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Abstract: The sensitivity analysis is usually used for two purposes: to determine the effect of the 
deviation of a certain parameter on the response of a system regarding a nominal situation and to rank the 
parameters of a system from the most to the least sensitive with respect to the output signal. The present 
paper extends the sensitivity analysis approach on time-variable parameters (parametric functions) and 
develops as a case study the transition regime of the cardiovascular system (CVS) in exercise scenario. 
The proposed extension is used to identify the proper variations of three parameter functions determined 
by the exercise level. The final results show that the performances of the CVS model are improved by 
following a three step correction method. 
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

1. INTRODUCTION 

There are many changes in a human body when subjecting it 
to physical effort. These changes can involve different 
regulatory mechanisms. A major role in adapting the human 
body to physical exercise conditions is played by the CVS. 

The behavior of the CVS in the case of physical exercise is 
described in different papers using mathematical models of 
closed loop systems with the intensity of the exercise as the 
reference signal (Ursino and Magosso, 2002; Ursino and 
Magosso, 2006; Abbass et al., 2012; Batzel et al., 2007; 
Kappel and Peer, 1993). The complexity of these models 
depends on the detail level of the CVS structure and of the 
physiological mechanisms that act in and between the CVS 
and the nervous control system.  

In particular, the mathematical model proposed in (Ursino 
and Magosso, 2002; Ursino and Magosso, 2006) consists of 
13 subsystems describing the heart, the systemic and the 
pulmonary circulations of the CVS and a complex control 
system including the metabolic regulation, baroreflex 
mechanism and ventilation response. Due to its complexity, 
this model is only of qualitative importance. The model used 
in (Abbass et al., 2012) does not take into account the above 
subsystems of CVS and provides only correlation equations 
between heart rate and arterial blood pressure. The control 
loop is based on describing the brain activity in response to 
physical workload. The influences of the respiratory system 
and thermoregulation are also included. Thus, the regulatory 
mechanisms are detailed, but only two signals of the CVS are 
provided.  

In order to improve its performance, the model used in this 
paper, is the lumped parameters model presented in (Batzel et 
al., 2007; Timischl, 1998). Compared with the previous 
mentioned CVS models, this one provides: the blood 

pressures of the arterial/venous pulmonary and systemic 
compartments, the systemic resistance and the heart rate as 
state variables. The local metabolic regulation process is 
included in the model equations and the nervous control 
signal, based on the baroreflex mechanism, is synthesized 
using control theory instruments. Therefore, this model 
allows the analysis of the effect of physical exercise on the 
main characteristic signals of the CVS, but maintains an 
average degree of complexity. The restricted level of detail 
regarding the control mechanisms is partially compensated by 
the three parameters that take different values in the rest and 
exercise regimes: TM  (metabolic rate), peskA  (Peskin 

constant) and pR  (pulmonary resistance). Although the 

steady state values for these parameters can be found using 
estimation methods, their transient variations are unknown. 

The purpose of this paper is to determine these parameters as 
functions of time, called parametric functions, suitable in 
describing the change from rest to exercise state. For this, a 
three step method based on the sensitivity theory is proposed.  

The sensitivity theory is usually used to determine the effect 
of the deviation of one or more parameters on the behavior of 
a system with respect to a nominal regime. For the model 
used in this paper, a sensitivity analysis is performed to 
determine which parameter has the major influence over the 
measurable signals of the CVS (Kappel and Batzel, 2006). 
Subsequently, the generalized sensitivity function is used for 
parameter ranking and selection (Banks et al., 2010). In the 
present paper the sensitivity analysis is used to determine the 
parameters influence, in this particular pattern of dynamic 
system response. Usually, the modelling of physiological 
systems is based on the grey-box methods, including two 
stages: mathematical description of the physiological 
phenomena and parameter identification using data 
measurements. Therefore, the sensitivity analysis becomes a 



78                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

tool in the evaluation and improvement of the physiological 
models (Batzel et al., 2009). 

The next section presents the methodology used in the study. 
The class of dynamic systems with regime changing input 
signal and the sensitivity functions with respect to the 
parametric functions are introduced. Sections 3 and 4 are 
focused on applying the methodology on the CVS with 
baroreflex control loop in rest-exercise regime. Step, 
exponential and sigmoid type candidate variations for the 
three parametric functions are used. Based on these candidate 
variations, in section 5, the effects of the parametric function 
deviations on the system response of two measurable signals 
are evaluated. The proposed correction method of parametric 
functions is used and validated based on the improvement of 
the system response. 

2. METHODOLOGY  

Let  

0)0(),,,,(
~

)( xxrppxFtx f    (1) 

be a dynamical nonlinear lumped parameter system with 
t ,  - time horizon, nx  , state variable, 

fpn

fp   time variable parameters, restricted by r , pnp   

constant parameters, r , input variable designed for 
changing the operating regime. 

Regarding model (1), the following assumption is made:  

Model (1) expresses the dependences of a physical system. 
The model’s behavior with respect to a step variation )(tr  

reveals the transition between two steady-state operating 
regimes. This model is characterized by a set of constant 
parameters p  (for the entire temporal horizon) and a set of 

variable parameters fp  that take different values in the 

steady state regimes, installed before and after the change of 
r. The unknown time variable functions )(tp f , called further 

parametric functions, are generated by the system depending 
on )(tr . The dependences are included in the model (1). 

The present study analyses the possibility of finding 
appropriate approximations for )(tp f  based on some state 

variable measurements for system (5) and using the 
sensitivity theory.  

The sensitivity theory of the dynamic systems develops 
models that generate sensitivity functions which can be used 
in estimating the effect with respect to the parameters 
deviations on the output signals (Frank, 1976). Consider the 
state signal )(tx  of (1) and the sensitivity function )(

0, tS px  

regarding parameter p , computed for a nominal value 0p . 

The response of (1) for ppp  0 , p  being a constant 

deviation, can be approximated to: 

ptStxtx px  )()()(
0,0 , constp  , (2) 

where )(0 tx  is the solution of (1) when 0pp  .  

In this paper the sensitivity theory is extended to the 
parametric functions )(tp f  as follows: Considering the 

nominal parametric functions )(0 tp f , additional deviations 

)(tp f  cause a modification of the state trajectory )(0 tx  that 

can be approximated using specific sensitivity functions 
defined with respect to )(tp f  and computed for )(0 tp f . 

Hence, for )()()( 0 tptptp fff  , )(tx  can be 

approximated by:  

)()()()(
)(0,0 tptStxtx fpx tf

  (3) 

Further, the sensitivity functions )(
)(0

, tS
tfpx  will be used to 

obtain the parametric functions )(tp f , 3fn , of a CVS 

model with baroreflex loop. The model reproduces a constant 
effort scenario. This will be determined by using the 
sensitivity functions for evaluating the effect of some 
deviations regarding the parametric functions from nominal 
synchronous step parametric functions on two measurable 
signals of the system.  

3. THE MATHEMATICAL MODEL OF CLOSED LOOP 
SYSTEM FOR THE REST-EXERCISE REGIME 

The exercise scenario, used in this study, consists in 
subjecting the CVS in rest regime, at a moment exert , to a 

constant effort, via a step variation of the workload 
W (exercise input): 
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Here rest  is the rest regime temporal horizon and exer  is the 
exercise regime temporal horizon. 

The mathematical model of the CVS used for this scenario, 
together with the modelling hypotheses and structural 
assessments (detailed in (Batzel et al., 2007)) is the 9th order 
continuous-time nonlinear system: 

restxtxuWpxFtx  )(),,,,()( 0
 , exerrestt  . (5) 

where  Tsrrllapvsas HRSSpppx ,,,,,,,,   is the state vector 

of the system, p  is the parameter vector:  

T
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 . 

)(tu  represents the control signal of the CVS, provided by 

the baroreflex mechanism, leading the system from the 
stationary rest regime ( restx ) to the stationary exercise regime 

( exerx ). The components of the vector operator F are 
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The last state equation of (5) is )()( tutH  . Consequently, 

the control signal )(tu  imposes the variation of the heart rate 

during physical exercise and is responsible for the proper 
transition of the heart rate from the rest regime to the exercise 
regime. According to (Batzel et al., 2007), the shape of the 
control signal is: 

))(()( exer

u xtxKtu  , exertt  . 
exerx  represents the stationary level of x  in the exercise 

regime. uK  is the control gain, obtained as the solution of a 

linear quadratic optimization criterion, using the cost function 
(6). 

dttuptpqxuJ exer

asasas

rest 

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0

222 ))())(((),(  (6) 

The cost functional ),( J  penalizes the deviation of the 

arterial systemic pressure from the steady exercise value and 
the intensity of the control )(tu  and synthesizes the 

baroreflex mechanism. 

Since for the stationary rest regime 0)( tu , the control 

signal becomes: 
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Thus, the closed loop model used in this study is (5) 
complemented with (7). Obviously, the parameter vector is 
supplemented with the weighting factor asq  used in the linear 

quadratic optimization problem. 

Under input W  the values of three components from p : TM  

(metabolic rate), peskA  (Peskin constant) and pR  (pulmonary 

resistance), know substantial changes (Batzel et al., 2007). 
The first 2 parameters appear in the 8th state equation of (5) 
that describes the metabolic local regulation of blood vessels 
in active muscles. The chemical process that takes place in 
the active muscles, resulting in a decrease of the systemic 
resistance sR  during exercise, depends on the value of the 

metabolic rate TM . According to (Batzel et al., 2007), 

regarding the metabolic rate the empirical dependence 
exer

MT WMM  0  is adopted. 0M  is the metabolic rate in 

the rest regime and M  is a positive constant. Literature 

states that the coefficient peskA  is variable, without an 

agreement on how it changes. The pulmonary resistance pR  

decreases during exercise, following the increase of the lung 
blood volume (Flamm et al., 1990). In this way the blood 
pressures of the pulmonary region are maintained at normal 
limits.  

Based on the above considerations, TM , peskA  and pR  are 

further considered as parametric functions )(tp f  correlated, 

through exert , with the effort )(tW  and having the general 

shape: 
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Specifically, )(tp f  can be a step function as in (Batzel et al., 

2007) and (Kappel and Peer, 1993), included in (1): 
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or an exponential function as in (Timischl, 1998): 
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Also, it is important to consider that parametric functions of 
the sigmoid type, are frequently used in describing transient 
processes in biological systems, i.e.:  
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Finally, by substituting (7) in (5), and considering (9)-(11), 
for the CVS with the baroreflex feedback loop, a model of 
type (1) is obtained: 

),,,(
~

)( WppxFtx f , restxtx )( 0 , exerrestt  . (12) 

Here: W represents the input variable r  in (1),  
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is the constant parameter vector, and T

Tpeskpf MARp ],,[  
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represents the parametric function vector. The result (12) will 
be used further for computing the sensitivity models with 
respect to the parametric functions in order to approximate 
them.  

4. SENSITIVITY FUNCTION GENERATOR 

Let )(tp
if

 be one of the parametric function vector fp  of 

(12). Then, the sensitivity generator of the state vector x with 
respect to )(tp

if
 is: 
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)(0 tp f  is the vector of nominal parametric functions )(tp f  

and )),(,,( 0)(, 0,

WtpptS ftpx
if

 is the sensitivity function of x  

with respect to )(tp
if

. According to (3) the effect of a 

deviation )(tp
if

  from the nominal variation )(0, tp
if

 on the 

state )(tx  can be approximated as: 

)()),(,,()()( 00)(,0 tpWtpptStxtx
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)(0 tx  is the solution of (12) in the nominal regime (12)o.  

Due to the uncertainties on the temporal variation of fp , the 

deviation )()),(,,( 00)(, tpWtpptS
iif

fftpx   is hard to evaluate 

and manipulate. This step down can be overcome by splitting 
the evaluation problem of the deviation effect in two 
problems corresponding to the rest regime, and the exercise 
regime. Consequently, the system (12) can be seen as a 
switching-regime system (Fig. 1) for witch )(tW  given by 

(4) is the switching signal. 

For restt  , )(tW  imposes the rest regime characterized by:  
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For the parametric functions of the switching-regime system 
the nominal step variation (17) is considered. 

)]()([)]()([)( 00 fexer

exer

fexer

rest

ff ttUttUpttUttUptp    (17) 

where  

Trest

pesk

rest

p

rest

f MARp ],,[ 0 , 
Texer

M

exer

pesk

exer

p

exer

f WMARp ],,[ 0   

and )(tU  is the unit step input.  

 
Fig. 1. The representation of the close loop model as 
switching-regime system. 

Consequently, the sensitivity generator (13) can be 
represented also as a switching-regime sensitivity generator 
(Fig. 2).  

 

Fig. 2. Structure of the sensitivity generator. 

The rest sensitivity generator equations restG
~

 are obtained 
using (18):  

  



rest

i

i
rest

ifi
rest

if

G

f

rest
rest

fpx

rest
rest

f

rest

px p

F
pptS

x

F
pptS

~

)15(

0,

)15(

0,

00

~
)0,,,(

~
)0,,,(








 , 

0)0,,,( 00,
rest

f

rest

px i
rest

if

pptS , restt  , (18) 

The exercise sensitivity equations exerG
~

 are obtained using 
(19):  
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In the top of Fig. 2, instead of (12), the nominal closed loop 
models (15), for the rest regime, respectively (16), for 
exercise regime, are used. The exercise input W  has the role 
of switching regime signal, but it also resets the sensitivity 
generator at exertt  . 

5. RESULTS AND SIMULATION 

5.1 Parameter assignment of nominal models. The candidate 
parametric functions 

The parameters of the nominal models (15) and (16) have the 
values shown in the table from the Appendix. The values 
marked with (*) have been taken from (Batzel et al., 2007; 
Kappel and Peer, 1993). The values of the other parameters 
have been estimated based on the arterial systemic pressure 

)(tpas  and heart rate )(tH  measured samples from (Kappel 

and Peer, 1993) and the methodology described in (Batzel et 
al., 2007). Using these parameters and considering for H the 
steady state values 11.67restH  beats/min and 08.95exerH  

beats/min, all steady rest states restx  and exercise states exerx     
values have been computed. The simulation results of the 
nominal closed loop model, together with the measured 
variations for )(tpas  and )(tH  are shown in comparison in 

Fig. 3. The transient simulated response of )(tH  is adequate, 

but the simulated variation of )(tpas  has greater values than 

the measured samples.  
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Fig. 3. The variations of )(tpas  and )(tH  on the rest interval 
]7.9,0[ rest

min and exercise interval 
]67.19,7.9[exer

min ( 7.9exert min). 

Three types of candidate parametric functions )(tp f  are 

considered: the step variation (9), adopted as nominal 
variation, the exponential variation (10), with 30T  sec, 
and the sigmoid variation (11) with 0.0693a  sec-1 and 

30b  sec (Fig. 4). As mentioned, the parametric functions 
and their parameters were chosen to model the transition 
from the steady rest regime to the steady exercise regime, 
taking into account the system response time.  
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Fig. 4. The candidate parametric functions variations. 

5.2 The effect of the of the candidate parametric functions on 
the )(tH and )(tpas  

The following sensitivity analysis looks toward the exercise 
regime when the transient response occurs. For this purpose, 
the sensitivity exercise generators (19) of )(tpas  and )(tH  

with respect to pR , peskA  and TM  corresponding to the 

nominal values )( f

exer

f tp  have been computed. With their 

help the effects of a candidate parametric function over 
)(tpas  and )(tH  can be estimated using (14) as: 
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where )(tpexer

fi
  is the deviation of the chosen candidate 

function from the nominal parametric function. Using (20) 
the effects illustrated in Fig. 5 were obtained. 

The main observations provided by Fig. 5 are: 

i) For both types of deviations )(tpexer

fi
  the effect on 

)(tpas  is more intense than the effect on )(tH . The 

deviations )(tRexer

p  and )(tM exer

T
  can cause alterations 

up to 16.44 mmHg in )(tpas  (Fig. 5a). This can be 

considered a large deviation since during the transient 
regime ]05.110,56.87[)( tpas mmHg. Instead, the 

maximum deviation in )(tH , of 8.67 beats/min, is small 

comparatively to range ]105,11.67[)( tH beats/min 

of the transient regime (Fig. 5b). 

ii) )(tAexer

pesk
  has the least influence on )(tpas  and 

)(tH , both for exponential and sigmoid parametric 

function deviations. Indeed, in the case of )(tpas  the 

hierarchy of effects of the deviations is: 
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effect of )(tRexer

p  effect of )(tM exer

T  effect of ( )exer

peskA t , 

and for )(tH : 

effect of )(tM exer

T  effect of )(tRexer

p  effect of ( )exer

peskA t . 

However, it is observed that the effects of )(tRexer

p  and 

)(tM exer

T  are of opposite sign. 

iii) The effect of )(, tpexer

Sfi
  is almost double than the 

effect of )(, tpexer

Efi
 . 
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Fig. 5. The variations 
)(

)(,
tp

tpas exer

if


 -a- and 

)(
)(

tH
tp exer

if


-b- as 

effect of the variations 
)(, tp exer

Ef i


 and 
)(, tp exer

Sf i


 due to the 
modification of the candidate functions. 

These observations can be noted also in the variations of 
)(tpas  and )(tH  obtained by using (14) independently for 

every parametric function deviation. E.g., Fig. 6 presents the 
effect in )(tpas  and )(tH  of )(, tR exer

Ep , )(, tRexer

Sp . The strong 

effect of )(tRexer

p  over )(tpas , consisting in the decrease of 

)(tpas  below the rest steady value, can be observed. The 

effect of )(tRexer

p  on )(tH  is moderate. 

9.5 10 10.5 11 11.5 12 12.5
80

90

100

110

120

p a
s(R

p
) 

vs
 p

a
s(R

p
0

)

t[min]

9.5 10 10.5 11 11.5 12 12.5
60

70

80

90

100

110

t[min]

H
(R

p
) 

vs
 H

(R
p

0
)

 

 

Step
Exponential
Sigmoid

 

Fig. 6. The variations 0,asp
 versus asp  and 0H  versus H  

for 
)(, tR exer

Ep
 and 

)(, tR exer

Sp
. 

Fig. 7 shows the weak effect of )(, tAexer

Epesk  and )(, tAexer

Spesk  

over )(tpas  and )(tH . Therefore, it implies that for )(tApesk  

it is sufficient to consider the nominal step variation (9). 
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Fig. 7. The variations 0,asp
 versus asp  and 0H versus H for 

)(, tAexer

Epesk
 and 

)(, tAexer

Spesk
. 

Fig. 8 demonstrates that the effect of )(tM exer

T  is opposite to 

the effect of )(tRexer

p  over )(tpas  and )(tH . It can be seen 

also that the effect of )(tM exer

T  over )(tH  is greater than 

that of )(tRexer

p . 
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Fig. 8. The variations 0,asp
 versus asp  and 0H  versus H  

for 
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 and 
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Using the results obtained so far, more accurate models for 
the three parametric functions )(tRp , )(tApesk  and )(tM T  are 

developed in the next section. 

5.3 Nominal parametric functions improving 

To improve the parametric functions the following three step 
correction method is applied: 

i) Determination of the temporal intervals for which the 
adjustment of the state variables simulated variations is 
desired, in order to fit the measurable samples; 

By comparing the simulated variations of )(tpas  and )(tH  

with the measurable samples (Fig.3), it can be stated that 
)(tH  is satisfactory approximated by using the nominal 

parametric functions. )(tpas  has between ]12,5.10[ min an 

overshoot of about 5 mmHg that it is not found in the 
measurements.  

ii) The deviations )(tpexer

f i
  necessary to make the 

adjustments identified in the previous step are chosen; 

It is already stated that the deviation of )(tApesk  from the 

nominal step variation has little effect over  )(tpas  and 

)(tH . So, it remains to determine the proper deviations for 

)(tRp  and )(tM T . The previous analysis is synthesized in 

Fig. 9 and Fig. 10.  

Figure 9 shows that using a sigmoid deviation )(, tRexer

Sp  and 

an exponential deviation )(, tM exer

ET  the desired effect on 

)(tpas  can be obtained for ]4.11,5.10[t min. The result is 

the best for the candidate parametric functions taken into 
account. However, it does not completely solve the problem. 
Indeed, the cumulative effect of the mentioned deviations 
determines also a decrease of )(tpas  for ]5.10,7.9[t min 

and is negligible for ]12,4.11[t min. 

 

Fig. 9. The effect of 
)(tR exer

p
 and )(tM exer

T  on )(tpas . 

 

Fig. 10. The effect of 
)(tR exer

p
and )(tM exer

T  on )(tH . 

Note that Fig. 10 shows that the chosen deviations for )(tRp  

and )(tM T  do not have a significant effect on )(tH . 

iii) The nominal parametric functions exer

f

exer

f ii
ptp )(0  are 

corrected using the deviations )(tpexer

f i
  chosen at ii) 

with: 

)()( tpptp exer

f

exer

f

exer

f iii
 , exert  . (21) 

The final shapes of parametric functions are obtained using 
(21) for )(tRp  and )(tM T , respectively retaining the form (9) 

for )(tApesk .  

They are given in equations (22) and should be attached to 
the model (5): 
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The variations of the parametric functions (22) are presented 
in Fig.11. 
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Fig. 11. The final parametric functions 
)(, tR Sp , 

)(, tA Tpesk  

and 
)(, tM ET . 
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Figure 12 shows the simulated variations of )(tpas  and 

)(tH , using the corrected parametric functions )(, tR Sp , 

)(, tA Tpesk  and )(, tM ET . 
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Fig. 12. The variations of )(tpas  and )(tH  for 
)(, tR Sp , 

)(, tA Tpesk  and 
)(, tM ET . 

To evaluate the improvement of the close loop system 
response when the three corrected parametric functions (22) 
are used, the average absolute deviation for )(tpas  and )(tH  

was computed on exer . The results are inserted in Table 1.  

It is noted that the use of corrected parametric functions 
brings an improvement of about 8% in the average absolute 
deviation of )(tpas . However, the average deviation of )(tH  

increases with 0.77%, but this effect can be considered 
negligible. 

Table 1. The average absolute deviations: 





N

i

simmas

med ixix
N

x
1

)()(
1

 

Parametric functions 
medasp ,  

[mmHg] 
medH  

[beats/min] )(tRp  )(tApesk  )(tMT  

)(, tR Tp  )(, tA Tpesk  )(, tM TT  4.3010 2.4556 

)(, tR Ep  )(, tA Epesk  )(, tM ET  4.3599 2.8104 

)(, tR Sp  )(, tA Spesk  )(, tM ST  4.6091 3.3526 

)(, tR Sp  )(, tA Tpesk  )(, tM ET  3.9581 2.4745 

6. CONCLUSION 

The model of the CVS can be improved by introducing the 
concept of parametric function as an attribute of the time-
variant systems. The step-type parametric functions, currently 
considered, could be corrected by the development of 
sensitivity generators through extension of the sensitivity 
theory with respect to dynamic systems. In this paper the 
theoretical approach is explained via a case-study that 
considers three parameters of the CVS. For these parameters, 
by following a three step method, and using parametric 
functions composed from step- exponential- and sigmoidal 
functions, temporal restrictions are synthesized. The result 

was evaluated and proved to be satisfactory for the case 
study. 

The method proposed can be used to improve the transient 
response of the CVS with baroreflex loop without adding 
new equations or parameters. Once the parametric functions 
have been chosen, they are integrated in the CVS model as 
nominal parametric functions. Thus, the degree of complexity 
of the model and the control loop is maintained allowing an 
easy analysis of its properties.  

Based on this method, searching algorithms of the 
appropriate parametric functions of the CVS can be designed. 
Their variations can provide useful information for local 
physiological processes that take place in the exercise 
scenario. 
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Appendix PARAMETERS FOR THE NOMINAL MODELS 
OF THE CLOSED LOOP MODEL 

Parameter Value Unit 

asc (*) 0.001 [l mmHg-1]  

vsc (*) 0.5 [l mmHg-1]  

apc (*) 0.003 [l mmHg-1]  

vpc (*) 0.1 [l mmHg-1]  

lc (*) 0.02 [l mmHg-1]  

rc (*) 0.05 [l mmHg-1]  

totV (*) 6.1 [l]  

lR (*) 18 [mmHg sec l-1] 

rR (*) 7 [mmHg sec l-1] 

Bk (*) 0.4 [sec1/2]  

2aOC (*) 0.1977 [1]  

K  3.98196 [1] 

M
(*) 1.83e-004 [l sec-1 Watt-1] 

l  0.000650 [l sec-2] 

r  0.002459 [l sec-2] 

l  0.011746 [mmHg sec-1] 

r  0.016849 [mmHg sec-1] 

l  0.022404 [l sec-1] 

r  0.0120671 [l sec-1] 

asq  0.001731 [1 sec-2mmHg] 
rest

peskA  6485.402 [mmHg sec l-1] 
exer

peskA  5478.241 [mmHg sec l-1] 
rest

pR  176.849 [mmHg sec l-1] 
exer

pR  14.3924 [mmHg sec l-1] 

0M  0.0058 [l sec-1] 

 


