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Abstract: In order to make accurate and fast keywords and full text searches it is recommended
to index the words in the corpus. One way to do this is to use an inverted index to maintain
in a structured form the words occurrence in a set of documents. A stemming algorithm can
be used to minimize the number of indexed words, so only the root word is kept for each term.
This paper presents how to build an inverted index for documents stored in MongoDB and
Oracle databases. Different approaches are presented in order to compare and determine which
one has the best performance. These approaches take advantage of the frameworks and tools
provided by the database systems to build the index: the MapReduce framework for MongoDB
and Pipelined Table Functions for Oracle.
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1. INTRODUCTION

An inverted index is a data structure that stores the
location of words in different files, documents or database
records. Its main purpose is to allow fast full text search,
being a core component of a typical search engine. Adding
an inverted index to a set of documents lets the user search
for keywords in those documents without processing the
text each time.

There are different methods that can be used to build
an inverted index. The simplest is to process each doc-
ument, adding new words and documents to the index.
This method can be optimized by using multithreading
algorithms when processing the documents. Another ap-
proach is to process the text and build the index directly
inside the database that stores the documents. Using this
method, the communication latency between the search
engine and the database is minimized. It is more efficient
to process or pre-process as much as possible of the data
at the database management system (DBMS) layer then
to send unprocessed data to a superior layer - in this case
the search engine - to be processed. Because the data is
already inside the database, the communication latency
between different engines inside the DBMS is negligible
and by definition a DBMS is designed to process large
amounts of data very fast. Also, by implementing an in-
verted index at the database layer, all the data is processed
inside the DBMS and the result is stored locally instead
of sending the document to an upper layer to be processed
and, after that, sending back the result to the database.
This approach is well suited in distributed systems scaled
between different data centers.

The classic inverted index adds to the data structure all
the words. A better approach for minimizing the data

stored in the index is to use a stemming algorithm to
extract the stem (the base root of a word). Porter Stemmer
is the best candidate because it is a self-contained algo-
rithm that does not need an external corpus, n-grams or a
model trained using machine learning. One can argue that
a stemmer is less accurate than other algorithms that are
used to extract the base root of the word, because it cannot
make the distinction between words which have a different
meaning depending on the part of speech. However, a
stemming algorithm runs faster.

During the construction of the inverted index the number
of appearances for each word of a document is also kept.
The number of occurrences can be used to classify the
documents using an unsupervised classification algorithm,
for text mining(Ilic et al. 2014) or for an Information
Retrieval ranking function.

The research problems addressed in this paper are:

i) Constructing an inverted index at the DBMS level for
full text search.

ii) Improving performance using the MapReduce paradigm
in a single instance and in a distributed environment.

iii) Comparing the results of the proposed methods to
determine if the construction of the inverted index at
the DBMS level is better than constructing the index
at the search engine layer.

iv) Reducing the storage space of the inverted index
structure by using a stemming algorithm.

v) Improving text processing and index building perfor-
mance by using MapReduce.

vi) Comparing full text search performance with and
without using the proposed index or database build-
in indexes.
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This paper is structured as follows. Section 2 presents
previous research related to construction of full text search
and space efficient inverted indexes. Section 3 presents the
inverted index design and how it is built using different
approaches. Section 4 contains the experimental validation
of the proposed methods and analyzes the results. The
last section concludes with a summary and hints at future
research.

2. RELATED WORK

The inverted index is a data structure used by search
engines. Its main purpose is to optimize the speed of query
response. By using an inverted index, the search is made in
this data structure - where the searched words are stored
using IDs and not directly in the document.

Since the first appearance in the literature of this concept,
different techniques and methods were developed to con-
struct an inverted index. Qiuying Bai et al. propose a new
methodology for creating and updating such an index. The
performance improvements of this method - compared to
the classic approaches - are proved by experiments (Bai
et al. 2012). Dean et al. propose a method for improving
the construction time of an inverted index using MapRe-
duce (Dean et al. 2010).

Inverted indexes are also used in Information Retrieval. A
great emphasis is put on reducing the index storage size.
One method uses the static index pruning approach which
is useful to reduce the index size. S.K. Vishwakarma et al.
propose that the pruning should be done on the basis of the
term frequency-inverse document frequency (TFIDF) score
of each individual document (Vishwakarma et al. 2014).

Another research direction focuses on improving the query
response time and minimizing the storage space. Xiaozhu
Liu proposes a random access blocked inverted index and
an efficient dynamic maintenance scheme that are used to
improve the retrieval performance and minimize storage
space for large scale full text search systems (Liu 2010). Liu
et al. propose a new effective keyword search in relational
databases that improves query performance based on a
simple inverted index (Liu et al. 2006).

A. Babenko et al. proposes a new structure, called an
inverted multi-index, which improves the search of simi-
larity in very large databases. In their experimental setup,
this new structure achieves a much denser subdivision
of the search space while retaining their memory effi-
ciency (Babenko et al. 2012). Hao Wu et al. focus their
research on keyword search, proposing in their work a
generalized inverted index for keyword search (Ginix) that
merges consecutive IDs in inverted lists (Wu et al. 2013).
This method reduces the storage space, disk I/O time and
also CPU processing time.

To further improve the access to the inverted index and
achieve fast response times to user’s queries, a compression
can be applied. inverted index compression has been com-
mon for some time. One common practice while storing
a posting list is to use δ-gaps where possible, e.g. to
record the differences between monotonically increasing
components (such as IDs or positions) instead of their
actual values (Jin et al. 2008; Sun et al. 2014; Witten
et al. 1999). By not using binary word-aligned notations,

smaller numbers lead to smaller representations (Catena
et al. 2014). Glory et. al propose a new integer compression
technique, Extended Golomb Code, to reduce the size of
the inverted index (Glory et al. 2013).

The Porter Stemmer is an algorithm for suffix stripping.
It effectively works by considering complex suffixes as
compounds made up of ones, and removes the them step by
step. At each step the removal of a suffix is made to depend
upon the form of the remaining stem, which usually
involves a measure of its syllable length (Porter 1980). By
using a stemming algorithm, the space allocated to store
an inverted index is minimized. A lemmatization algorithm
can be used instead of a stemmer, but the information
gain, although it exists, is not that great (Kettunen et al.
2005).

3. MODEL AND IMPLEMENTATION

3.1 Index Model

The inverted index is constructed as a dictionary - a
collection of keys and values (Figure 1). The key of an
element is the stem and the value is a list. An element
in the list has two components: a docID and count. The
docID stores the document’s unique identifier (ID). The
count keeps the number of occurrences of the stem in
that particular document. Only documents where the stem
appears are included in the list. Stop words are not taken
into account.

Fig. 1. Inverted Index element

3.2 Implementation

The inverted index is created using four different ap-
proaches. Queries with constraints are issued at the search
engine layer to retrieve text documents from the database.
The databases used are MongoDB 1 and Oracle 2 . Oracle
Database is the most used Relational Database Manage-
ment System (RDBMS) to date as seen in the ranking done
by DB-Engines Ranking 3 . MongoDB uses SQL-like query
syntax and, according to the same ranking, it is the most
used Document Oriented Database (DODB) of its kind.
Each approach is implemented by an application. These
applications are: i) a single thread application using Mon-
goDB, ii) a MapReduce application using multithreading,
iii) an application using the MapReduce framework feature

1 MongoDB Documnetation http://docs.mongodb.org/
2 Oracle Documentation http://docs.oracle.com/en/
3 DB-Engines Ranking http://db-engines.com/en/ranking
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of MongoDB, and iv) an Oracle application using Pipelined
Table Functions to simulate MapReduce.

Three different programming languages are used to imple-
ment these applications: two applications are in Python
using the MongoDB database; one implementation is in
JavaScript and is stored in MongoDB ; the last one is in
PL/SQL and is stored as an Oracle package.

Documents are stored in MongoDB as a collection. Each
element of the collection contains the document ID and
a field with the document. In Oracle the structure is
implemented as a table with two columns. The first column
is the primary key and uniquely identifies the documents.
The second column is a text field containing the document.
All four implementations execute queries in the database
for getting the document, processing the text and con-
structing the inverted index for the stems within it.

All the implementations use Porter Stemmer, an algorithm
that removes suffixes from words in English, resulting a
new terms called stems. Search results are improved be-
cause queries use stems instead of words (Bird et al. 2009).
For the single thread application and the MapReduce ap-
plication written in Python the NLTK 4 implementation
of this algorithm was used. NLTK’s stemmers handle a
wide range of irregular cases. All the stop words are also
removed when parsing the text. This is the text processing
step.

When using MapReduce, the Map function provides the
Reduce function with a stem, a document ID and a counter.
In the reducer, if the stem is found for the first time in
the document then a counter - which is the number of
occurrences of the stem in the document - is initialized.

Algorithm 1 Append Stem Function

Input: a stem (stem), document ID (docId), dictionary
with existing stems and IDs (docDictionary)

Output: updates the docDictionary
1: if stem in dictionary then
2: documents = docDictionary.get(stem);
3: if docId in documents then
4: docDictionary.get(stem)[docId] += 1;
5: else
6: create a new dictionary newDictionary
7: newDictionary[docId] = 1
8: docDictionary.get(stem).update(newDictionary)

9: end if
10: else
11: create a new dictionary newDictionary
12: newDictionary[docId] = 1
13: docDictionary.get(stem).add(newDictionary)

14: end if

3.3 Single Thread Application

The single thread implementation constructs the inverted
index using a procedural approach. After querying the
database, each text is striped of punctuation and special
characters using regular expressions. The stemming algo-
rithm is then applied on the cleaned text. Using the Ap-
pend Stem Function (Algorithm 1) the indexing structure

4 NLTK Documentation http://www.nltk.org

is constructed as a dictionary. When the dictionary does
not contain the stem, a new record is added where the
key is the stem and the value is the list. The list stores
a dictionary structure containing the unique document ID
and the stem’s first appearance in the document. If the
stem exists in the dictionary then the document’s ID is
searched through the list. If the ID is found in the list,
the number of co-occurrences is incremented. Otherwise,
a new pair is added with the number of co-occurrences
initialized with 1. After all the documents pass through
this process, the dictionary containing the inverted index
is stored in the MongoDB database as a collection.

3.4 Multithreading MapReduce Application

The second application for constructing an inverted index
uses the MapReduce programming paradigm. This algo-
rithm is implemented using a multithreading approach
to simulate the workers. Each document is sent to the
Map function (Algorithm 2) for processing the text and
stripping it of punctuation using regular expressions. Then
each word is stemmed and the Map function emits the stem
with the document ID and the number of appearances of
the stem in text, initialized with 1.

Algorithm 2 Map Function

Input: a dictionary of documents (documents) with each
element containing a document ID (docId) and the
documents content (docContent)

Output: emits to the worker a stem and a dictionary with
document ID and a counter for the stem

1: for each docId, docContent in documents do
2: docContent.words =

tokenize(docContent.strip(punctuation))
3: for word in docContent.words do
4: stem = PorterStemmer.getStem(word)
5: emit(stem, docId: 1)

6: end for
7: end for

The Reduce Function (Algorithm 3) receives the stem, the
document ID and the counter, and starts to construct the
inverted index as a dictionary.

Algorithm 3 Reduce Function

Input: a stem (stem), and a dictionary (oldDictionary)
containing document IDs with stem counts

Output: the stem and a new dictionary newDictionary
with an updated stem counter for each document

1: create a new dictionary newDictionary
2: for each docId, counter in oldDictionary do
3: if docId in newDictioanry then
4: newDictionary[docId] += counter
5: else
6: newDictionary[docId] = counter

7: end if
8: end for
9: return (stem, newDictioanry)

If the stem does not exist in the dictionary then it is
added as key, and the pair (document ID, stem number
of appearances in text) as value. If the stem is already
in the dictionary then the Reduce function checks if the
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document’s ID appears among the existing pair values. If
it is found then the value for the number of appearances in
text is incremented, else a new pair value is added to the
dictionary. The function returns the stem with a dictionary
of document ID and stem counts.

This algorithm uses a multiprocessing resource pool to
construct the inverted index. When a MapReduce worker
finishes the job of adding a new value to the dictionary,
then it receives a new value to process. By default the
number of workers is equal to the number of CPUs
available on the host machine.

3.5 MongoDB Application

The MongoDB application uses the MapReduce framework
available with the database distribution. In this case, the
Map and Reduce functions are implemented in JavaScript
and are stored at the database layer in MongoDB together
with the Porter Stemmer algorithm. The algorithm for
constructing the inverted index is similar to the one used in
the Python MapReduce application, but it takes advantage
of the MapReduce framework implemented at the DBMS
layer. The text is processed and striped of punctuation,
then each word is stemmed and the Map function emits a
structure containing the stem, the document ID and the
number of appearances for the word in the text.

The Reduce function receives two parameters: the first one
is the word and the second one is a dictionary containing
the document ID as key and the number of occurrences for
the word in text as value. The function follows the same
steps as described for the Reduce function in the Python
implementation of MapReduce.

3.6 Oracle Application

The Oracle database has three tables: Documents, Stems,
and InvertedIndex (Figure 2). The Documents table stores
the document’s text and an ID. The Stem table stores the
stems with a corresponding ID. This table is updated by
the PorterStemmer tokenization package. The InvertedIn-
dex table stores the document ID, the steam ID and the
number of appearances of the stem in the document.

Fig. 2. Normalized database

The Oracle application uses Pipelined Table Functions to
construct the inverted index (Moore 2014). At a logical
level, a Table Function is a function that can appear in
the FROM clause and therefore acts as a table, returning
a stream of rows. The Table Functions can also take a
stream of rows as input. Since Pipelined Table Functions
are embedded in the data flow, they allow data to be
’streamed’ to an SQL statement avoiding intermediate
materialization in most cases. Additionally, Pipelined Ta-
ble Functions can be parallelized. Using this feature, the
MapReduce algorithm is simulated. The Map function uses
a cursor to loop through the Documents table and extract
the words. Each word is then processed by the PorterStem-
mer tokenization package (Algorithm 4 lines 20 and 25).

This package extracts the word’s stem, inserts it, if it does
not exist, in the Stems table and returns, through the get-
StemID function, the stem ID. A new record (stemRecord)
containing the document ID and the stem ID is created
after the use of the PorterStemmer.getStemID function.
This record - whom is a new row in a Pipelined Table
Function - is added to a pipe.

Algorithm 4 PL/SQL Map Function

Input: a cursor that iterates over the documents, a list of
separator characters

Output: a stemRecord (record with docID and stemID)
is added to the pipe

1: function mapper(documentsCursor in sys refcursor,
separator in varchar2)

2: return stemsTable
3: pipelined parallel enable (partition

documentsCursor by any)
4: is
5: doc documents%rowtype;
6: sp number; // Start Position
7: cp number; // Current Position
8: docLen number; // Document length
9: sRec stemRecord; // Stem Record

10: begin
11: loop
12: fetch documentsCursor into doc;
13: exit when documentsCursor%notfound;
14: sp := 1;
15: docLen := length(doc.content);
16: while sp <= docLen
17: loop
18: cp := instr(doc.content, sep, sp);
19: if cp = 0 then
20: sRec.stemID :=

PorterStemmer.getStemID(
substr(doc.content, sp));

21: sRec.docID := doc.docID;
22: pipe row (sRec);
23: sp := docLen + 1;
24: else
25: sRec.stemID :=

PorterStemmer.getStemID(
substr(doc.content, sp, cp - sp));

26: sRec.docID := doc.docID;
27: pipe row (sRec);
28: sp := cp + 1;

29: end if ;

30: end loop;

31: end loop;
32: return;

33: end mapper;

The Reduce function (Algorithm 5) computes the number
of appearances of the words in text. This function then
emits the record which contains the stem, the document
ID and the counter. The Reduce function is an aggregation
Table Function. It receives the stem as key and a set of
document IDs and counters as value. For each stem, the
set is iterated and it sums the counters for each document.

The Map function uses a pipe row to insert the stem, the
document unique identifier and the counter as values for
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a new row in the Pipelined Table Functions, instead of
using an Emit . The Reduce function, an aggregation Table
Function, simply extract the information from the pipe and
sums all the counters for a given stem and document ID.
At the end of this process the InvertedIndex and Stems
tables are populated with all the correct information.

Algorithm 5 PL/SQL Reduce Funtion

Input: a stemRecord - record with docID and stemID
Output: recalculates the number of appearances for each

stem
1: function reducer(inStemsCursor in stemsCursor)
2: return stemssCountTable
3: pipelined parallel enable (partition inStemsCursor

by hash(stemID))
4: cluster inStemsCursor by (stemID)
5: is
6: stemCR stemsCountRecord; // Record for stor-

ing
the number of co-occurrences for a stem

7: stemN stemRecord; // Next Stem
8: begin
9: stemCR.count := 0;

10: loop
11: fetch inStemsCursor into nw;
12: exit when inStemsCursor%notfound;
13: if stemCR.stemID is null then
14: stemCR.stemID := stemN.stemID;
15: stemCR.docID := stemN.docID;
16: stemCR.count := stemCR.count + 1;
17: else
18: if stemN.stemID <> stemCR.stemID then
19: pipe row (stemCR);
20: stemCR.stemID := stemN.stemID;
21: stemCR.docID := stemN.docID;
22: stemCR.count := 1;
23: else
24: if stemCR.docID = stemN.docID then
25: stemCR.count := stemCR.count + 1;
26: else
27: pipe row(stemCR);
28: stemCR.docID := stemN.docID;
29: stemCR.count := 1;

30: end if ;

31: end if ;

32: end if ;

33: end loop;
34: if stemCR.count <> 0 then
35: pipe row (stemCR);

36: end if ;
37: return;
38: end reducer;

4. PERFORMANCE TESTING

The performances of the applications are tested by measur-
ing the response time for constructing the inverted index
for five different sets of input data. The tests are done
for 10, 50, 100, 500 and 1 000 documents. A document
has approximately 4 000 words. The performance tests for
the multi-thread applications use 4 threads. All the tests
are done on virtual machines. These machines are created

using the VMware virtualization software and have the
following hardware specifications: 4GB of RAM, a 40GB
HDD and one processor with 2 cores with a frequency
of 2.4GHz each. The operating system for the machine
with MongoDB is Ubuntu 12.04LSTx64 and the operating
system for the Oracle database is Windows 7 Professional
x64. MongoDB 2.6.3 and Oracle 11gR2 are used.

Algorithm 6 JavaScript function for calculation the
inverted index construction time
Input: the number of tests
Output: inverted index construction time
1: function creationInvertedIndex(n){
2: for (var i = 0; i < n; i+ +) {
3: db.inverted index.remove();
4: var start = new Date();
5: db.runCommand({

”mapreduce” : ”documents”,
”map” : map,
”reduce” : reduce,
”out” : ”inverted index”}

);
6: var end = new Date();
7: print(end-start);

8: };

9: };

Algorithm 7 PL/SQL block for calculation the inverted
index construction time
Input: the number of tests
Output: inverted index construction time
1: declare
2: timeStart number;
3: timeSnd number;
4: sep varchar2(20) := ’[ˆ0-9a-zA-Z+#]+’;
5: is
6: begin
7: for i in 1..&n
8: loop
9: execute immediate ’truncate table

InvertedIndex’;
10: timeStart := dbms utility.get time();
11: insert into InvertedIndex

select docID, stemID, sum(count)
from table(MR.reducer(
cursor(select value(mr).stemID stemID,
value(mr).docID docID from table(
MR.mapper(cursor(select docID,
lower(regexp replace(content, sep , ’ ’))
from documents), ’ ’)) mr)))

group by stemID, docID
order by 1,2;

12: timeEnd := dbms utility.get time();
13: dbms output.put line(timeEnd-timeStart);

14: end loop;

15: end

The application that uses the MongoDB MapReduce
framework uses a JavaScript function for testing (Algo-
rithm 6). The Python applications use a bash script to test
the creation of the inverted index. The Python MapReduce
application uses a number of 4 threads for both databases.
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Finally, the Oracle implementation uses a PL/SQL anony-
mous block, presented in Algorithm 7.

The algorithm that builds the inverted index using
MapReduce and Pipelined Table Functions in Oracle is the
slowest as shown in Table 1 and for that reason it is not
a viable solution, although it improves the allocated space
for the index, due to the index structure. For Oracle, it is
recommended to use the multi thread solution because it
runs faster and improves the creation time considerable.

MongoDB can safely and quickly handle very large
datasets using horizontal sharding by value ranges (Red-
mond et al. 2012). The last tests are designed to see if
the construction of the inverted index can be improved in
a distributed environment. To achieve this, a three node
configuration in a shared everything architecture is used
(Figure 3).

Fig. 3. MongoDB distributed architecture

The configuration in Figure 3 uses three MongoDB nodes
for storing information. The information is divided be-
tween the nodes based on a shard key. The Mongo Config-
uration Node is the server that keeps track of the keys. The
Mongos server is the single point of entry for the clients.
This server uses the Mongo Configuration Node to get the
sharding keys so it can redirect the clients to the correct
server where the data is stored. The implementation uses a
shared everything architecture because the nodes share the
same memory address space for read/write access between
them. The following commands are used to configure the
distributed architecture.

$mkdir MongoNode1 MongoNode2 MongoNode3 MongoConfig

$mongod –shardsvr –dbpath MongoNode1 –port 27101

$mongod –shardsvr –dbpath MongoNode2 –port 27102

$mongod –shardsvr –dbpath MongoNode3 –port 27103

$mongod –configsvr –dbpath MongoConfig –port 27110

$mongos –configdb localhost:27110 –port 27120

$mongo localhost:27120/admin

mongos>db.runCommand({addshard:”localhost:27101” })
mongos>db.runCommand({addshard:”localhost:27102”})
mongos>db.runCommand({addshard:”localhost:27103”})
mongos>db.runCommand({enablesharding:”DocumentsDB”})

The best time performance for the inverted index is
achieved by the application that uses MongoDB MapRe-
duce framework in a distributed environment (Figure 4).
Oracle implementation of MapReduce using Pipelined Ta-
ble Functions has the worst time performance. The mean
execution time for the Python implementation of MapRe-
duce is very close to the time measured for the MongoDB
implementation. When the volume of documents increases,
the mean execution time grows exponentially. The mean
execution time is shown in Table 1.

An index provided by the database can be used to index
a text e.g. Context index in Oracle (Shea 2014) or Text

Index in MongoDB. This could be used only when needed
by a word search, but when it is needed to search by
document this approach is not recommended because the
index is not flexible. In Text Mining the words are used as
values for attributes, and using an index provided by the
database will not fulfill this requirement.

Table 1. Inverted Index creation time in
seconds

No. Documents

Algorithm 10 50 100 500 1000

Single
Thread

3.15
±0.02

13.60
±0.13

26.89
±0.49

131.42
±0.89

257.62
±0.68

Multithread
MongoDB

2.88
±0.01

12.27
±0.03

23.50
±0.13

120.14
±0.43

246.86
±0.83

Multithread
Oracle

3.15
±0.03

9.78
±0.04

18.33
±0.12

90.90
±1.17

230.39
±3.65

MongoDB
MapReduce

1.48
±0.02

7.80
±0.04

15.96
±0.09

81.26
±0.27

160.92
±0.26

Oracle
MapReduce

39.08
±0.35

189.38
±0.99

381.45
±0.71

1 924.08
±2.08

3 693.19
±3.89

MongoDB
Distributed

1.53
±0.02

1.94
±0.01

7.92
±0.08

21.17
±0.19

80.98
±0.33
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Fig. 4. Inverted Index creation time in seconds

Tables 2 and 3 present the query performance time when
using no index, a database build-in index and the inverted
index presented in this paper. The 1 000 documents corpus
was used for this set of tests. The results show that using
an inverted index instead of a build-in index improves
query performance for both databases (Figure 5 and
Figure 6).

Table 2. Oracle query performance in
milliseconds

No. Words TST TSTWCI TSTWIV

1 word 1 340.00±14.04 1 247.50±36.88 841.00±32.13

2 words 1 469.00±26.01 1 334.75± 6.75 948.00±10.33

3 words 1 612.00±45.66 1 455.00±33.27 1 040.00±27.08

4 words 1 769.00±60.08 1 550.00±17.92 1 159.00±23.31

5 words 1 985.00±34.08 1 649.75±27.51 1 252.00±29.36

TST - Text Search Time without inverted index;
TSTWCI - Text Search Time with Context Index;
TSTWIV - Text Search Time with inverted index
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Fig. 5. Oracle query performance in milliseconds

Table 3. MongoDB query performance in
milliseconds

No. Words TST TSTWTI TSTWIV

1 word 213.5±0.85 3.2±0.42 4.9±0.32

2 words 376.9±0.99 42.2±0.42 7.0±0.00

3 words 551.4±0.85 77.5±0.53 9.0±0.00

4 words 1 621.4±2.41 92.3±0.48 11.3±0.48

5 words 1 824.5±4.40 105.0±0.94 14.1±0.57

TST - Text Search Time without inverted index;
TSTWTI - Text Search Time with Text Index;
TSTWIV - Text Search Time with inverted index
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Fig. 6. MongoDB query performance in milliseconds

Algorithm 8 presents the JavaScript function used for
MongoDB TSTWIV tests (Table 3). This function receives
as a parameter an array of words and consists of two steps.
The first step extract the stem for each words and creates
a stem array. The second step uses a MongoDB Pipeline
Aggregation function which unwinds the stem array, finds
the documents that contain each individual stem and
aggregates the response so that only the documents that
contain all the stems are retrieved.

Tests are highly dependent on the hardware architecture.
Performance is influenced by the size of the internal
memory: a higher amount of RAM directly impacts the
number of records that the DBMS can store here. Also the
CPU plays a major role because the speed for processing

queries is influenced by the processor frequency and by the
number of cores (Truică et al. 2014).

Algorithm 8 MongoDB TSTWIV tests JavaScript func-
tion
Input: the number of tests, a list of words
Output: documents that contain the list of words
1: function findDocuments(n, wordsArray){
2: var stemsArray = new Array();
3: for (var word in wordsArray) {
4: var stem = PorterStemmer.getStem(word);
5: stemArray.push(stem);

6: };
7: for (var i = 0; i < n; i+ +) {
8: var start = new Date();
9: var elems = db.inverted index.aggregate(

{ $match: { ”stem”: { $in: stemsArray } } },
{ $unwind: ”docIDS”},
{

$group: {
id: ’docIDs.docID’,

stems: { $addToSet: ”stem” }
}

},
{ $match: { stem: { $all: stemArray } } },
{ $project: { id: 1}}

);
10: var end = new Date();
11: print(end-start);

12: };

13: };

5. CONCLUSIONS

MongoDB is a flexible, schema-less database which allows
documents to be nested inside other documents (Truică
et al. 2013). These features have an impact on the way
data is stored; in MongoDB the inverted index is stored
as one document. The best performance for MongoDB is
achieved when using the MapReduce framework inside the
DBMS in a distributed environment (Table 1).

Oracle Table Functions are a robust scalable way to imple-
ment MapReduce within the Oracle database and leverage
the scalability of the Oracle Parallel Execution framework.
Using this in combination with SQL provides an efficient
and simple mechanism for database developers to use
the MapReduce functionality within the environment they
understand and with the languages they know (Shankar
et al. 2009).

The use of the Porter Stemmer algorithm and the removal
of the stop words considerably minimize the dimensions
of the index. The stop words are dropped because their
relevance is minimal when doing a full text search. This
Porter Stemmer algorithm has its flaws - the stems are
not always accurate. A better approach would be to
use a lemmatization algorithm. The reason why such an
algorithm was not used is because it is hard to integrate in
a database. For applications that do not process any text in
the database, a lemmatization algorithm is recommended.
If lemmas are used instead of stems, the index is more
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accurate during full text search and the query results have
more meaningful content.

Inverted indexes can be used in semantic search. The
Porter Stemmer algorithm can be applied on the search
phrase resulting a list of stems. This list can then be used
to search inside the inverted index to find the relevant
documents that contain the searched words, instead of
searching for the entire phrase inside the documents.

The number of appearances of each word in a document
was also kept when the inverted index is built. The number
of occurrences can be used to classify the documents using
an unsupervised classification algorithm or for Text Min-
ing. Moreover, this information can be used to compute
measures used in Information Retrieval, e.g. term fre-
quency (TF), inverted document frequency (IDF), TFIDF,
etc.

The experimental validation shows that, for MongoDB,
constructing the index at the DBMS layer using the
MapReduce framework is the best approach. Moreover, the
results show that constructing the index at the application
layer is the best approach when using Oracle. The best
time performance for full text search is achieved when
using the proposed inverted index instead of no index or a
build-in index provided by the DBMS for both databases.

The work carried out in this paper has revealed many
promising areas and further research in optimizing the cre-
ation of an inverted index for full text search in databases.
An area that is worthy of further investigation is the im-
plementation of a lemmatization algorithm at the DBMS
layer. Another interesting approach could be the use of a
GPU MapReduce framework (He et al. 2008) to construct
inverted indexes because it implies a serious amount of
parallel processing (Munteanu et al. 2015). Another area
of interest would be to implement clustering algorithms
inside the DBMS for unsupervised classification of text and
for data and text mining. Lastly, it is worth mentioning
that a text search engine that uses an optimized inverted
index would be appropriate to be implemented inside the
database for semantic search.
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