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Abstract: Efficient feature extraction algorithms are needed for localization, navigation of the 
autonomous mobile robot and fast mapping of the environment. This paper presents an experimental 
implementation of the morphological transform to extract the features of the environment. A novel 
percentage occupancy XNOR (poXNOR) approach has been proposed to address the same. To enhance 
the computational speed, compressed images of different sizes were generated using the laser range 
finder (LRF) data. Structure elements proportional to this image size were used for performing the 
poXNOR based morphological transformation. A significant 70% positive hit of the features with ±0.05 
m accuracy was observed. 

Keywords: Feature Extraction, Morphological Transform, Localization, Mobile Robots, Laser Range 
Finder, Transparent Obstacle 

1. INTRODUCTION 

Mobile robot navigation, localization and mapping have 
become a thrust area of research in the recent past. The 
successful implementation of the same lies in effective 
identification of stable features or permanent landmarks in 
the environment. Model based state estimation has 
uncertainties in localization of the mobile robot, which results 
in inaccurate navigation and mapping. This is primarily 
because of the approximations introduced in the 
mathematical models of the system, which leads to 
divergence of the state parameters from its true state. The 
problem of estimating the true states amidst noisy data is 
solved through various techniques including Kalman filter 
(KF), extended Kalman filter (EKF), unscented Kalman filter 
(UKF) or particle filter (PF) (Chatterjee et al., 2011; Holmes 
et al., 2009; Gustafsson et al., 2002) based correction. 
However the effectiveness of the above algorithms lies on the 
external vision sensors attached with the mobile robots and 
feature extraction algorithms (Ramkumar and Manigandan, 
2012; Choi et al., 2008). These sensors and algorithms 
estimate the external world and aid in correcting the 
estimated states through the system models. 

The dead reckoning sensor like wheel encoders is highly 
unreliable when it comes to exploration in an unknown and 
multi terrain environments. If the ground is slippery, data 
from the wheel encoders do not account for such deviations. 
This error is additive and so it accumulates over a period of 
time. At one point, the robot completely loses track and in 
literature this is referred as kidnapping problem (Andras et 
al., 2010). In order to correct the accumulated error, the 
concept of sensor fusion has evolved as one of the best 
solutions.  Algorithms based on laser range finder (LRF) data 
for spatial information of the scene and the signatures 
extracted from visual device like camera were fused to get 
the best estimate of the mobile robot current location (Ho and 

Newman, 2006). Authors have highlighted the primary role 
of feature extraction techniques while implementing 
localization, navigation or target tracking algorithms (Ilas et 
al., 2011). 

Loop closing is also an issue in mobile robots where the 
robot should identify the previously visited environment. 
This can be achieved by effective feature extraction 
algorithms, which is mainly determined by the various 
sensors employed in the robot. Basic vision sensors used for 
studying the environment are LRF, camera and sonar. 
Effectiveness of the signatures collected from camera 
depends on the light ambience and speed of the vehicle. The 
application of LRF in mobile robots is very significant for the 
fact that it can work with good precision and under low 
ambience as well. 

The effectiveness of the feature extraction algorithm is 
decided by the place of location of the LRF. More than one 
LRF can be used at different levels to distinguish between the 
static and dynamic environments (Mastrogiovanni et al., 
2012). But usage of more number of LRF decreases the 
energy efficiency of the system as a whole. The feature 
extraction can be done in polar space itself using geometric 
invariance technique (Noyer et al., 2010) but when 
implementing Kalman filter this has to be converted to 
Cartesian space for effective processing. Hough transform is 
applied to extract line features from the image generated by 
translating the LRF data to a 2D plane (Ogaz et al., 2009). 
Though it is an efficient method, computational time is a 
major limitation. Placement of artificial features to improve 
the performance of localization and mapping (Beinhofer et 
al., 2013) has been reported. But its restriction on the 
environment is yet to be addressed. 

The appropriate detection of static or dynamic features and 
free space not only helps in effective localization but also 
enables the robot to navigate in the environment without 
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collision (Vatcha  and Xiao, 2014; Wurm et al., 2010; Teslic 
et al., 2010; Se et al., 2001). Detection techniques for 
extremes, corners and discontinuities have also been 
elaborately discussed after LRF data pre-processing using a 
moving average filter (Duchon et al., 2012). A detailed 
comparison of various line fitting algorithms in terms of 
computational time and variance is also carried out (Nguyen 
et al., 2005).  

Various morphological transformation techniques have been 
proposed to extract features from images and one such 
technique is hit-or-miss transform (Parape et al., 2012; 
Murray and Marshall, 2011). However the basic demerit of 
this method is that the structure elements have to be chosen 
exactly in coherence with the objects or the features to be hit. 
To overcome this restriction, percentage occupancy based 
hit-or-miss transform was proposed which can hit any feature 
with some allowable tolerance (Murray et al., 2009). This 
tolerance or deviation can be suitably selected by the user. 
Basically the hit-or-miss transform involves lot of 
mathematical manipulations and hence imposes 
computational burden when online processing and decision 
making is crucial.  

Hence, in this work, a novel morphological transform using 
percentage occupancy XNOR (poXNOR) logic has been 
proposed. Wherein, only orthogonal features were considered 
for the experiment and the entire environment was set up 
only with orthogonal features. The data from the LRF is 
transformed to a 2D image plane for further processing. The 
data transferred from LRF to the image is considered the 
foreground and the rest of the area is background. In this 
technique, the back- and fore-ground match is separately 
considered. Taking them separately facilitates the 
normalization of the back ground scene. This occupies most 
of the image area compared to the feature, which is the fore 
ground information. Thus poXNOR method considerably 
reduces the computational burden and can be used on 
compressed images. Hence the existing limitations of online 
feature extraction and decision making can be resolved. 
Furthermore, the effectiveness of the proposed poXNOR 
technique was also tested when the autonomous mobile robot 
encounters transparent glass obstacles. 

2. METHODLOGY  

2.1 poXNOR Feature Extraction 

The natural processing of images by human being for feature 
extraction is purely relative to the application. When it comes 
to the localization, mapping and navigation, humans do not 
use a very high resolution images. They try to extract the 
features of interest through search and match pattern. Various 
feature patterns of the environment are stored as markers in 
memory (brain). When a new environment is scanned by the 
eye, the brain tries to search for these markers available in 
memory from the developed image, which is relatively in 
compressed form (Pi et al., 2008). This compressed form of 
the image ensures fast processing to extract the relevant 
features. Most of the total processing time is shared by the 
decision making process. That is human beings are able to 
take quick and correct decisions most of the time even with a 

low resolution images or with lesser number of data. 
Therefore, the proposed technique tries to exploit the same 
dynamic activity of the human system. In this approach, the 
data from LRF is transformed to a 2D image which then is 
compressed suitably for further processing. Morphological 
transform based on the proposed poXNOR technique is 
applied to detect corner features from the developed 2D 
image. The methodology of the proposed model is shown in 
Fig. 1, which comprises of data acquisition, pre-processing, 
image compressions and morphological transform modules. 

Fig. 1. Percentage occupancy XNOR (poXNOR) technique. 

2.2  Experimental Setup & Data Pre-processing 

Hokuyo URG-04LX-UG01 LRF is mounted on a four 
wheeled mobile robot, which under goes a random walk in 
the created environment shown in Fig. 2.  

The environment was designed only with straight and corner 
features and care was taken that minimum of 2 features are 
visible at any point of time. The resolution of the LRF is 0.02 
m and it can measure a maximum distance of 5.6 m. The scan 
angle is 240° with a step change of 0.35°. The operating 
region was restricted to 0.6 to 4 m for better performance. 
The robot was made to run at a speed of 0.25 m/sec.  

The acquired raw data in the form of polar coordinates from 
LRF are processed through median filters for removing 
spurious noise and retain sharp edges. A sample of the 
scanned data by LRF before and after median filtering is 
shown in Fig. 3. The Fig. 3a shows the plot of raw data 
acquired from LRF. It is observed that there are lot of short 
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time spikes. These spikes fall in the high frequency range and 
have to be removed or otherwise it may lead to instability 
during localization of the mobile robot. 

 

Fig. 2. Mobile robot with LRF in the created environment. 

Median filtering technique was applied to remove these 
spikes or spurious points. The length of the window ‘N’ 
selected for median filtering is done based upon the noise 
level in the signal. The effect of length of the window on the 
signal is shown in Fig. 3b. If the length of the window is 
increased the high frequency noise gets attenuated 
substantially. But an optimum length has to be chosen 
because increase in length of the window increases the 
manipulation time. In the present case, the noise segment 
occupies approximately 7 sample points and so minimum of 
N=10 points are chosen as the length for median filter. 

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Samples

D
is

ta
nc

e 
fr

om
 L

R
F

 (
m

) Changes due to Noise

 

(a) 

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Samples

D
is

ta
nc

e 
fr

om
 L

R
F

 (
m

)

 

 

N=5

N=10

N=15

N=25

 

(b) 

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Samples

D
is

ta
nc

e 
fr

om
 L

R
F

 (
m

)

Noise removed and sharp edges maintained

 

(c) 

Fig. 3. a) Scanned data before median filtering, b) effect of 
length of window ‘N’ by median filtering on Fig 3a and 
c) scanned data after median filtering with N=10. 

It is seen from Fig. 3c that the spurious points or spikes 
generated because of the light reflected from dusts particles 
and false edges are removed and the sharp edges are still 
maintained. These sharp edges can be the intersection points 
of any two straight line features such as walls which is 
considered as the major feature in this experiment. The 
processed signal is then converted to rectangular coordinates 
using (1). 
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where, θ varies from 30° to 210° in steps of 0.35° and r is the 
length of a point on the obstacle assumed in the created 
environment for each step angle.  

Moreover, the obstacles in a real time environment can also 
be a transparent medium or in specific a glass material. Thus 
a method was devised to identify the presence of glass 
obstacle using LRF and the experimental setup for the same 
is shown in Fig 4.  

 

Fig. 4. Experimental setup for transparent glass obstacle 
detection. 

When laser light incidents on the glass obstacle or partition 
placed in front of a nontransparent wall, an interference 
pattern is formed between the light reflected from the front 
surface of the glass and the reflective nontransparent wall 
(Park et al., 2014; Sastikumar at al., 2010). This interference 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     45 

     

 

pattern makes the nontransparent wall appear closer to the 
robot than its actual position. When the angle of incidence of 
laser moved towards the normal of the glass plane, the wall 
appeared to be further closer to the robot thus generating a 
parabolic pattern. This pattern was symmetrical with respect 
to the normal of the glass plane with its apex lying exactly on 
the glass plane itself as shown in Fig 5. This observation 
signifies the presence of a transparent glass partition in front 
of the mobile robot and its position.  
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Fig. 5. Reflection pattern of laser beam for different angle of 
incidence and transparent glass obstacle thickness. 

As the robot moves along the glass partition, this parabolic 
pattern keeps shifting in pace with the robot thus indicating 
the presence of a glass partition and its length. The parabolic 
pattern was consistent with respect to different thickness of 
the glass obstacle as shown in Fig 5 and hence chosen as the 
structure element. Direct morphological transform was 
applied to identify the presence of glass partition and its 
position using the parabolic structure element.  

The plot of LRF data before and after filtering in 2D space is 
depicted in Fig. 6.  
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Fig. 6. a) 2D plot before and b) after median filtering. 

Researchers have also used moving average filter (2) for 
removing these high frequency noises. The major advantage 
of using a moving average filter is that the various curved 
features can be easily extracted from noisy data. The 
effectiveness of it lies in proper selection of length of the 
window. Longer windows are required to remove high 
frequency noise, which will increase the computational time. 
Longer window length will smoother the entire signal and 
also introduces a spatial shift in the data points due to the 
delay introduced by the filter as shown in Fig. 7. Moreover, 
the LRF is largely discontinuous and hence is not 
continuously differentiable spatially leading to further spatial 
shift. For localization applications sharp edges are very 
crucial and any shift in the data points spatially affects the 
performance of the system as a whole. So, median filter was 
preferred over moving average filter in this experiment. 
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Where, N=2M+1 the length of window 
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Fig. 7. Effect of length of window ‘N’ by moving average 
filtering. 
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Features of the objects of interest that are closer and 
orthogonal to the robot have large number of samples but the 
distant objects have few.  So after filtering, the data is down 
sampled to remove grouping of data. This reduces the 
computational time and also removes the additional points 
that get introduced due to median filtering (Fig. 6b). This is 
done by imposing a threshold (Td) on the Euclidean distance 
(Ed) between two consecutive points on the map using (3), 
where (xp, yp) are various points on the map. If Ed < Td then 
the points are retained or otherwise removed. The 2D map 
after down sampling is shown in Fig. 8. 
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Fig. 8. 2D plot after down sampling. 

Data embedding is done for even distribution of samples 
which increases the probability of line fitting and feature 
extraction. The distance between two samples in this data set 
(S) is kept at 3 cm after data embedding process. 
Morphological transform is performed on this data for feature 
extraction which is explained in detail in the following 
section. 

2.3 Morphological Transform and Feature Extraction 

A binary image (IB) is generated through linear 
transformation of the data set S using (4). White pixel in the 
image represents the presence of a data point which is 
considered as the foreground.  
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where, (Xmax, Xmin, Ymax, Ymin) ϵ S 

XT, YT  - The transformed pixel coordinates in the image  
IS - The chosen image size and i varies from 1 to Ns 
Ns - The length of the set S 

If XT, YT is a fraction then it has to be rounded off to make 
sense in an image. A sample of the transformed image is 
shown in Fig. 9, which also highlights the absence of white 
pixel corresponding to the discontinuity in a major feature. 
Significantly, the proposed poXNOR method was able to 
detect this major feature even in the presence of a 
discontinuity. Also, the point features were created during 
transformation of minor features from the main LRF data. 
Noticeably, no separate filtering algorithms are required to 
remove these point features as the morphological 
transformation excludes them by virtue. 

As the compression ratio (CR) from (5) is increased more 
concrete information stays and minor features reflects as a 
point feature in the transformed image. The effectiveness of 
the morphological transformation lies in suitable selection of 
CR which is generally a trade off between minor features and 
computational speed. The size of the structure element (Se) is 
normalized with the maximum size IS and Se using (6). The 
maximum size of Se and IS are chosen based on the maximum 
distance fixed for the LRF. In this experiment max(IS) and 
max(Se) was chosen to be 125 x 125 and 17 x 17 respectively. 
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where, IS ≤ max(IS) and Se ≤ max(Se). If Se is a fraction then it 
is rounded off to make sense.  

Structure elements of different orientations are created with 
various step angles (θS°) as shown in Fig. 10. Corners of 90° 
angle generated by perpendicular lines are chosen to be the 
feature for this experiment. If one wishes to chose any other 
angle a corresponding structure element can be generated and 
adopted.  

 

Fig. 9. Transformed image (IS = 35 × 35). 

The structure element thus generated is moved on the image 
to identify any match. The advantage in this proposed method 
is that the location of the information (white pixel) is known 
apriori. So the structure element can be moved only along the 
white pixel region which significantly reduces the 
computational time. The normal morphological transforms 
searches for a pattern in the entire image, so the 
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computational time is comparatively very high. Two different 
approaches, 1. Exact XNOR (eXNOR) match and 2. The 
proposed poXNOR match are used and compared. The 
logical operation procedure is shown in (7). 

 

Fig. 10. Structure element with θS = 30°. 
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Equations 7a, 7b are purely logical operations and 7c is 
arithmetic. IR is the resized image of IB to match the size of 
Se. eXNOR, w1 and w2 represents the number of white pixels 
in the resultant image. NW and NB represent the number of 
white and black pixels in w1 and w2 respectively.  

poXNOR is a normalized value based on which the existence 
of a feature is decided. Morphological transform was 
performed on the image using (7) and the features are 
extracted. The eXNOR approach is completely logical it 
gives importance to both the fore ground and back ground 
information. So any small deviation of the compared 
sectional image from the structure element due to noise will 
result in non detection of the existing feature. Whereas the 
poXNOR method is partially logical and partially arithmetic 
and this gives the liberty of independent normalisation for the 
back ground and fore ground match. Moreover if due to 
restrictions if one is forced to have a larger image size then 
the structure element also proportionally increases in size. 
This results in the number of black pixels (back ground) to be 
much greater than the white pixels (fore ground). Under these 
circumstances also, the poXNOR method gives better results 
as the decision is taken based on the percentage occupancy. 
The results of the proposed technique are discussed in next 
section. 

3. RESULTS AND DISCUSSION 

In the transformed image the white pixels represents the fore 
ground and the black pixels the back ground. The w1 and w2 

in (7) gives the fore ground and back ground match 
respectively. The eXNOR approach detects a feature only if 
the Se exactly matches the IR including the back ground. 
Whereas the poXNOR allows a percentage of tolerance on 
fore and back ground match. The experiment was performed 
for 3 different θS° of the structure element.  

The results in terms of number of the feature hits for 80 
continuous scans with different compression ratios are shown 
in Table 1. The total number of major features (TM) was 280 
in 80 scans and this number includes repeated features as 
well. The percentage hits (PH) was calculated using (8). 
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where, TH is the total hits and EH is the error in hits. It is 
evident from Table 1 that best results are achieved by 
maintaining the CR at 3.6 and using poXNOR method. As the 
CR is increased the PH also increases till one point and any 
further increase in CR the PH becomes unbounded. This 
unbounded condition arises due to the fact that increase in CR 
beyond a value creates more number of point features in the 
resized image. Moreover Se also reduces with increase in CR. 

So there is more probability of identifying false features from 
the environment. Thus the total hits show a value much 
higher than the actual number of features that can be 
identified in the total 80 scans. So an optimum point needs to 
be fixed on the CR and corresponding extracted features. The 
most optimum value of CR and PH from this experiment was 
found to be 3.6 and 70% on average respectively. On the 
other hand it is seen that the eXNOR method has an increase 
in trend on PH always, were as the total hits is relatively less 
compared to poXNOR. The PH of eXNOR is nearly 65% on 
average for CR of 6.25 but the % Error in Hits has drastically 
increased to 23% on average which significantly reduces the 
belief factor on the extracted features. So it is evident that 
poXNOR method is best suited for morphological transform 
based feature extraction. The retranslated feature coordinates 
extracted through poXNOR based morphological transform is 
shown in Fig. 11. 

The resizing of image is done linearly on X axis and Y axis 
equally and along one direction only. So the quantization 
error introduced because of this compression can be easily 
quantified and corrected during retranslation. The error on the 
retranslated coordinates on the XY map was found to be less 
than 0.05m. 

These extracted features are used for state and covariance 
updating in EKF using (9).  
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Table 1.  Comparison of feature hits for different CR and θS° 
(Total scan was 80 and total physically identified features were 280) 

Compression Ratio 
(CR) 

Step Angle 
(θS°) 

poXNOR Hits eXNOR Hits % Hits (PH) 
Total Hits 

(TH) 
% Error in Hits Total Hits 

(TH) 
% Error in Hits poXNOR eXNOR 

1 

10 7 0 0 0 2.5 0 

30 8 0 0 0 3 0 

45 7 0 0 0 2.5 0 

1.67 

10 67 6 36 0 23 13 

30 55 7 36 0 18.5 13 

45 53 8 36 0 17.5 13 

2.1 

10 118 7 53 0 39.5 19 

30 96 7 52 0 32 18.5 

45 91 8 52 0 30 18.5 

3.6 

10 221 8 134 0 73 48 

30 208 8 135 0 70 48 

45 198 6 132 0 67 47 

6.25 

10 628 68 242 22 
Deviation 
is more 

67.5 

30 602 66.5 238 21 67 

45 628 68.5 233 27 61 
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Fig. 11. The retranslated feature coordinates on the XY plane. 

 

Where, k is the sample time instant, Uk the input, ωk the 
system model noise, Ak the Jacobian of the system model f(.), 
Hk the Jacobian of the measurement model h(.), ϑk the 
measurement model noise, Qk the process noise covariance, 
Rk the measurement noise covariance, Pk the covariance, Kk 
the Kalman gain and Zk the actual measurement from the 
sensor. The feature coordinates extracted using poXNOR 
method is fed to Zk in (9) for further updating. If the variance 
on Zk is large then the convergence of Pk gets affected which 
results in inaccurate correction of the estimated state. Since 
this is a closed loop process, the corrected states goes 
unbounded over a period of time resulting in instability of the 
entire system. 

The advantage of this method lies in the reduced and 
effective processing time and increased feature identification. 
This obviously will enhance the navigation speed of the 
mobile robot in the environment. The limitation of the study 
however lies in adaptive selection of CR and θS. The 
environment used for this study was highly restricted with 
orthogonal, static and known features. 

4. CONCLUSIONS AND FUTURE PERSPECTIVE 

Images of various sizes were generated using the rectangular 
coordinates derived from the LRF data. The poXNOR based 
morphological transform was performed using a structure 
element of different size and orientations. The results were 
compared with the eXNOR approach. The poXNOR was 
found to be better in terms of PH on the features. It was found 
that poXNOR method gave 70% positive hits on feature 
when compared with eXNOR which gave only 48%. Since 
the processing is done on a reduced size of an image, the
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 processing time also improved when compared to the normal 
line fitting approaches. This advantage can be utilized in 
effective and fast navigation of the mobile robot. As a special 
case, an optical interference based technique was used to 
detect the position of glass obstacles using LRF. The 
selection of CR and θS can be made adaptive through any 
learning and decision making algorithm for robust 
performance of the mobile robot in dynamic and unknown 
environment. These works are proposed for further study. 
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