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Abstract: The aim of this paper, is to propose a solution for the model adequacy verification in indirect 
adaptive control beside the classical known validation tests. The dynamic system that was selected to 
verify the proposed solution, is represented by a flexible transmission described by a complex four order 
model. Using the selected model adequacy index, it is studied the influence of the SPAB signal and 
perturbation amplitude on the model adequacy and control solution, for two different tracking 
performances selections. The proposed solution, comes to overcome the model validation problems 
encountered in real-time applications, with the main  advantage of improving the model identification 
and control solutions. 
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1. INTRODUCTION 

The indirect adaptive control approach, was introduced by 
Kalman in 1958 in relation to the digital process control 
(Kalman, 1958; Landau et al., 2011). For the indirect 
adaptive control approach, the studies were concentrated 
mainly on: the introduction of unstable zeros for plant models 
represented in discrete form; the singularities that may appear 
in the closed-loop system and the presence of the persistence 
of excitation. In the following sections, a solution will be 
proposed for the indirect adaptive control, to verify the model 
adequacy of the closed-loop estimated model. As a plant 
model, a flexible transmission system was selected. This has 
a complex 4th order model identified in open-loop (Landau et 
al., 2011). In the scientific literature, (Karimi, 1998; Jones, 
1995; Walker, 1995; Landau et al., 1995a; M’Saad, 1994; 
Galdos, 2012; Landau et al., 1995b) a series of studies were 
realized with the flexible transmission system using different 
control approaches, as follows: multi-model adaptive control, 

H control, convex optimization and others.  

Section 2 of the paper, makes a general presentation of the 
indirect adaptive control approach, with a general control 
scheme and variants of adaptive control strategies developed 
for practical needs.  

Section 3 makes a theoretical presentation of the proposed 
model adequacy index, that is used beside the classic 
validation tests for selecting the most appropriate model of a 
dynamic system identified in closed-loop.  

Section 4 describes the flexible transmission system, for 
which is tested the proposed solution and the robustness 
performances of the selected controller with different variants 
of  the performance parameters.  

Section 5 puts in discussion the influence of the SPAB signal 
and perturbation amplitude on the model adequacy and 
control performances, for the proposed solution from section 
4. 

2. INDIRECT ADAPTIVE CONTROL  

The indirect adaptive control strategy, was introduced in 
theory and practice in order to select in real-time applications 
an appropriate control solution for a dynamic system, when 
the plant model is estimated from the available input-output 
measurements. The adaptation is called indirect, due to the 
fact that the controller parameters are adapted in two stages: a 
1st stage, represented by the real-time estimation of the plant 
parameters and  a 2nd stage,  represented by the computation 
of the controller parameters using the current estimated 
model. A basic scheme for the indirect adaptive control 
approach, is shown in Fig. 1. (Landau et al., 2011). 
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Fig. 1. Indirect adaptive control scheme. 

When the plant model has unknown but constant parameters 
over a large horizon, the following adaptive control strategies 
are possible: adaptive control with the controller actualization 
at each sampling interval; adaptive control with controller
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actualization at N  sampling intervals; plant model 
identification in closed-loop followed by the redesign of the 
controller. (Landau et al. (2011)) The choice of one of the 
above control solutions, depends on the dynamic system 
particularities and also the proposed solution, must take into 
consideration the available computation power. The most 
popular control techniques used in practice with this control 
approach, are: the adaptive pole-placement (de Larminat, 
2007); Landau et al., 2011) and adaptive generalized 
predictive control. ( M’Saad, 1993; Landau et al., 2011). 

3. MODEL ADEQUACY VERIFICATION 

After the computation of the regression coefficients, it is 
necessary to verify the model adequacy of the plant. This 
means to make an analysis of the regression, in order to 
appreciate how much the closed-loop estimated model 
expresses correctly the dependency between the input and 
output measurements ( yu, ). Because the standard deviation 

doesn’t put in evidence very clearly the reasons which 
determined the dispersion degree of the data with respect to 
the model, the point associated to the center of the 
experimental data set is computed (corresponding to the 
average values on the inpus u  and output y signals) and the 

dispersion of the points ky  and kŷ
 
is estimated with respect 

to y . (Tertisco et al., 1991; Calin et al., 1988).  

On the basis of the dispersion degree of the output 
measurements ky  and kŷ

 
with respect to the average value, it 

can be appreciated if the deviation is caused by the 
inadequacy of the regression model used for the real behavior 
of the plant, or is caused by the big amplitudes of the 
measurement errors (additive noise at the output). The 
dispersion degree of the real-data with respect to the average, 
can be described by the following formula: 
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where N represents the measurements horizon. The deviation 
of the closed-loop estimated model with respect to the 
average value is: 
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The dispersion residues between the real-data and the 
estimated model is: 
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Between (1), (2) and (3), there is a dependency relation, 
which can be defined by the coefficient: 
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which tends to 1, when the estimated model is close to the 
behaviour of the real plant. (Tertisco et al., 1991; Calin et al., 
1988). 

4. PLANT DESCRIPTION AND CONTROLLER DESIGN 

The flexible transmission system, is made of three pulleys 
linked by two elastic belts (Fig. 2). One of these pulleys, is 
constrained to the axis of a DC motor. The motor position, is 
controlled by a local servo (speed and position feedback). 
The dynamics of the local position control, is very fast when 
compared to the mechanical system. (Landau et al., 2011) 
The control problem, is to obtain the desired position of the 
3rd pulley by modifying the input voltage of the position 
control that drives the 1st pulley. The output )(ty of the 

system, is the axis position of the 3rd pulley and the 
command signal )(tu , is the reference for the 1st pulley axis 

position. The mechanical loads that can be added on the 3rd 
pulley, modify the system inertia and consequently also the 
resonant modes of the mechanical system. (Landau et al., 
2011).  

 
Fig. 2. Control scheme of the flexible transmission system. 

For the selection of the tracking performances of the 
controller, two possible choices were proposed. The 1st 
choice, assumes the existence of a reference model:  

)()( 11   qPGqT                                 (5) 

where: 
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is selected in order to have: a unit static gain between the 

desired trajectory y  and the output y of the dynamic 

system; to compensate the regulation dynamics defined  by 

)( 1qP . (Landau et al. (2011)) The 2nd choice, corresponds 

to the situation where the regulation dynamics are the same 

as the tracking dynamics and the polynomial )( 1qT  of the 

tracking performances, is replaced by a gain (Landau et al., 
2011): 
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This assures a unit static gain between the reference and the 

output signal. In the above equations, )( 1qP  represents the 

desired closed-loop poles of the dynamic system, )( 1qB  

represents the numerator of the dynamic plant model and 
)( 1qT represents the selected tracking performances. The 

initial model of the flexible transmission system, for which is 
verified the model adequacy of the proposed control solution 
presented below by simulation, is represented by the open-
loop estimated model obtained using the OEEPM method 
(Landau et al., 2011): 
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In the following lines, will be presented the controller 
performances obtained with four different values of the 
overshoot M , without pre-specified parts or with pre-
specified parts (for a steady-state error). From this will be 
selected the solution with better controller performances. For 
an overshoot %5.0M , a rising time st R 305.0 , a natural 

frequency 97.110  and no pre-specified parts for the 

controller, the robustness performances represented by the 

output sensitivity function  j
yp eS  , are represented in Fig. 

3. 

 

Fig. 3. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

With an overshoot %1M , a rising time 305.0Rt , a 

natural frequency 15.110  and no pre-specified parts for 

the controller performances, the frequency response of the 

output sensitivity function  j
yp eS  , is represented in Fig. 

4. 

 
Fig. 4. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

For an overshoot %5.1M , a rising time 305.0Rt , a 

natural frequency 49.100  and no pre-specified parts 

selected for the controller performances, the frequency 

response of the robustness function  j
yp eS  , is represented 

in Fig. 5. 

 
Fig. 5. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

When an overshoot %2M , a rising time 305.0Rt , a 

natural frequency 84.90  and no pre-specified parts are 

proposed for the controller performances, the frequency 

response of the output sensitivity function  j
yp eS  , is 

represented in Fig. 6. 

 
Fig. 6. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

When an overshoot %5.0M , a rising time 305.0Rt , a 

natural frequency 97.110  and a set of pre-specified parts 

(for a steady-state error) are introduced for the controller 
performances, the frequency response of the output 

sensitivity function  j
yp eS  , is represented in Fig. 7. 

 
Fig. 7. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

With an overshoot %1M , a rising time 305.0Rt , a 

natural frequency 15.110  and a set of pre-specified parts 

introduced in the controller parameters (for a steady-state 
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error), the frequency response of the output sensitivity 

function  j
yp eS  , is represented in Fig. 8. 

 
Fig. 8. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

By selecting an overshoot %5.1M , a rising 
time 305.0Rt , a natural frequency 49.100  and a set of 

pre-specified parts (for a steady-state error), the frequency 

response of the output sensitivity function  j
yp eS  , is 

represented in Fig. 9. 

 
Fig. 9. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

When selecting an overshoot %2M , a rising 
time 305.0Rt , a natural frequency 84.90  and a set of 

pre-specified parts (for a steady-state error) for the controller 
performances, the frequency response of the robustness 

function  j
yp eS  , is represented in Fig. 10. 

 
Fig. 10. Frequency representation of the output sensitivity 

function )( j
yp eS  . 

From the above frequency representations of the robustness 

functions  j
yp eS  , it can be observed that a better control 

solution is obtained for an overshoot %5.0M , a rising time 
305.0Rt , a natural frequency 97.110  and a gain 

margin of dBM 01.5 , as in Fig. 3. The controller 

parameters obtained using the pole-placement strategy for the 
1st tracking performances selection from equation (5) and (6) 
with the controller performances imposed above, are the 
following: 
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For the 2nd tracking performances selection from equation (7) 
with the above controller performances, the parameters are: 
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5. SIMULATION RESULTS AND DISCUSSION USING 
THE INDIRECT ADAPTIVE CONTROL SOLUTION 

A series of simulations are realized in this section using the 
indirect adaptive control approach for different SPAB signal 
and perturbation amplitudes with the proposed types of  
tracking performances from section 4, to verify the closed-
loop model adequacy (Landau et al., 2011). For this 
simulations, the following notations were introduced: A  
represents the maximum admitted value of the system 
response; maxY represents the maximum value of the system 

response, when no perturbation is present in the closed-loop 
system. For the closed-loop identification of the flexible 
transmission system, it was selected a SPAB signal with 

8N cells, a frequency divider 2d , a sampling period 
05.0eT  and a command AU %200  . For the perturbation 

model, it was selected a filter of the Gaussian White noise as 

follows: )()( 1 keqC 
 where  211 25.07.01)(   qqqC and 

)(ke  represents the model and Gaussian White noise 

generated by software. For the closed-loop identification of 
the flexible transmission system, it was proposed the 
Generalized-Closed-Loop-Output-Error algorithm (Landau 
et al. (2011)) because it permits a better representation and 
estimation of the plant and perturbation model. Beside the 
closed-loop validation test used for the estimated model, the 
formula of the index used to check the closed-loop model 
adequacy, is the following (Tertisco et al. (1991); Calin et al. 
(1988)): 
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where: y~  represents the average value of the output signal 

from the real dynamic system, described by the 4th order 
degree model from equation (8); iy  is the output signal of 

the real plant model from equation (8) at step i  of 
identification; iŷ  is the output of the closed-loop estimated 

plant model at step i  and N  is the horizon length selected 
for identification. It is assumed that a good estimated model 
by closed-loop identification, has an adequacy 
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index 7.0_ indexa . Beside the model adequacy index 

presented above, it is also calculated the medium value of the 
output signal for each sampling interval. This is realized in 
order to see the variation of the output signal in rapport with 
the applied reference signal and also, for the improvement of 
the control performances. The simulations using the indirect 
adaptive control solution, are realized for two successive 
sampling intervals with the selected tracking performances 
presented in section 4 for different amplitudes of the SPAB 
signal and perturbation amplitudes. For the 1st sampling 
interval, the amplitude of the Gaussian White noise 
perturbation selected is assumed to be max%10 Y  and it 

represents the simulation of the closed-loop system with the 
real open-loop model from (8). In the 2nd sampling interval, 
the amplitude of the Gaussian White noise perturbation is 
increased to max%15 Y and it represents the simulation of the 

closed-loop system after the plant model re-identification and 
controller updating. For a better understanding of the 
important points of the system response using the proposed 
control solution, beside the reference signal drawn with 
green, the following three suplimentary lines were introduced 
in the graphical representations:  a blue line, representing the 

A%35  amplitude of the system response; a cyan line, 
representing the A%40  amplitude of the system response; a 
black line, representing the A%45  amplitude of the system 
response. For the 1st tracking performances selection, five set 
of  simulations were realized for different SPAB signal 
amplitudes. It was determined that: for a SPAB signal 
amplitude between 0%10:0 U  in the 2nd sampling interval, 

the estimated and validated model by closed-loop 
identification, has an accepted model adequacy index 

indexa _  between 83.0  and 99.0 . For a higher SPAB 

signal amplitude, it was determined that the estimated closed-
loop model doesn’t have a valid model anymore with an 
accepted adequacy index ( 7.0_ indexa ). In the 1st 

simulation, for a SPAB signal amplitude 0%5.2 UDU  , the 

graphical representation using the indirect adaptive control 
solution, is presented in Fig. 11. 

 

Fig. 11. Indirect adaptive control solution for a 0%5.2 U    

SPAB signal amplitude. 

From the above graphic, it can be observed that the control 
performances of the 1st sampling interval are better compared 
to the 2nd sampling interval, for a higher perturbation 
amplitude. The model adequacy index obtained in the 2nd 
sampling interval after the closed-loop re-identification of the 
plant model, is 86.0_ indexa . The medium value of the 

output signal in the 1st interval is 45.35 , while in the 2nd 
sampling interval is 60.43 . For a SPAB signal 
amplitude 0%5 UDU  , the graphical representation of the 

simulation result with the indirect adaptive control solution, 
is presented in Fig. 12.  

 
Fig. 12. Indirect adaptive control solution for a 0%5 U   SPAB 

signal amplitude. 

From the above graphic, it can be seen that for a smaller 
perturbation amplitude ( max%10 Y ) of the closed-loop system 

in the 1st sampling interval, the control solution has improved 
performances compared to the 2nd sampling interval, for a 
higher perturbation amplitude ( max%15 Y ). The model 

adequacy index of the estimated and validated model 
obtained in the 2nd sampling interval, has the following 
accepted value 92.0_ indexa . This shows a better 

estimation compared to the previous case considered. The 
medium value of the output signal in the 1st sampling interval 
is 60.35 , while the medium value in the 2nd sampling interval 
is 87.41 . This shows an improvement of the control 
performances compared to the previous case, for the 2nd 
sampling interval considered after re-computing the plant and 
controller parameters. For a 0%25.6 UDU  SPAB signal 

amplitude, the graphical representation of the simulation 
result using the indirect adaptive control solution, is 
represented in Fig. 13. 

 
Fig. 13. Indirect adaptive control solution for a 0%25.6 U   

SPAB signal amplitude. 

From the above graphic, it can be observed that the control 
solution in the 1st sampling interval obtains improved 
performances compared to the 2nd sampling interval, when a 
higher perturbation amplitude was selected.The adequacy 
index of the estimated and validated model computed in the 
2nd sampling interval after the closed-loop re-identification of 
the model, has the following accepted value 95.0_ indexa . 

This shows an improvement of the closed-loop estimated 
model, compared to the previous cases presented. The 
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medium value of the output signal in the 1st sampling interval 
is 67.35 , while for the 2nd sampling interval is 94.40 . This 
result gives an improvement of the control performances in 
the 2nd sampling interval, compared to the previous cases 
considered. For a higher SPAB signal amplitude of 0%5.7 U , 

the graphical representation of the output signal obtained 
using the indirect adaptive control solution, is presented in 
Fig. 14. 

 
Fig. 14. Indirect adaptive control solution for a 0%5.7 U   

SPAB signal amplitude. 

The above graphic, shows that the control performances of 
the proposed solution are better in the 1st sampling interval 
for a smaller perturbation amplitude, compared to the 2nd 
sampling interval for a higher perturbation amplitude. The  
adequacy index computed for the estimated and validated 
model in the 2nd sampling interval, is 99.0_ indexa .  This 

shows an improvement of the closed-loop estimated model 
adequacy, compared to the previous cases. The medium value 
of the output signal in the 1st sampling interval is 75.35 , 
while the medium value of the output signal in the 2nd 
sampling interval is 06.40 . This shows that the control 
performances, are improved in the 2nd sampling interval 
compared to the previous cases considered. For a 

0%10 UDU   SPAB signal amplitude, the graphical 

representation of the simulation result obtained using the 
indirect adaptive control solution, is presented in Fig. 15.  

 
Fig. 15. Indirect adaptive control solution for a 0%10 U  

SPAB signal amplitude. 

The graphical representation from Fig. 15, shows that the 
control performances in the 1st sampling interval for a 

max%10 Y perturbation amplitude, have better results 

compared to the 2nd sampling interval, for a 

max%15 Y perturbation amplitude. The model adequacy index 

obtained in the 2nd sampling interval after the closed-loop 
identification of the plant model, is 95.0_ indexa . This 

shows a decrease of the index compared to the previous case 

and an increase compared to the other cases presented. The 
medium value of the output signal in the 1st sampling interval 
is 90.35 and in the 2nd sampling interval is 60.38 , which 
shows better control performances in the 2nd sampling 
interval compared to the previous cases presented. For the 2nd 
tracking performances selection presented in section 4, five 
set of simulations have been realized with the indirect 
adaptive control solution. It was determined that a valid 
estimated model with an accepted adequacy index between 

77.0 and 98.0  in the 2nd sampling interval after the closed-
loop re-identification of the plant model, is obtained for a 
smaller SPAB signal amplitude between 0%8:0 U , compared 

to the previous tracking performances selection. The 
graphical representation of the simulation result obtained 
using the indirect adaptive control solution for a 0%5.2 U  

SPAB signal amplitude, is presented in Fig. 16. 

 
Fig. 16. Indirect adaptive control solution for a 0%5.2 U  

SPAB signal amplitude. 

The above representation, shows that the control 
performances obtained in the 1st sampling interval for a 

max%10 Y perturbation amplitude, are better compared to the 

2nd sampling interval, for a max%15 Y perturbation amplitude. 

The closed-loop estimated and validated model from the 2nd 
sampling interval after the closed-loop identification 
procedure, has an adequacy index 77.0_ indexa . This 

shows that the estimated plant model, has a smaller adequacy 
to the real-data compared to the same situation for the 1st 
tracking performances selection. The medium value of the 
output signal in the 1st sampling interval is 41.35 , while in the 
2nd sampling interval is 10.45 . This shows that the control 
performances, are smaller compared to the same situation for 
the 1st tracking performances selection. For a 0%5 UDU   

SPAB signal amplitude, the graphical representation of the 
simulation result obtained using the indirect adaptive control 
solution, is represented in Fig. 17. 

 
Fig. 17. Indirect adaptive control solution for a 0%5 U  SPAB 

signal amplitude. 
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From Fig.17, it can be observed that the control solution for a 
smaller perturbation amplitude ( max%10 Y ) in the 1st sampling 

interval, has improved performances compared to the 2nd 
sampling interval, for a higher perturbation amplitude 
( max%15 Y ). The model adequacy index computed in the 2nd 

sampling interval after the closed-loop identification 
is 86.0_ indexa , which is smaller compared to the same 

situation presented for the 1st tracking performances selection 
and less adequate to the real-data. The medium value of the 
output signal in the 1st sampling interval is 56.35 , while in 
the 2nd sampling interval is 98.41 . This shows an 
improvement of the control performances in the 2nd sampling 
interval, compared to the previous case and a decrease of the 
performances compared to the same situation for the 1st 
tracking performances selection. For a 0%25.6 UDU   

SPAB signal amplitude, the simulation result obtained using 
the indirect adaptive control solution, is presented in Fig. 18. 

 
Fig. 18. Indirect adaptive control solution for a 0%25.6 U   

SPAB signal amplitude. 

In the above graphic, the control solution obtains better 
performances in the 1st sampling interval for a smaller 
perturbation amplitude ( max%10 Y ), compared to the 2nd 

sampling interval for a higher perturbation amplitude 
( max%15 Y ). The model adequacy index of the estimated and 

validated model computed in the 2nd sampling interval after 
the closed-loop re-identification procedure, is 

91.0_ indexa . This shows an improved adequacy to the 

real-data for the estimated model, compared to the previous 
cases proposed and a decrease of the adequacy compared to 
the same situation for the 1st tracking performances selection. 
The medium value of the output signal in the 1st sampling 
interval is 64.35 , while in the 2nd sampling interval is 53.40 . 
This represents an improvement of the control performances 
in the 2nd sampling interval, compared to the previous cases 
considered and also, an improvement compared to the control 
performances of the same situation with the 1st tracking 
performances selection. For a 0%5.7 U  SPAB signal 

amplitude, the graphical representation of the simulation 
result, is presented in Fig.19. 

From Fig. 19, the control performances obtained in the 1st 
sampling interval are higher compared to the 2nd sampling 
interval for a higher perturbation amplitude. The model 
adequacy index obtained for the estimated and validated 
model in the 2nd sampling interval after the plant model re-
identification, is 96.0_ indexa . This represents an 

improved adequacy of the model to the real-data compared to 

the previous cases proposed. The adequacy index in this case, 
is smaller compared to the same situation for the 1st tracking 
performances selection. The medium value of the output 
signal in the 1st sampling interval is 71.35 , while the medium 
value in the 2nd sampling interval is 30.39 . This gives an 
improvement of the control performances in the 2nd sampling 
interval compared to the previous cases and also compared to 
the same situation, when the other tracking performances 
were considered. For a 0%8 U  SPAB signal amplitude, the 

graphical representation of the simulation result obtained 
using the proposed solution, is presented in Fig. 20. 

 
Fig. 19. Indirect adaptive control solution for a 0%5.7 U  

SPAB signal amplitude. 

 
Fig. 20. Indirect adaptive control solution for a 0%8 U  SPAB 

signal amplitude. 

The above graphic of the adaptive control solution, shows 
that the control performances in the 2nd sampling interval 
decrease in rapport to the 1st sampling interval, for a higher 
perturbation amplitude of the closed-loop system. The model 
adequacy index of the estimated plant model in the 2nd 
sampling interval is 98.0_ indexa , which shows an 

improved adequacy of the model to real-data compared to the 
previous cases. The medium value of the output signal in the 
1st sampling interval is 74.35 , while in the 2nd sampling 
interval is 88.38 . This shows that the control performances 

for the 2nd sampling interval, increase compared to the 
previous cases considered. 

6. CONCLUSIONS 

This paper proposed a solution for the model adequacy 
verification of the indirect adaptive control approach, due to 
the validation problems that can occur in real-time 
applications and also, the necessity for improved control 
solutions. The novelty element of this paper, is represented 
by the introduction of a model adequacy index (Tertisco et al. 
(1991); Calin et al. (1988)) between the estimated and real 
model beside the known validation tests, in order to improve 
the closed-loop identification and control performances. As a 
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dynamic system for the verification of the proposed solution, 
a flexible transmission was selected with a complex 4th order 
model and as control technique, the pole-placement strategy. 
For the simulation study with the proposed control solution, 
two types of tracking performances were selected from the 
scientific literature (Landau et al. (2011)). The main study, 
was concentrated on the influence of the SPAB signal and 
perturbation amplitude on the closed-loop model adequacy 
and control performances of  the dynamic system. It was 
determined that for the 1st type of tracking performances 
selection, the closed-loop estimated model has an accepted 
model adequacy index indexa _  between 83.0  and 99.0 , 

for a SPAB signal amplitude in the domain 0%100 U . For 

the 2nd type of tracking performances selection, it was 
determined that a good estimated and validated model by 
closed-loop identification, has an accepted model adequacy 
index indexa _  between 77.0 and 98.0 with a SPAB signal 

amplitude in the domain 0%80 U . From the simulations 

presented in this paper, it could be observed that the 
perturbation amplitude has a significant influence on the 
model adequacy and control performances of the dynamic 
system. This results can be improved when selecting a higher 
SPAB signal amplitude. Due to the larger domain of variation 
for the SPAB signal amplitude, bigger model adequacy index 

indexa _  computed for the closed-loop estimated model and 

improved control performances, the indirect adaptive control 
solution proposed for the flexible transmission, is 
recommended to be used with the 1st tracking performances 
selection. The model adequacy and control performances of  
the dynamic system, are restricted by the SPAB signal 
amplitude (which has a limited domain of variation), but also 
by the perturbation amplitude as could be seen from the 
simulations presented in section 5. The model adequacy 
index presented in this paper, can be used in real-time 
applications for simple or complex systems, were the 
dynamic system parameters are time-varying and it is 
necessary to have an improved accuracy of the identification 
and control solution, as the system evolves. 
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