et al., 1975; Bondi, 1979; 
Michel et al., 1987; Djaferis, 1998; Vorotnikov, 1998; Michel 
et al., 2002; Djaferis, 2003; Djaferis, 2006; Costa et al., 2009; 
Binazadeh et al., 2011; Binazadeh et al., 2012; Shafiei et al., 
2012). On the other hand, non-linear control theories have 
been used to design guidance laws (Rumyantsev, 1971; 
Vidyasagar, 1978; Tang et al., 1998; Young et al., 1999; Yu 
et al., 1999; Liaw et al., 2000; Hong et al., 2001; Moon et al., 
2001; Yang et al., 2001; Chen et al., 2002; Fisher, 2004; 
Lechevin et al., 2004; Shieh, 2004; Hong et al., 2005; Idan et 
al., 2005; Ryoo et al., 2007; Fridman et al., 2008; Lombaerts 
et al., 2008). Design a guidance law to intercept of 
maneuvering targets is a difficult problem and therefore, most 
of existing researches in this field consider only a special 
case study (Vorotnikov, 2002; Vorotnikov, 2005; Ge et al., 
2007; Shafiei et al., 2012). Recently, a new framework for 
robust partial stabilization of non-linear systems has been 
proposed (Binazadeh et al., 2011; Shafiei et al., 2012). This 
framework is based on partial stability theories and in which, 
the guidance non-linear system is divided into two parts 
based on desirable behaviors of the state variables 
(Binazadeh et al., 2011). According to this division, only a 
subset of the input vector appears in each part. Each subset of 
the input vector makes the possibility of imposing some 
constraints on the behavior of the state variables. One of 
these constraints enables the missile to intercept the target 
within a finite time.  

In this paper, based on the desirable behavior of the state 
variables, a new approach to design a control law for the 
missile guidance problem is proposed. This control law leads 
to intercept a maneuvering target within a small and finite 
interception-time, in comparison with the other existing 

approaches. Finally, the designed guidance law is simulated 
to confirm the effectiveness of the proposed method for 
interception of maneuvering and non-maneuvering targets. 

The reminder of this paper has the following structure: First, 
the summary of partial stability and some preliminaries about 
the partial stability are given in Section 2. Section 3 
introduces the guidance problem and in Section 4 the 
proposed approach is applied to design a guidance law. 
Finally, conclusions are given in Section 5. 

2.  PRELIMINARIES 

In this section, the summary of partial stability and some 
notations about this concept are presented. Partial stability is 
defined as the stability of a dynamical system with respect to 
only some of its state variables. Consider the following 
unforced non-linear system. 

   , ,0 0x f x x t x                                                      (1) 

where 
n

x R  is the state vector. In the partial stability 
concept, the non-linear system is divided into two subsystems 

( ,1 2x x ) based on the desirable behavior of system’s states 

(Binazadeh et al., 2011; Shafiei et al., 2012), where

1 1,1 2
n n n

x R x R


  . 

According to the above explanations, the non-linear system 
(1) may be rewritten as follows: 

 
 

( ) ( ( ), ( )) ,1 1 1 2 1 0 10

( ) ( ( ), ( )) , ,2 2 1 2 2 0 20

x t F x t x t x t x

x t F x t x t x t x

 

 




                       

(2)
 

where
 

1
1

n
x D R   and D  is an open set in the 

neighborhood of the origin, and 1
2

n n
x R


 . Also, 
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 ,1 1 2F x x is such that for every 2x ,  0, 0
1 2

F x   and the 

functions  .,1 2F x  ,  , .2 1F x are locally Lipschitz in 1x  and

2x , respectively. The existence and uniqueness of the 

solution of (2) have been proposed in Binazadeh et al., 2011. 

Considering the above explanations about the non-linear 
system (2), partial stability of this system (i.e. stability with 

respect to 1x  ) may be defined as follows: 

Definition 1: The non-linear dynamical system (2) is 

Lyapunov stable with respect to 1x , if for every 0  and

1
20

n nx R  , there exists 20
( , ) 0x    such that 

10 20
( , )x x   implies 1 ( )x t  , for all 0t  . 

Definition 2: A continuous function      . : 0, 0,a    

belongs to class k functions if it is strictly increasing and if

 0 0  . 

Theorem 1: Considering the non-linear dynamical system 
(2), if there exist a positive definite, continuously 

differentiable function  1V x  and class k functions  . ,

 .  and  .  such that,  

     
     

1 1 1

1
, .1 1 2 1

1

x V x x

V x
F x x x

x

 



 


 


                        

(3)
 

Then, the non-linear system (2) is partially stable. 

Proof: See Chellaboina et al., 2002. 

3. MISSILE GUIDANCE PROBLEM AND 
PROBLEM MODELING 

In guidance problems the mathematical model of the missile-
target engagement is very essential to have a realistic design. 
In this section, the kinematics model of 3-dimentional 
missile-target problem is considered.  

3.1 Problem Formulation 

The dynamic equations of the missile-target engagement are 
as follow (Shafiei et al., 2013): 

2 2 2
cos

cos 2 cos 2 sin

2
2 cos sin .

r r r ur r

r r r u

r r r u

   

       

      

   

   

   

 

   

  
  

                          
(4)

 

In these equations, r is the relative distance between the 
missile and target, r is the radial component of relative speed 
and  ,   are yaw and pitch angles of line of sight, 
respectively. Also, acceleration vectors of the missile and 

target are described by  , ,
T

u u u ur  ,  , ,
T

r      

respectively. In this paper, it is assumed that at the time 

0t t  the missile is in behind of the target and is approaching 

it. Finally,   [ , , , , , ]
T

x t r r       is considered as the state 

vector. 

3.2 Distinguish The Proper Behaviour For Each State 
Variable 

For a successful interception, it is suitable that  r t  becomes 

zero in a finite time (i.e.   0r t f   ), where this time ( t f ) is 

called the interception time. Thus, it is not desirable for 
relative distance to asymptotically converge to zero. In order 

to intercept the target correctly, the time derivative of  r t  

during the missile-target engagement must be negative. In 

some papers,  r t is regulated to a negative value; however, 

this negative value depends on maneuvers of the target and 
therefore, they should be predicted during the interception 
scenario (Ryoo et al., 2007). Since, the targets are highly 
maneuvering, this approach is not practical. Regarding to 
other state variables, it is worth noting that the stability 
behavior is suitable for  ,   and also, asymptotic stability 

behavior is desirable only for  ,  . To have a successful 
interception, in addition to decreasing the relative distance, 
the values of ,   should be as small as possible (Chen et al., 
2002; Shafiei et al., 2012; Shafiei et al., 2013). Therefore, 
according to above explanations and the partial stability 
theorem, the state vector may be separated as 

[ , , , ]1
T

x        and [ , ]2
T

x r r  . Now, the state-space 

equations of the guidance problem can be defined as follow: 

cos

tan

:1

2 tan

2 2:2
,

V

r
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V u

r
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V

r
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


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






            (5)

 

where cosV r    , V r    are tangential components of 

relative speed between the missile and target, respectively. 

4. GUIDANCE LAW DESIGN 

First, based on the partial stability theorem, the non-linear 
guidance law is designed versus non-maneuvering targets. 
Then, in order to have a robust guidance law versus 
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maneuvering targets, the Lyapunov redesign method is used. 
In this paper, the target acceleration vector is premised as an 
external disturbance. 

4.1 Non-maneuvering Target 

Consider 1x subsystem  in equation (5), where 0  . For this 

subsystem, the Lyapunov function may be chosen as follows: 

   1 2 2 2 2
.1

2
V x V V      

                                         
(6)

              

The time derivative of V in the line of equations (6) is as, 

  ..1
cos

tan
..+ ..

2
tan

..+ .

VV
V x

r r

V V V Vr
V u

r

V V Vr
V u

r

 


  
 

 
 

  

 
 

 


 
 
 
 
 
 
 



        

                             (7)

 

According to Section 3.2, the desirable behavior for this 

subsystem is stability. Therefore,  1V x will be negative 

semi-definite, if the input signals are considered as, 

tan

cos

2
tan

,

V V V Vr
u NV

r r

V V Vr
u MV

r

   
 

  
 

 
  

  
 

                              (8)  

                        

 

where ,N M  are positive constants. Thus, 

2 2
.V NV MV   
                                                    (9) 

Considering (9), this equation is negative semi-definite and 

therefore, asymptotic stability is guaranteed for only ,V V  . 

In other word, the desirable behavior has been achieved for

1x subsystem . 

Now, using the component of input vector appearing in 
second-subsystem, the design procedure will be completed. 

In this section, in order to reach a smaller amount of 
interception time, a desired relative distance between the 

missile and target (  r td ) is proposed.  

First, let us select      0 cosr t r std  , which is a 

continuous and non-negative function in 0,t t f  . The 

guidance scenario is in the time interval 0,t t f     and only 

in this interval  r td  is required to be positive. Therefore, 

the value of s should be chosen such that, 
2max( )f

s
t


  , 

where max( )ft  is the maximum possible value of the ft for 

our missile. 

Now, the 2nd order time derivative of  r t  is as, 

     2
0 cos( ).r t V t s r str  

         (10)                 

In this paper, it is desirable to make (    r t r td ). Thus, 2nd 

order time derivatives of these variables have been set 
identical in the equations. Therefore, 

       2
0 cos( )r t r t V t s r strd      . 

Then, according to second-subsystem, one has, 

2 2

.
V V

V ur r
r

 
 

                                                             (11) 

Now, if the input component
 

ur  is designed to have the 

desired relative distance between the missile and target (

   r t r td ), the following control law will be obtained:
 

 
2 2

2
0 cos( ).

V V
u s r str

r

 
 

                      (12) 

Note 1: By integrating from equation (10), the equation of 

 V tr  
may be obtained. This equation satisfies

  0 0,V t t tr f   . 

Therefore, the guidance law versus non-maneuvering target is 
as, 

 

tan

cos

2
tan

2 2
2

0 cos( ).

V V V Vr
u NV

r r

V V Vr
u MV

r

V V
u s r str

r

   
 

  
 

 

 
  

  
 


 

                           

(13)

 

This control law has one degree of freedom in term s , which 
may be tuned to gain the best possible performance. 

Note 2: Increasing the value of s  leads to a better 
interception time; however, this may increase the control 
effort. 

4.2 Maneuvering Target 

In this section, suppose that 0  . In order to have a robust 
guidance law versus maneuvering targets, the Lyapunov 
redesign method is used (Wu et al., 2011; Khalil, 2003). 
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First, for u c  and u c  it is assumed that: 

tan
..

..+
cos

2
tan

..

.. ,

V V V Vr
u u vc

r

NV v
r

V V Vr
u u vc

r

MV v

  
  


 

  
  

 

 
   

 

  
   

 

      

                     (14)    

 

where v  and v  will be designed based on Lyapunov 

redesign method (Khalil, 2003). 

The resulting V  with this new control inputs is as follows: 

   
2 2

..

.. .

V NV MV

V v V v

 

      

   

   



  
                          (15)           

 
Now, the additional terms v  and v  , should be designed, 

such that desirable behavior for the first-subsystem is 
ensured. Assume that an upper bound on the target 

acceleration is known i.e.    and      . (This 

assumption is completely realistic (Khalil, 2003)). Therefore, 

    ..

.. .

V v V v V v

V V v V

        

      

      

  
   

                     (16) 

By taking sgn( )v V    and sgn( )v V   , one has: 

    ..

.. 0.

V v V v V

V V V

         

       

      

   
   

                  (17)            
 

Thus,  

2 2
.V NV MV   
                                        (18)          

 

Therefore, V satisfies partial stability condition when  and

  are non-zero. In the case of 3th component of acceleration 

vector of target, assume r r  . Now, based on the 

proposed approach and the Lyapunov redesign method, 

consider u u vrc r r  . By taking sgn( )v Vr r r  , the 

resulting Vr
  with this new control input is as follows: 

   2
0 cos( ) sgn( ).V t s r st Vr r r r    

                     (19)      

According to Section 3.2, the time derivative of  r t
 
during 

the interception must be negative. Therefore, sgn( ) 1Vr   . 

Thus one has, 

   
 
 

2
0 cos( ) ..

2
..+ 0 cos( ) ..

2
..+ 0 cos( ).

V t s r str

s r str r

s r str r

 

 

  

   

  



      

                                   (20)
 

Thus, 

   
    

0 ..

.. 0 sin( ) 0 0       0, .

V t Vr r

sr st V t tr f

 

         
              (21) 

Therefore, the desirable behavior for  V tr  with choosing 

proper values of s , when 0r   is ensured. Therefore, the 

guidance law versus maneuvering target is as, 

 

tan
..

cos

.. sgn( )

2
tan

..

.. sgn( )

2 2
2

0 cos( ) .

V V V Vr
u c

r r

NV V

V V Vr
u c

r

MV V

V V
u s r strc r

r

   
 

  

  


  

 


 
  

 

  
 

 


  

 
 
                             

(22)

 

In order to avoid chattering, an acceptable approximation of 
sign function (i.e. sgn( )x ) by a saturation function (i.e.

( )sat x  ) may be replaced. Clearly, higher values of the 
slope (i.e. ) makes a better approximation (Binazadeh et al., 
2011; Shafiei et al., 2012). 

Consequently, the missile guidance law versus a 
maneuvering target is as,

 

 

tan
..

cos

.. sat( )

2
tan

..

.. sat( )

2 2
2

0 cos( ) .

V V V Vr
u c

r r

NV V

V V Vr
u c

r

MV V

V V
u s r strc r

r

   
 

   

  


   

 


 
  

 

  
 

 


  

          

                     

(23) 

Since, our main goal in this paper is decreasing the 

interception time, so it may be an error between  r t and

 r td . However, when the interception in a finite time is 
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guaranteed by equation (21), the difference between 

   ,r t r td  is not critical for us. 

4.3 Numerical Simulations For The Missile guidance 
Problem 

In this section, Computer simulations are performed to show 
the performance of the proposed guidance law. Also, in this 

paper, it is assumed that at the time 0t t  the missile is in 

behind of the target and is approaching it. The initial state 
values of the state variables are taken from (Binazadeh et al., 
2011; Shafiei et al., 2012) as follow: 

5000 , ,0 0 0
3

300 , 200 , 300 .
0 0 0

r m rad

m m mV V Vr s s s


 

 

  

                      (24)  
 

Also, 1,
20

N M s


     . 

First, the effectiveness of the designed guidance law versus 
non-maneuvering target is considered. The interception time 
is 7.1692 s. Figure 1 displays that each state has its proper 
behavior according to Section 3.2. 

 

Fig. 1.a. Time evolutions of the system states, where 0  . 

 

Fig. 1.b. Time evolutions of the system states, where 0  .
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Now, the effectiveness of the designed guidance law versus a 
maneuvering target is shown. Target maneuvering is taken 
from (Shafiei et al., 2012) as follow: 

  ..

70cos(0.5 )

70sin(0.5 ) .
4

70sin(0.5 )

..

T
r

t

t

t

   



 

 
 
 
 
  





   
            

           (25) 

In this paper, assume that 70r      . 

Figures 2, 3 contains the time evolutions of 

       , , ,r t V t V t V tr    and ur  respectively. Figures 1, 2 

shows that the interception time for the proposed guidance 
law (23) is less compared with that of reference (Shafiei et 

al., 2012). Figure 3 show that this new approach is realistic 
for missile guidance problem. Also, according to Section3.2 
the proper behavior for each state variable has been ensured 
(Friedland, 1998; Binazadeh et al., 2011; Binazadeh et al., 
2012; Shafiei et al., 2012). 

5. CONCLUSION 

In this paper, a new approach to design a guidance law for the 
missile guidance problem based on the partial stability 
theorem and proper behaviour for each state variable was 
proposed, which the non-linear system based on the partial 
stability theorem is divided into two subsystems. The main 
advantage of this approach is to reduce the interception time. 
Also, based on the Lyapunov redesign method a new robust 
guidance law was designed such that the proper behavior for 
all the state variables is ensured. Finally the effectiveness of 
this new approach via computer simulations was shown. 

 

 

Fig. 2. Time evolutions of the system states, where 0  .  

 

Fig. 3. Time evolutions of 3th control signal.  
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