CEAI, Vol.18, No.2 pp. 77-85, 2016

Printed in Romania

A Sensitivity Based Improvement Method of a Cardiovascular Model in Exercise
Scenario

A.M. Dan, T.L. Dragomir

Automation and Applied Informatics Department, Politehnica University of Timisoara, Bvd. V. Parvan, 300223, Timisoara,
Romania (e-mail: ana.dan@upt.ro, toma.dragomir@upt.ro)

Abstract: The sensitivity analysis is usually used for two purposes: to determine the effect of the
deviation of a certain parameter on the response of a system regarding a nominal situation and to rank the
parameters of a system from the most to the least sensitive with respect to the output signal. The present
paper extends the sensitivity analysis approach on time-variable parameters (parametric functions) and
develops as a case study the transition regime of the cardiovascular system (CVS) in exercise scenario.
The proposed extension is used to identify the proper variations of three parameter functions determined
by the exercise level. The final results show that the performances of the CVS model are improved by

following a three step correction method.
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1. INTRODUCTION

There are many changes in a human body when subjecting it
to physical effort. These changes can involve different
regulatory mechanisms. A major role in adapting the human
body to physical exercise conditions is played by the CVS.

The behavior of the CVS in the case of physical exercise is
described in different papers using mathematical models of
closed loop systems with the intensity of the exercise as the
reference signal (Ursino and Magosso, 2002; Ursino and
Magosso, 2006; Abbass et al., 2012; Batzel et al., 2007;
Kappel and Peer, 1993). The complexity of these models
depends on the detail level of the CVS structure and of the
physiological mechanisms that act in and between the CVS
and the nervous control system.

In particular, the mathematical model proposed in (Ursino
and Magosso, 2002; Ursino and Magosso, 2006) consists of
13 subsystems describing the heart, the systemic and the
pulmonary circulations of the CVS and a complex control
system including the metabolic regulation, baroreflex
mechanism and ventilation response. Due to its complexity,
this model is only of qualitative importance. The model used
in (Abbass et al., 2012) does not take into account the above
subsystems of CVS and provides only correlation equations
between heart rate and arterial blood pressure. The control
loop is based on describing the brain activity in response to
physical workload. The influences of the respiratory system
and thermoregulation are also included. Thus, the regulatory
mechanisms are detailed, but only two signals of the CVS are
provided.

In order to improve its performance, the model used in this
paper, is the lumped parameters model presented in (Batzel et
al., 2007; Timischl, 1998). Compared with the previous
mentioned CVS models, this one provides: the blood

pressures of the arterial/venous pulmonary and systemic
compartments, the systemic resistance and the heart rate as
state variables. The local metabolic regulation process is
included in the model equations and the nervous control
signal, based on the baroreflex mechanism, is synthesized
using control theory instruments. Therefore, this model
allows the analysis of the effect of physical exercise on the
main characteristic signals of the CVS, but maintains an
average degree of complexity. The restricted level of detail
regarding the control mechanisms is partially compensated by
the three parameters that take different values in the rest and
exercise regimes: M, (metabolic rate), A, (Peskin

constant) and R, (pulmonary resistance). Although the

steady state values for these parameters can be found using
estimation methods, their transient variations are unknown.

The purpose of this paper is to determine these parameters as
functions of time, called parametric functions, suitable in
describing the change from rest to exercise state. For this, a
three step method based on the sensitivity theory is proposed.

The sensitivity theory is usually used to determine the effect
of the deviation of one or more parameters on the behavior of
a system with respect to a nominal regime. For the model
used in this paper, a sensitivity analysis is performed to
determine which parameter has the major influence over the
measurable signals of the CVS (Kappel and Batzel, 2006).
Subsequently, the generalized sensitivity function is used for
parameter ranking and selection (Banks et al., 2010). In the
present paper the sensitivity analysis is used to determine the
parameters influence, in this particular pattern of dynamic
system response. Usually, the modelling of physiological
systems is based on the grey-box methods, including two
stages: mathematical description of the physiological
phenomena and parameter identification using data
measurements. Therefore, the sensitivity analysis becomes a
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tool in the evaluation and improvement of the physiological
models (Batzel et al., 2009).

The next section presents the methodology used in the study.
The class of dynamic systems with regime changing input
signal and the sensitivity functions with respect to the
parametric functions are introduced. Sections 3 and 4 are
focused on applying the methodology on the CVS with
baroreflex control loop in rest-exercise regime. Step,
exponential and sigmoid type candidate variations for the
three parametric functions are used. Based on these candidate
variations, in section 5, the effects of the parametric function
deviations on the system response of two measurable signals
are evaluated. The proposed correction method of parametric
functions is used and validated based on the improvement of
the system response.

2. METHODOLOGY
Let

XO=F,p,pr), x(0)=x, (1)
be a dynamical nonlinear lumped parameter system with
te3cR, T- time horizon, xe@R", state variable,
p, e R™ time variable parameters, restricted by r, pe®R"

constant parameters, re‘R, input variable designed for
changing the operating regime.

Regarding model (1), the following assumption is made:

Model (1) expresses the dependences of a physical system.
The model’s behavior with respect to a step variation r(t)

reveals the transition between two steady-state operating
regimes. This model is characterized by a set of constant
parameters p (for the entire temporal horizon) and a set of

variable parameters p, that take different values in the

steady state regimes, installed before and after the change of
r. The unknown time variable functions p, (t) , called further

parametric functions, are generated by the system depending
onr(t) . The dependences are included in the model (1).

The present study analyses the possibility of finding
appropriate approximations for p,(t) based on some state
variable measurements for system (5) and using the
sensitivity theory.

The sensitivity theory of the dynamic systems develops
models that generate sensitivity functions which can be used
in estimating the effect with respect to the parameters
deviations on the output signals (Frank, 1976). Consider the
state signal x(t) of (1) and the sensitivity function S,  (t)
regarding parameter p, computed for a nominal value p, .
The response of (1) for p=p,+Ap, Ap being a constant
deviation, can be approximated to:

X(t) = x,(t)+S, , ()Ap, Ap =const, 2

where x,(t) is the solution of (1) when p=p,.

In this paper the sensitivity theory is extended to the
parametric functions p,(t) as follows: Considering the

nominal parametric functions p,,(t), additional deviations
Ap;, (t) cause a modification of the state trajectory x,(t) that

can be approximated using specific sensitivity functions
defined with respect to p,(t) and computed for p,,(t).

Hence, for p,(t)=p,(t)+Ap,(t), x(t) can be
approximated by:
X(t) = X%,(1)+S,,  (D)Ap, (t) (3)

Further, the sensitivity functions Sep () will be used to

obtain the parametric functions p,(t), n, =3, of a CVS

model with baroreflex loop. The model reproduces a constant
effort scenario. This will be determined by using the
sensitivity functions for evaluating the effect of some
deviations regarding the parametric functions from nominal
synchronous step parametric functions on two measurable
signals of the system.

3. THE MATHEMATICAL MODEL OF CLOSED LOOP
SYSTEM FOR THE REST-EXERCISE REGIME

The exercise scenario, used in this study, consists in
subjecting the CVS in rest regime, at a moment t__, to a
constant effort, via a step variation of the workload
W (exercise input):

e~ rest
N

O t € [to ’texer) =

W (t) = . 4
( ) { - t € [texer ’tf ] = Sexer ( )

Here 3™ is the rest regime temporal horizon and 3 is the
exercise regime temporal horizon.

The mathematical model of the CVS used for this scenario,
together with the modelling hypotheses and structural
assessments (detailed in (Batzel et al., 2007)) is the 9th order
continuous-time nonlinear system:

X(t) = F(x, p,W,u), x(t,)=x"",teI™UI™. (5)

where x = [pas, P Poyr S1.0,,S,,0,, R, H ]T is the state vector
of the system, p is the parameter vector:

P60 G GGG GV R R K Co KM gt 471,04, 8.7 R AT -
u(t) represents the control signal of the CVS, provided by
the baroreflex mechanism, leading the system from the
stationary rest regime (x™') to the stationary exercise regime
(x*"). The components of the vector operator F are

P.(t) = p,. (1)
R.(t)

_1(p.®-p.®)
- L2080 g)

F(t) = Ci[Q. (-
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FM)=0)

Fs(t) = _alsl ® ~ 70, t+ ﬁl H(t)

R =0,0

F.(t)=-aS {t)-y0.)+BH({)
e t) - p,(t)

F t p k C pas( 'S M _
(t) = n ( © R @ T
The rest of variables have the meaning:

CI pvp(pas’ pvs’ pap)al(H)Sl
a,(H)p,, +k (H)S,

¢.p.a (H)S,

a,(H)p,, +k.(H)S,

_(H)

k(H)=¢

1 1
t, :td(H):_ll_l_ka
H2\H?

P (P (1), P (0), P, (1)) =

P () — P, (1)
K

Ql(t): H

Q()=H

,a,(H)=1-k (H), with e {l,r}

-C pas (t) Cvs pvs (t) Cap pap (t)
C

vp
The last state equation of (5) is H'(t) = u(t) . Consequently,
the control signal u(t) imposes the variation of the heart rate

during physical exercise and is responsible for the proper
transition of the heart rate from the rest regime to the exercise
regime. According to (Batzel et al., 2007), the shape of the
control signal is:

u(t) = K, (x(t) - x*) t>t

‘exer

X" represents the stationary level of x in the exercise
regime. K, is the control gain, obtained as the solution of a
linear quadratic optimization criterion, using the cost function

(6).
J(u,x"™) = j(q (P (1) = p2)* +u(t)*)dt (6)

The cost functional J(,-) penalizes the deviation of the

arterial systemic pressure from the steady exercise value and
the intensity of the control u(t) and synthesizes the

baroreflex mechanism.

Since for the stationary rest regime u(t)=0, the control
signal becomes:

07 t C"I’ES[
u(t) = K, (x(t) - x*), K, = = 7
constz0, te 3%

Thus, the closed loop model used in this study is (5)
complemented with (7). Obviously, the parameter vector is
supplemented with the weighting factor g, used in the linear

quadratic optimization problem.

Under input W the values of three components from p: M,
(metabolic rate), A, (Peskin constant) and R, (pulmonary

resistance), know substantial changes (Batzel et al., 2007).
The first 2 parameters appear in the 8" state equation of (5)
that describes the metabolic local regulation of blood vessels
in active muscles. The chemical process that takes place in
the active muscles, resulting in a decrease of the systemic
resistance R, during exercise, depends on the value of the

metabolic rate M, . According to (Batzel et al., 2007),

regarding the metabolic rate the empirical dependence
M, =M, + p, W is adopted. M, is the metabolic rate in

the rest regime and p,, is a positive constant. Literature

states that the coefficient A is variable, without an

pesk
agreement on how it changes. The pulmonary resistance R,

decreases during exercise, following the increase of the lung
blood volume (Flamm et al., 1990). In this way the blood
pressures of the pulmonary region are maintained at normal
limits.

Based on the above considerations, M., A and R  are

pesk

further considered as parametric functions p,(t) correlated,

through t . , with the effort W(t) and having the general
shape:
pf (t) — p;est, t E ~TESI
p, (M e(p™ p™ ] telt, 1) (®)
p,(®)=p7, t=t

Specifically, p,(t) can be a step function as in (Batzel et al.,
2007) and (Kappel and Peer, 1993), included in (1):

(t) _ p;es!, t e <~rest (9)
pf,T - p(:xer’ te Sexer !
or an exponential function as in (Timischl, 1998):
p;ES[’ t e SI’ES[
P e ®= . " (10)
res + ( pexer res )(1 e T ) t G Sexer

Also, it is important to consider that parametric functions of
the sigmoid type, are frequently used in describing transient
processes in biological systems, i.e.:

orest

pre, ted
pf,s (t) = rest ( pexe" '951) t ~exer (11)
f 1+e —a(t—(tye b)) ~

Finally, by substituting (7) in (5), and considering (9)-(11),
for the CVS with the baroreflex feedback loop, a model of
type (1) is obtained:

X(t) F(X p pf ,W) X(t )_ Xrest te ofrest ﬁgexer (12)
Here: W represents the input variable r in (1),

p [Cas' Vs ap' vp'CI Cr' tot’R R kb Caq’K MO'pM’al’ﬁ’yl’ar'ﬂr'%”qas]T
is the constant parameter vector, and p, =[R,A . M. T
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represents the parametric function vector. The result (12) will
be used further for computing the sensitivity models with
respect to the parametric functions in order to approximate
them.

4. SENSITIVITY FUNCTION GENERATOR

Let p,(t) be one of the parametric function vector p, of

(12). Then, the sensitivity generator of the state vector x with
respectto p, (t) is:

| F oF
Sx’p"‘n(t) (tv P, pfo(t)lw) :g(wo Xy (t)( P, pfo(t) W)+ 5pf 0( )

@

G
(ty, P Pyo(t) W) =0, te 3™ U™ (13).

><p. o(t)
P, (t) is the vector of nominal parametric functions p; (t)
and Sx,p.,‘.,m(t’ P, P,, (t),W) is the sensitivity function of x
with respect to p, (t). According to (3) the effect of a
deviation Ap, (t) from the nominal variation p, ,(t) on the
state x(t) can be approximated as:
X(t) =X, (1) + S,  (t, Pos P10 (1), W)AD, (1) .

X, (t) is the solution of (12) in the nominal regime (12)°.

(14)

Due to the uncertainties on the temporal variation of p, , the
deviation Sx,p,‘m(t, Pyy P1o(1),W)Ap, (t) is hard to evaluate

and manipulate. This step down can be overcome by splitting
the evaluation problem of the deviation effect in two
problems corresponding to the rest regime, and the exercise
regime. Consequently, the system (12) can be seen as a
switching-regime system (Fig. 1) for witch W (t) given by
(4) is the switching signal.

For t e 3™, W(t) imposes the rest regime characterized by:

X(t) Frest(x p pI'ESt 0) , X(to) — XI’ESt , t c Srest , (15)

where F™ is F from (12) for K,=0, and
pr =[R™, A M. ]". For te3™, W(t) imposes the

exercise regime characterized by:

)’((t) F exer (X p pexer (t),W exer) , X(texer) — Xrest , t = Sexer , (16)

where F* is F from (12) for K,=#0, and

(1) =R, (1), A, .M, OT

vector for which

is the parametric functions

exer (t ) [Rexer Aexer

pesk !

M, + p, W T holds.

For the parametric functions of the switching-regime system
the nominal step variation (17) is considered.

Py () = U -t,) -Ut-t,. )]+ py Ut -t,,) -Ut-t,)]
where

(17

A rest

I'ESI rest
- [R pesk !

exer — REXEY A;XEY

esk !

M,I"
MO +pMWexer]T
and U(t) is the unit step input.

REST EQUATIONS
] Frest
w = X0 x(t)
EXERCISE EQUATIONS
1 f.:exer <
Fig. 1. The representation of the close loop model as
switching-regime system.
Consequently, the sensitivity generator (13) can be

represented also as a switching-regime sensitivity generator
(Fig. 2).

REST EQUATIONS
Frost

——m AN
—= T

x(t)

EXERCISE EQUATIONS
H-PXGI‘
[]

REST SENSITIVITY
EQUATIONS

Grest

Sx(t)

w L =su[[]
—t—_ | L

EXERCISE SENSITIVITY
EQUATIONS
éexer

|

Fig. 2. Structure of the sensitivity generator.

The rest sensitivity generator equations G™ are obtained
using (18):

3 rest rest aE o rest aF e
Sx,pfs- (t, Py pf 70) = x Sx,plf“ (t’ Pos pf 10)+ ap '

s’ i Tasye

é rest

Si (b P PE0) =0, te ™, (18)

The exercise sensitivity equations G* are obtained using
(19):
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exer | A fexel a—:\‘eXEf
Sx,p;‘w (t7 pO’ pf‘ 7W ")+ 1

(19°

exer

S.:?(::;Er (t, pO, p:xer,wexer) —

(6"

Gerer

Sexer (texer, po, p?er,w exer) — 0 , t c Sexer

X (19)
In the top of Fig. 2, instead of (12), the nominal closed loop
models (15), for the rest regime, respectively (16), for
exercise regime, are used. The exercise input W has the role
of switching regime signal, but it also resets the sensitivity
generator at t =t

exer *

5. RESULTS AND SIMULATION

5.1 Parameter assignment of nominal models. The candidate
parametric functions

The parameters of the nominal models (15) and (16) have the
values shown in the table from the Appendix. The values
marked with ® have been taken from (Batzel et al., 2007;
Kappel and Peer, 1993). The values of the other parameters
have been estimated based on the arterial systemic pressure
p.(t) and heart rate H(t) measured samples from (Kappel
and Peer, 1993) and the methodology described in (Batzel et
al., 2007). Using these parameters and considering for H the
steady state values H™ =67.11 beats/min and H®* =95.08
beats/min, all steady rest states x™' and exercise states x**
values have been computed. The simulation results of the
nominal closed loop model, together with the measured
variations for p_(t) and H(t) are shown in comparison in

Fig. 3. The transient simulated response of H(t) is adequate,
but the simulated variation of p,_ (t) has greater values than
the measured samples.

120

[N -
=
o -
o —
—
153
-
s
=
—
>
&
~
S

Fig. 3. The variations of P.. (1 and H{© on the rest interval

orest A A A
3™ =00, 9'7]m|n and exercise interval

3% =[9.7, 19.67] =97

min (texer min).

Three types of candidate parametric functions p,(t) are
considered: the step variation (9), adopted as nominal
variation, the exponential variation (10), with T =30 sec,
and the sigmoid variation (11) with a=0.0693 sec™ and

b =30 sec (Fig. 4). As mentioned, the parametric functions
and their parameters were chosen to model the transition
from the steady rest regime to the steady exercise regime,
taking into account the system response time.

iy S— ! ! \ !
a N, TS ~o I I = Step
= N Tso | | == Exponential
10 -4-——Hs.o———— [y it Tt - - -
= Sl ~o = = Sigmoid
I e ~d I
= T ~a
= | T ——— S Sma : |
0
= 95 10 105 11 115 12 125
tmin]
'S 6500, —-——a
s iipiai Ty N \ \ \
~.
e oo
T o-._,___::~___ | |
o IR I S o TP ' T
= I I I I I
Z5009 ‘ ‘ ‘ ‘ ‘
< 95 10 105 11 115 12 125
t[min]
1 1 1 1
= 0085 - T [—Trr e T T
o o T -7 | |
e [SEOT L S - 4= - ===
- o7 T I I I
o= - i it it rialaiataiul
95 10 105 1 115 12 125

Fig. 4. The candidate parametric functions variations.

5.2 The effect of the of the candidate parametric functions on
the H(t)and p,(t)

The following sensitivity analysis looks toward the exercise
regime when the transient response occurs. For this purpose,
the sensitivity exercise generators (19) of p_(t) and H(t)

with respect to R , A, and M, corresponding to the

‘pesk

nominal values p{*(t,) have been computed. With their

help the effects of a candidate parametric function over
p.(t) and H(t) can be estimated using (14) as:

MO =x(1) =%, =S (€ py, piy (O W)APFE (D), te 3™ ,(20)

where Ap{“(t) is the deviation of the chosen candidate

function from the nominal parametric function. Using (20)
the effects illustrated in Fig. 5 were obtained.

The main observations provided by Fig. 5 are:

i) For both types of deviations Ap{“(t) the effect on
p.(t) is more intense than the effect on H(t). The
deviations AR (t) and AM " (t) can cause alterations

up to 16.44 mmHg in p_(t) (Fig. 5a). This can be

considered a large deviation since during the transient
regime p, (t) €[87.56, 110.05]mmHg. Instead, the

maximum deviation in H(t), of 8.67 beats/min, is small
comparatively to range H(t) €[67.11, 105] beats/min
of the transient regime (Fig. 5b).

i) AA:f’(t) has the least influence on p_(t) and

H(t), both for exponential and sigmoid parametric
function deviations. Indeed, in the case of p_(t) the
hierarchy of effects of the deviations is:
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effect of ARJ (t) > effect of AM (t) >> effect of AATL (1),
and for H(t):

effect of AM™ (t) >effect of ART™ (t) >> effect of AATL (1) .

esk

However, it is observed that the effects of AR (t) and

AM (t) are of opposite sign.

iii) The effect of Ap7{(t) is almost double than the
effect of Ap7%(t).

2 T T T T T
= | | | | |
= o | | | | |
o U=y T, T e
g Laomewms="= ) - | |
g R | |
20 == | | | |
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= | —_—TTTN- | | |
20 _,.:f:-: - _.::‘“4---_ ‘ :
< O o= — e Bl - -
) | | | | |
s l l l l l
95 10 105 1 115 12 125
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20 T T T T T £ |
= P Lol L R | | | = =+Exponential
- | A e .
% 0—__‘:'1’1 T Jf:"‘;z-:-;.;ﬂ;,-— ‘ | == Sigmoid
= | | | | |
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Fig. 5. The variations ~ **"®"" -a-and ~ """ " -b-as
. ) A exer t A exer t
effect of the variations ~P 1€ ® and “Prs ® due to the

modification of the candidate functions.

These observations can be noted also in the variations of
p.(t) and H(t) obtained by using (14) independently for
every parametric function deviation. E.g., Fig. 6 presents the
effectin p,(t) and H(t) of ART (1), AR (t) . The strong
effect of AR (t) over p,(t), consisting in the decrease of
p.(t) below the rest steady value, can be observed. The

effect of AR™™ (t) on H(t) is moderate.

- | |
% ok - o - ] = ==Exponential | _|
| | | == Sigmoid
60 | | | 1
95 10 105 1 115 12 125

Fig. 6. The variations Peo versus Pe and Mo versus H

for AR;E (D) and ARy (t).

Fig. 7 shows the weak effect of AATL _(t) and AATY ()
over p,(t) and H(t). Therefore, it implies that for A, (t)
it is sufficient to consider the nominal step variation (9).

Pas(Rpesi) VS Pas(Apesko)

o - f- - - - - - _ L ___ ' ________ =+ Exponential | |
! ! ! 1| == Sigmoid
!

95 10 105 1 115 12 125

Fig. 7. The variations Pao versus P= and Hoversus H for
AA exer (t) AA exer

pesk,E and pesk,S (t) .

Fig. 8 demonstrates that the effect of AM (t) is opposite to
the effect of AR (t) over p,(t) and H(t). It can be seen
also that the effect of AM(t) over H(t) is greater than
that of AR (t).

S0 — = — m m e e— =~ — — — —|——— — = —— = — = — o= — = — —
=i N Tl
= d
S g - e T
2 |
B (e e et
= |
§ 74| S ) L | = = * Exponential |
| | | | | == Sigmoid
60 I | I | I
95 10 105 11 115 12 125

Fig. 8. The variations Po versus P and Hy versus H
fOI’ AMT,E (t) and AMT,S (t)
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Using the results obtained so far, more accurate models for
the three parametric functions R (t), A, (t) and M (t) are

developed in the next section.

esk

5.3 Nominal parametric functions improving

To improve the parametric functions the following three step
correction method is applied:

i) Determination of the temporal intervals for which the
adjustment of the state variables simulated variations is
desired, in order to fit the measurable samples;

By comparing the simulated variations of p, (t) and H(t)

with the measurable samples (Fig.3), it can be stated that
H(t) is satisfactory approximated by using the nominal

parametric functions. p,(t) has between [10.5, 12]min an

overshoot of about 5 mmHg that it is not found in the
measurements.

if) The deviations Ap{“(t) necessary to make the
adjustments identified in the previous step are chosen;

(t) from the
nominal step variation has little effect over p_(t) and
H(t) . So, it remains to determine the proper deviations for
R,(t) and M. (t). The previous analysis is synthesized in
Fig. 9 and Fig. 10.

It is already stated that the deviation of A

esk

Figure 9 shows that using a sigmoid deviation AR’ (t) and

an exponential deviation AM[Y (t) the desired effect on

P, (t) can be obtained for t €[10.5, 11.4]min. The result is

the best for the candidate parametric functions taken into
account. However, it does not completely solve the problem.
Indeed, the cumulative effect of the mentioned deviations

determines also a decrease of p,(t) for t[9.7, 10.5]min
and is negligible for t e[11.4, 12] min.

Effect 97 98 99 10

oot | | || ] ]|
ARs |

AMrg

104 105 106 107 108 11 111 112 113114 "7

LI L E L] e

0.1

87 | ||

ef01]
i | o
Desired Effect = 0 Desired Effect = 5mmHg |

Fig. 9. The effect of AR (1) gng AMTT(M) o P (D)

Effect 57 95 89 10 10.4 10,5 10.6 10.7 108 1 MA 12 13114 nr

s T Y Y O 1
dR:;‘:;r T ~ — H H o
AMTE' L oeo
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Fig. 10. The effect of AR (1) and AM (1) on H(t).

Note that Fig. 10 shows that the chosen deviations for R_(t)
and M. (t) do not have a significant effect on H(t).

iii) The nominal parametric functions p7t (t) = p{™ are
corrected using the deviations Ap7(t) chosen at ii)
with:

P (1) = Py + AT (1), te 3™ (21)

The final shapes of parametric functions are obtained using
(21) for R,(t) and M. (t), respectively retaining the form (9)
for A, (t).

They are given in equations (22) and should be attached to
the model (5):

orest

R, te3
R t — Rexer _ Rrest 221
D( ) R;est + ( p p ) , tE Sexer ( )
1+ 870.069307(1”#30))
Arest te Srest
t)y=4 "™ 22.2
Apesk( ) {A;::;, t e Sexer ( )
MO’ t = Srest
M., (t) = e (22.3)
Mo + pMW exer (l— e 30 )7 te Sexer

The variations of the parametric functions (22) are presented
in Fig.11.
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Fig. 11. The final parametric functions Rys () , Apeser ()

and M T.E (t) .
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Figure 12 shows the simulated variations of p_(t) and
H(t), using the corrected parametric functions R ((t),

A (1) and M, (t).

= Step variations
== Chosen variations | —
=== Measurement

Fig. 12. The variations of P.. (1) and H(®) for Rp*s(t),
Apesk,T (t) and MT,E (t) .

To evaluate the improvement of the close loop system
response when the three corrected parametric functions (22)
are used, the average absolute deviation for p_ (t) and H(t)

was computed on 3% . The results are inserted in Table 1.

It is noted that the use of corrected parametric functions
brings an improvement of about 8% in the average absolute
deviation of p_(t) . However, the average deviation of H(t)
increases with 0.77%, but this effect can be considered
negligible.

Table 1. The average absolute deviations:

Axmed :%Z X mas (i)_xsim (|)|

i=1

Parametric functions AP, e AH_,
R(® | Al | M (t) | [mmHg] | [beats/min]
R () | Aur(t) | M (t) | 43010 2.4556
Roe() | Awe®) | Mic(t) | 4.3599 2.8104
Ros(® | Aus® | Mis(t) | 4.6091 3.3526
R | Awr(®) | M (t) | 3.9581 2.4745

6. CONCLUSION

The model of the CVS can be improved by introducing the
concept of parametric function as an attribute of the time-
variant systems. The step-type parametric functions, currently
considered, could be corrected by the development of
sensitivity generators through extension of the sensitivity
theory with respect to dynamic systems. In this paper the
theoretical approach is explained via a case-study that
considers three parameters of the CVS. For these parameters,
by following a three step method, and using parametric
functions composed from step- exponential- and sigmoidal
functions, temporal restrictions are synthesized. The result

was evaluated and proved to be satisfactory for the case
study.

The method proposed can be used to improve the transient
response of the CVS with baroreflex loop without adding
new equations or parameters. Once the parametric functions
have been chosen, they are integrated in the CVS model as
nominal parametric functions. Thus, the degree of complexity
of the model and the control loop is maintained allowing an
easy analysis of its properties.

Based on this method, searching algorithms of the
appropriate parametric functions of the CVS can be designed.
Their variations can provide useful information for local
physiological processes that take place in the exercise
scenario.
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Appendix PARAMETERS FOR THE NOMINAL MODELS

OF THE CLOSED LOOP MODEL

Parameter Value Unit
¢, 0.001 [l mmHg™]
c, ™ 0.5 [ mmHg™]
c, ™ 0.003 [l mmHg "]
c, 0.1 [l mmHg™]
c, ™ 0.02 [l mmHg™]
c, ™ 0.05 [l mmHg Y]
v, & 6.1 [1]

R &) 18 [mmHg sec 1]
R, ® 7 [mmHg sec 1]
k, 0.4 [sec?]
C,o ™ | 01977 [1]
K 3.98196 [1]
Py | 1.83e-004 | [l sec Watt?]
2 0.000650 [I sec”]
a, 0.002459 [l sec?]
B, 0.011746 | [mmHg sec™]
B 0.016849 | [mmHg sec™
7 0.022404 [I sec™]
7 0.0120671 [I sec™]
U, 0.001731 | [1 sec®mmHg]
A 6485.402 | [mmHg sec I™]
A% 5478.241 | [mmHg sec I"]
R 176.849 | [mmHg sec 1]
Ry 14.3924 | [mmHg sec 1]
M, 0.0058 [I sec™]




