
CEAI, Vol.18, No.2 pp. 57-64, 2016 Printed in Romania

Improving Query Performance in Distributed Database

Alexandru Boicea, Florin Radulescu, Ciprian-Octavian Truica,
Loredana Urse

Faculty of Automatic Control and Computers, University Politehnica of Bucharest,

Bucharest, Romania (e-mail: alexandru.boicea@cs.pub.ro, florin.radulescu@cs.pub.ro,
ciprian.truica@cs.pub.ro, loredana.urse@cti.pub.ro)

Abstract: In a rapidly growing digital world there is the possibility to query and discover data, but the
most important issue is what resources are needed and how quickly data can be accessed. For several
years ago, the grid systems, cloud systems and distributed database systems have replaced independent
databases, because their computing power is much higher. In the case of distributed databases, stored in
different nodes of a network, there may be chosen more channels of communication between nodes and
therefore different time costs. In this paper a method is presented for selecting optimal routes between the
nodes that are distributed to the system, depending on the system parameters, network characteristics,
available resources and the volume of data that is to be transferred. Also, a method is shown to improve
the time cost for multiple queries in distributed databases using the caching technique. To test and
validate the method, a database to a web application was used in order to manage a chain of stores.
Several scenarios were created for queries and the execution time for each scenario in part was measured
through an interface designed specifically for testing.

Keywords: Distributed database, node selection, feasible distance, query execution, caching method.

1. INTRODUCTION

Distributed computing technology has been used in all sorts
of database applications. It provides transparent access to
distributed computing resources like processing capabilities
and storage capacity. A user sees a large, single computer
even if the resources and databases are geographically
distributed in the world-wide networks.

Query processing is an important concern in the field of
distributed databases and also grid databases. The main
problem is if a query can be decomposed into sub-queries
that require operations in geographically separated databases,
the sequence and the sites must be determined for performing
this set of operations, such that the operating cost
(communication cost and processing cost) for processing this
query should be minimized (Alom et al., 2009).

Along with the expanding applications data queries are
increasingly complex, so query optimization in both of them
becomes a difficult task to accomplish. Many people have
tried to solve this issue by proposing different algorithms in
order to minimize the costs and the response time which are
associated with obtaining the answer to queries.

In a distributed relational database more strategies are
applicable for processing and integrating data, e.g.: data
centralizing, data partitioning (fragmentation), full data
replication and partial data replication.

Although using data replication strategy increases the
database efficiency, this benefit comes with some costs,
which could potentially be high: storage cost and
communication cost (Rahimi et al., 2010).

In their work, Rahimi et al., arrived to the conclusion that
optimizing queries in distributed database is different from
the one in database grid systems. The main differences are
consequences of autonomy and heterogeneity of databases in
distributed systems. Therefore optimizing queries in
distributed database systems is more challenging than
optimizing queries in grid systems.

A query execution plan consists of operators and their
allocation to servers. Standard physical operators, usually
implementing the data model's algebra, are used to process
data and to consolidate intermediary and final results.
Communication operators realize the transfer, by sending and
receiving data from one server to the other (Bressan, 2009).

In Section 2 of this paper a method is presented to estimate
the cost of data transfer between nodes of a distributed
database system and also to choose the optimal route based
on minimum cost.

Section 3 shows a method to optimize the queries in a
distributed database using the distributed caching. This
method is based on temporary replication of data from
different database partitions to process on the client machine.

In the last section the conclusions are presented based on
experimental results shown in the previous sections.

2. COST ESTIMATING FOR DATA TRANSFER IN
DISTRIBUTED DATABASES

To process a distributed query, some data in the distributed
database must be transferred to the local machine. Data
packets transmitted on the network are time consuming,
especially for large volumes of data. The data transfer

58 CONTROL ENGINEERING AND APPLIED INFORMATICS

between nodes of a network is a cost-recovery, so there must
be chosen routes with minimal costs for data transfer.

2.1 Criteria selecting of the nodes

In distributed systems Query Optimizer it must be decided at
which site each operation is to be executed using node
selection algorithm, an issue which is presented in the next
section. To accomplish this, the following semi-dynamic
optimization criteria were taken into consideration:

 Nodes selection of the distributed system;
 Pre-optimizing the query;
 Testing if the execution runs as expected during the

optimization in query execution;
 If execution shows severe deviations, a new query

plan should be computed for all parts that haven't
been executed;

 The plans should be created in multiple stages;
 Global query optimizer should focus on data

transfer, where the different intermediate results
should be computed and then shipped;

 Local query optimizers decide on local query
algorithms, indexes, partitioned tables for delivering
the intermediate result;

 The query can be optimized in two steps: at compile
time (join order, methods, access, etc) and/or during
query execution.

The final step is sending the plan to the execution engines at
the sites decided by the optimizer and also being enhanced by
the local optimizer.

Plan specifies precisely how the query is to be executed. The
nodes are operators, and every operator carries out one
particular operation. The edges represent consumer-producer
relationships of operators.

Plan Refinement transforms the plan into an executable one.
This transformation involves the generation of an assembler-
like code to evaluate expressions and predicates.

2.2 Estimating cost of data transfer

To minimize the cost of data transfer between nodes in a
distributed database, it is necessary to calculate the costs of
transfer between neighbouring nodes, after which there will
be chosen the route with minimum cost.

The most important factors to take into consideration are:
bandwidth, delay, load, access and transmission costs, CPU
and memory capabilities and free system capabilities.

An adaptive algorithm is proposed to achieve this cost
minimization. This algorithm is similar with Diffusing
Update Algorithm (DUAL), used by the EIGRP routing
protocol, with a combination of backtracking or min-max
algorithm to search in the depth for the optimal overall cost
(Garcia, 2014).

The formula uses three separate tables for route calculation:

● Neighbour table: contains information on all the
directly connected nodes and a timer is used to
check whether the node is available or not.

● Topology table: contains the cost information of all
the nodes to any destination. This information is
received from the neighbour table. The primary
(successor) and secondary (feasible successor)
routes to a node will be determined from this table.
Moreover, each entry in this table contains the
following fields:

○ FD (Feasible Distance) = the cost to the
desired node;

○ RD (Reported Distance) = the cost to the
desired node reported by a neighbour node
(this is used to calculate the FD);

○ The status of the route to that node:
- Active : the route is being calculated

(down);
- Passive: the route is up.

○ CPU - available CPU;
○ Memory - available memory;
○ Free memory - the free percent of memory

available (it is a combination of CPU and
MEMORY from that node);

○ Access cost;
○ Transmission cost.

● Routing table: contains the best route(s) to a
destination (the lowest metric cost). It is populated
from the successors from the topology table.

Those tables are locally created and updated periodically
(from hour to hour, for example) using the information
exchanged between the nodes.
The node selection algorithm evaluates the data received
from other routers in the topology table and calculates the
primary (successor) and secondary (feasible successor)
routes.

The primary path is usually the path with the lowest metric to
reach the destination, and the redundant path is the path with
the second lowest cost (if it meets the feasibility condition).
There may be multiple successors and multiple feasible
successors. Both successors and feasible successors are
maintained in the topology table, but only the successors are
added to the routing table and used to route packets.

Feasible Distance (FD) is sum of Reported Distance (RD) of
all successors between start node and final node from a route.

For a route to become a feasible successor, its RD must be
smaller than the FD (RD<FD). If this feasibility condition is
met, there is no way that adding this route to the routing table
could cause a loop. If all the successor routes of a destination
fail, the feasible successor becomes the successor and is
immediately added to the routing table. If there is no feasible
successor in the topology table, a query process is initiated to
look for a new route.

The formula used to calculate the best metric is the
following:

10^8

)**(

10^3

)6*5*(

*4**3
256

*2
*1

FreeMemoryCPUKonTransmissiKAccess

KDelayK
Load

BandwidthK
BandwidthKMetric

 (1)

CONTROL ENGINEERING AND APPLIED INFORMATICS 59

where:
 Bandwidth - the minimum bandwidth along the path

is selected;
 Load - a number between 1 and 255, meaning how

saturated is the network;
 Delay - the number of nodes that must be traversed

to the destination node;
 Access - how expensive are access costs to access

the data;
 Transmission - how expensive are the transmission

costs for transmitting the data from one node, to the
neighbour node;

 CPU (capabilities) - the performance of the node’s
CPU;

 Memory (capabilities) - how fast it perform I/O
operations for read/write the data;

 Free (system capabilities) - how much of the system
is free;

 K1 - K6 are various constants that can be changed in
the entire network of distributed database. At the
initial moment the values are: K1 = 1, K2 = 0, K3 =
1, K4 = 1, K5 = 20, K6 = 2.

The formula is based on a cost-based algebraic optimization.

The node selection algorithm can support unequal cost load
balance (like DUAL) if a variable (variance) L is taken into
consideration.
Using this variable to match a feasible condition, the
successor cost multiplied by the variable L should be greater
than the other nodes feasible distance (FD * L >= FD
successor). The L variable is an integer number greater or
equal than 1.

The nodes from which to receive the data (it is known that
the data is present there) and to send the data to the nearest
node can be chosen using the given metric for the elements
mentioned above.

The data received must be processed in parallel, using the
unequal cost load balance method, based on the feasible
successors metric as follows: the data requested can be found
on multiple node, is fragmented (partitioned, sub-partitioned,
has snapshots, indexes, etc.) and can be split easily using the
proportion from the metrics.

2.3 Example of estimating the cost of data transfer

For exemplification, the following example of a distributed
database with a user node (A0), processing a query, and three
nodes of remote databases (A1, A2, A3) was used.
The percentage of resources allocated for the three nodes are:
P1 = 60%, P2 = 25% and P3 = 15%.

Fig.1 shows the possible routes between nodes and
connections associated RD.

The result returned from the one node is afterward
transmitted to another where it can find additional data to be
joined, by the global optimizer and the algorithm recursively
repeats itself until the final result is returned.

Fig. 1. Possible routes and RD costs for a distributed
database.

By applying the above formula, there can be built a RD cost
matrix between nodes, as shown in Table 1.

Table 1. Reported Distance (RD) between nodes.

Nodes A0 A1 A2 A3 B1 B2 C1
A0 0 70 120 * * * 40
A1 70 0 * * 20 * *
A2 120 * 0 * 20 * *
A3 * * * 0 * 80 *
B1 * 20 20 * 0 * 40
B2 * * * 80 * 0 60
C1 40 * * * 40 60 0

The Reported Distance and Feasible Distance are calculated
from the Topology Table by the global optimizer scheduler,
which says on which nodes the interest data can be found.

To find all possible routes between two nodes it can use
Breadth-First Search (BFS) algorithm. The BFS begins at a
root node and inspects all the neighbouring nodes.

Calculating Feasible Distances from user node (A0) to nodes
A1, A2, A3, according to possible routes, are following:

 A0=>A1

Route(A0-A1) : FD= 70;

Route(A0-C1-B1-A1) : FD= 40+40+20= 100;

Route(A0-A1) has the minimum cost route with FD=70.

 A0=>A2

Route(A0-A2) : FD= 120;

Route(A0-A1-B1-A2) : FD= 70+20+20= 110;

Route(A0-C1-B1-A2) : FD= 40+40+20= 100;

(User Node)

A1

A2
A3

B1

B2

C1

A0

RD(C1~B1)=40

RD(B1~A2)=20

RD(A0~C1)=40

RD(C1~B2)=60

RD(B2~A3)=80

RD(A0~A1)=70

RD(A0~A2)=120

P1=60%

P2=25%
P3=15%

RD(B1~A1)=20

60 CONTROL ENGINEERING AND APPLIED INFORMATICS

Route(A0-C1-B1-A2) has the minimum cost route with
FD=100.

 A0=>A3

Route(A0-C1-B2-A3) : FD= 40+60+80= 180;

Route(A0-A1-B1-C1-B2-A3) : FD= 70+20+40+60+80= 270;

Route(A0-C1-B2-A3) has the minimum cost route with
FD=180;.

Fig. 2 show the graph of connections between nodes and
minimum cost routes between user node (A0) and remote
database nodes (A1, A2, A3).

Fig. 2. Graph of connections between nodes.

After the node selection and local query execution, the next
step is to go back to the global optimizer and search the next
available nodes to find the interest data.

In Fig. 3 there are marked routes with minimal costs for
transferring data from distributed databases on the node that
processes the user query.

Fig. 3. The routes with minimal cost of data transfer.

Routes that have minimal costs are show in Table 2.

Table 2. Selected routes with minimal costs.

Nodes Route Total Cost
A0 =>A1 A0-A1 70
A0 =>A2 A0-C1-B1-A2 100
A0 =>A3 A0-C1-B2-A3 180

The above example is a simple one, but this can be more
complicated if different data sets are required from different
nodes/sources, different proportions of allocation is necessary
to be taken into consideration and the queries have many join
conditions.

The proposed method is time consuming and is suited for
large amounts of data requested. All the tables, neighbour,
topology and route table are updated periodically (e.g. every
hour).

3. QUERY PROCESSING IN DISTRIBUTED DATABASE

One of the most relevant cases to query processing on the
distributed databases is when multiple organisations agree to
share their date to perform a common task. For example, a
multinational company has offices in different continents so
it needed to exchange data between them, in order to
strengthen the central level.

This is achieved by using well-established techniques like
fast access remote resources and parallel query processing.

In general, query processing in grid systems is similar to
query processing in distributed databases in the sense that in
both domains the queries are submitted over a global schema
and the data is fetched from the sources through packaging.

The main steps for query processing are:

● query decomposition
● query optimization
● data localization
● query execution

Queries are expressed using different declarative query
languages like SQL, OQL, XQUERY. Once a query is
submitted, the first step is to parse it and check the syntax.
Then the query is decomposed into an internal representation
using algebra expressions.

Query Rewrite transforms a query in order to carry out
optimizations that are good regardless of the physical state of
the system (elimination of redundant predicates,
interpretation of sub-queries, expressions simplification).

Query Optimizer carries out optimizations that depend on the
physical state of the system. It decides which index, which
method, and in which order to execute operations of a query.

Data localization determines which fragments are involved in
the query and thereby transforms the distributed query into a
fragment query in order to localize its data.

The last step is to find the most efficient candidate execution
plan and execute the query.

CONTROL ENGINEERING AND APPLIED INFORMATICS 61

3.1 Improving query performance through caching method

Caching method is used to create a system for queries
processing that manipulate temporary database to optimize
multiple queries in a distributed database.

The terms “buffer” and “cache” tend to be used
interchangeably but they represent different things. A buffer
is a temporary memory and is used traditionally as an
intermediate temporary store for data between a fast and a
slow entity.

Fundamentally, caching provides a performance increase by
repeated data transfers from one server to another. While a
caching system may realize a performance increase upon the
initial transfer of a data item, this performance increase is due
to buffering occurring within the caching system.

Caching and replication is an effective approach for lowering
overhead and increasing accessibility and performance in
distributed systems. It is used in a range of environments
including web page distribution, multimedia distribution and
distributed object location. Large scale multimedia
distribution and video-streaming, in particular, can gain
significant advantages from effective caching and replication
due to their high bandwidth, low latency requirements
(Tysona et al., 2009).

Replication solution also provides independence of the
servers from different locations, which can work
independently with local data until the synchronization is
done (Truica et al., 2013).

The basic idea of caching is to create and implement a
strategy of splitting the distributed data, transfer and
processing them on the local machine, and storing them for a
certain period of time in view of subsequent queries. Thus,
the cost of data transmission will not have much impact in
running queries or query response time becomes significantly
lower. For this, temporary tables or materialized views that
contain the columns desired from the users and which can be
updated on request can be created.

Synchronizing data between tables in distributed databases
and temporary tables which are on the local machine can be
done at predefined time intervals, through background
processing.

For example, triggers or stored procedures can be created that
make real-time data updating and execute at required time
interval.

The connection between a remote database and local database
is done through a database link.

Caching is particularly useful in distributed systems because
it reduces network traffic and improves response time.

Detailing of the caching scheme for three distributed
databases is:

 The user connects to the application on the local
database (DB1) and can manually enter a query that
requires information from tables on other databases
(DB2, DB3);

 Depending on the criteria entered by the user, the
query is built;

 Query is executed on the local database (an initial
non-optimized query);

 The execution time of the query is measured (non-
optimized);

 Then, on the local machine, temporary tables/
materialized views are created, with data from the
remote database tables;

 Run the query again with the data from the
temporary tables created (optimized query);

 Execution time of the new query is measured
(optimized query);

3.2. Experimental results for caching method

For testing, there was used an architecture that consists of a
local server on which was installed a local database
(DB_local), two servers with the local network connection on
which were installed two databases (DB2, DB3) and a server
with remote connection on which it was installed a database
having Internet access (DB_remote).

The Windows 7 operating system was chosen for
development. The tests were implemented in PHP5 and run
on an Apache Web Server. All the DBMSs in the testing
scenario were Oracle Database 11g.

A PHP application was created that contains an interface for
query editing and for executing the test scenarios.

The test databases were taken from a web application for
managing a chain of shops and for storing the following
information:

DB_local: Sales

DB1: Users, Roles

DB2: Customers

DB_remote: Suppliers, Products, Stores

The entity-relationship diagram for the test database is
presented in Fig. 4.

Caching algorithm has the following inputs/outputs:
Input: Query
Output: Data query

For each query the following steps are executed:

1. It checks if the entered query can be executed on the local
database tables (using PHP and Oracle);

2. If the query can run on tables in the local database, the data
is selected from tables and the results returned to the user (via
PHP);

3. If the query cannot be executed entirely on the tables in the
local database, then queries are run on data that are not found
in local tables and results are stored in the local database
tables (via Apache sever), after which the entire query is
executed and the results returned to the user (via PHP);

62 CONTROL ENGINEERING AND APPLIED INFORMATICS

4. If the query cannot be executed on any of the tables in the
local database, then queries are run for tables of distributed
databases, the results are stored in the local database tables
(via Apache sever) and also the results are returns to the user
(via PHP);

Fig. 4. Entities relationship diagram for the distributed
database.

In the application were created several test scenarios for
queries that return between 1000-500000 records. For each
scenario were performed a minimal 10 tests for better
measuring execution time.

The main test scenarios were:

S1: list of sales made by a user (DB_local) and information
about products sold (DB_ remote) => it returns on the local
database (DB_local) temporary tables that contain all
columns created on the tables in remote database
(DB_remote).

S2: list of sales made by a user (DB_local), information on
products sold (DB_ remote) and information about the user
(DB1) => it returns on the local database (DB_local)
temporary tables with data on products sold.

S3: list of sales made by a user (DB_local), customer
information (DB2) and information about the user (DB1) =>
it returns on the local database (DB_local) temporary tables
with data about products and users.

S4: list of sales made by a user (DB_local), information on
products sold (DB_remote), information about the user
(DB1) and information about clients (DB2) => it returns on
the local database (DB_local) only a temporary table with
data about products.

S5: list of sales made by a user (DB_local), information on
products sold (DB_remote), information about the user
(DB1) and information about customers (DB2) => it returns
on the local database (DB_local) a temporary table with data
about user.

S6: list of sales made by a user (DB_local), information
about products sold (DB_remote), information about the user
(DB1) and information about customers (DB2) => it returns
on the local database (DB_local) a temporary table with data
about customers.

S7: list of sales made by a user (DB_local), information
about products sold (DB_remote), information about the user
(DB1) and information about clients (DB2) => it returns on
the local database (DB_local) temporary tables with data
about products and customers.

S8: list of sales made by a user (DB_local), information
about products sold (DB_remote), information about the user
(DB1) and information about customers (DB2) => it returns
on the local database (DB_local) temporary tables with data
about products and customers.

S9: list of sales made by a user (DB_local), information
about products sold (DB_remote), information about the user
(DB1) and information about customers(DB2) => it returns
on the local database (DB_local) temporary tables with data
about users and customers.

S10: list of sales made by a user (DB_local), information
about products sold (DB_remote), information about the user
(DB1) and information about customers (DB2) => it returns
on the local database (DB_local) temporary tables with data
about products, users and customers.

Depending on the scenario, the query was fragmented
vertically in more queries on distributed database, as shown
in Table 3.

Table 3. Fragmentation matrix on distributed database
queries.

Scenario/DB DB_local DB1 DB2 DB_remote
S1 1 0 0 1
S2 1 1 0 1
S3 1 0 1 1
S4 1 0 1 1
S5 1 1 1 1
S6 1 1 1 1
S7 1 1 1 1
S8 1 1 1 1
S9 1 1 1 1
S10 1 1 1 1

Function that measures the execution time of the query is:

CREATE OR REPLACE FUNCTION T_TIME (P_SQL IN
VARCHAR2)
RETURN NUMBER
IS

timestart NUMBER;
v_cnt NUMBER;

BEGIN
timestart:=dbms_utility.get_time();

EXECUTE IMMEDIATE ('SELECT COUNT(*) FROM
('||P_SQL||')') INTO v_cnt;
RETURN round((dbms_utility.get_time()-timestart)
 +300/100,2);
END T_TIME;

CONTROL ENGINEERING AND APPLIED INFORMATICS 63

3.3 Example of the SELECT command

For scenario no. 10, on DB_local database, it was created the
following SQL command:

 Without caching method:

SELECT u.username, u.nume, u.prenume, u.email,
u.id_magazin, c.id_comanda, t.nume_companie,
t.nume_persoana_contact, t.telefon,t.email, t.adresa,
t.oras,t.tara, t.cod_postal, c.status_comanda, c.data_livrare,
l.cod_produs, l.pret, l.cantitate,l.subtotal, l.val_totala,
s.nume_produs, s.specificatii_produs, s.produs_disponibil,
s.nota

FROM comenzi c,linii_comenzi l,lore.produse@db_remote s,
utilizatori@db1 u, clienti@db2 t

WHERE c.id_comanda=l.id_comanda and
c.id_utilizator=u.utilizator_id and u.utilizator_id=833 and
l.cod_produs=s.cod_produs and c.id_client = t.id_client ;

o Execution time: 16.42 sec

 With caching method:
CREATE TABLE utilizatori_temp@DB_local as SELECT *
FROM utilizatori@db1;
CREATE TABLE clienti_temp as SELECT * FROM
clienti@db2;
CREATE TABLE produse_temp as SELECT * FROM
lore.produse@db_remote ;

SELECT u.username, u.nume,u.prenume, u.email,
u.id_magazin, c.id_comanda, t.nume_companie,
t.nume_persoana_contact, t.telefon,t.email, t.adresa, t.oras,
t.tara, t.cod_postal ,c.status_comanda, c.data_livrare,
l.cod_produs, l.pret,l.cantitate, l.subtotal, l.val_totala ,
s.nume_produs, s.specificatii_produs, s.produs_disponibil,
s.nota

FROM comenzi c, linii_comenzi l, produse_temp s,
utilizatori_temp u, clienti_temp t

WHERE c.id_comanda=l.id_comanda and
c.id_utilizator=u.utilizator_id and u.utilizator_id=833 and
l.cod_produs=s.cod_produs and c.id_client = t.id_client;

o Execution time: 2.56 sec

3.4 Example of a scenario using materialized view

It will be created a materialized view on local database
(DB_local) with data about products taken from the remote
database (DB_remote):

CREATE MATERIALIZED VIEW
db_remote.PRODUSE_ONLINE

QUERY REWRITE AS

SELECT a.id_ref, a.units_in_stoc, b.cod_produs, b.discount,
b.nota, b.nume_produs, b.pret, b.pret- b.discount as
pret_discount, b.produs_disponibil, b.specificatii_produs,
c.id_magazin, c.nume_magazin,
SUM(b.pret*a.units_in_stoc) OVER (PARTITION BY
c.id_magazin) as venit_magazin, c.descriere_magazin,
d.descriere_categorie, d.id_categorie, d.nume_categorie,
SUM(b.pret*a.units_in_stoc) OVER (PARTITION BY

d.id_categorie) as venit_categorie, e.adresa_furnizor,
e.cod_postal_furnizor, e.companie_furnizor,
SUM(b.pret*a.units_in_stoc) OVER (PARTITION BY
e.id_furnizor) as datorie_furnizor, e.contact_furnizor,
e.email_furnizor, e.id_furnizor, e.oras_furnizor,
e.telefon_furnizor

FROM lore.produse_magazine@db_remote a ,
INNER JOIN lore.produse@db_remote b ON
(a.cod_produs=b.cod_produs)
INNER JOIN lore.magazine@db_remote c ON
(a.id_magazin=c.id_magazin)
 INNER JOIN lore.categorii@db_remote d ON
(b.id_categorie=d.id_categorie)
INNER JOIN lore.furnizori@db_remote e ON
(b.id_furnizor=e.id_furnizor);

Then it was tested a complete query using the created view
on local database (DB_local):

SELECT * FROM produse_online;

The average time of execution of the query, without creating
the view, was 20.3 sec and the average time obtained by
taking the data from the view was 7.68 sec. For all the 10
scenarios the average time obtained during execution without
/with caching method is presented in Table 4.

Table 4. Query execution time before/after optimization.

Scenarios

BOP
(Before

Optimization)
(sec)

AOP
(After

Optimization)
(sec)

S1 15.16 2.31
S2 17.28 1.59
S3 15.36 10.12
S4 17.79 2.11
S5 16.4 10.47
S6 16.26 10.47
S7 16.77 2.27
S8 16.44 2.54
S9 16.79 11.59
S10 16.42 2.56

Graphic representation of the experimental results is shown
in Figure 5.

Fig. 5. Query execution time before/after optimization.

64 CONTROL ENGINEERING AND APPLIED INFORMATICS

6. CONCLUSIONS

The optimization of queries in distributed systems is a
complex activity that depends on many factors. In a certain
percent the optimization is performed by the DBMS but there
are situations when the user applications must contain
algorithms for improving the queries. Depending on the
frequency of query execution in applications with distributed
database, it is necessary to improve execution costs of the
queries, by transferring data from partitions of the database
and processing them on the local machine.

Improving of queries on distributed database through the
query caching method involves transferring of the most
frequently accessed data from the remote databases to the
local database or to another database stored on the same
machine. However, additional costs arise by operations of
refreshing the cache data, so the method is recommended for
databases where data have low cardinality, e.g. for processing
data archives.

For the choice of an execution plan for a query, there must be
considered the time required for data transfer between
different nodes of the distributed database system. It is
recommended that the choice of an execution plan to be made
by the DBMS because the time performance is not
significantly improved by applying some of the node
selection algorithms, especially for small data volume.

Using the node selection algorithm has some limitations
because of high CPU utilization for calculating the routing.
Also, the CPU plays a major role because the execution time
for processing the queries is influenced by the processor’s
frequency and by the number of cores (Truica et al., 2014).
For increasing the processing power, a GPU (Graphics
Processing Unit) can be used even for non-video or non-
graphics applications that imply a serious amount of parallel
processing (Munteanu et al., 2015).

Based on the dynamic resource information, which
sometimes need to be predicted using prediction algorithms,
a scheduler can choose the combination of resources from the
available resource pool that is expected to maximize
performance (Pop et al., 2011).

REFERENCES

Alom, B.M., Henskens F. and .Hannaford, M..(2009),
Query processing and optimization in distributed
database systems, International Journal of
Computer Science and Network Security
(IJCSNS’09);

Bressan, S.,(2009), Distributed query optimization,
Encyclopedia of Database Systems, pp 908-912

Garcia Luna Aceves, J.J.(2014), Diffusing Update
Algorithm, Wikipedia;

Munteanu, G., Mocanu, S. and Saru, D.(2015), GPGPU
optimized parallel implementation of AES using
C++AMP, Journal of Control Engineering and
Applied Informatics (CEAI), Vol.17, No.2, 2015;

Pop, F. and Cristea V.(2011), Scheduling optimization
based on resources state prediction in large scale
distributed systems, Journal of Control Engineering
and Applied Informatics (CEAI), Vol.13, No.4,
2011.

Rahimi, S.K., Haug, F.S.,(2010), Distributed database
management systems: a practical approach, Wiley
Publication, ISBN: 047040745X, IEEE Computer
Society;

Truica, C.O. , Boicea, A. and Radulescu, F. (2013),
Asynchronous replication in Microsoft SQL Server,
PostgreSQL and MySQL, International Conference
on Cyber Science and Engineering (CyberSE’13);

Truica, C.O., Boicea, A. and Radulescu, F. (2014),
Performance time for e-learning applications with
multiple databases, International Scientific
Conference eLearning and software for Education
(ELSE’14);

Tysona, G., Mauthea, A., Kauneb S., Mua M. And
Plagemann T.,(2009), Corelli:a peer-to-peer
dynamic replication service for supporting latency
dependent content in community networks,
Multimedia Computing and Networking
Conference(MMCN'09);

