
CEAI, Vol.11, No.2, pp. 51-58, 2009 Printed in Romania

Security Analysis at Architectural Level in Embedded Software Development

Liliana Dobrică, Radu Pietraru

University Politehnica of Bucharest, Faculty of Automatic Control and
Computers, Spl. Independentei, 313, Bucharest, Romania,

 e-mail:{liliana@ aii.pub.ro, radup@ aii.pub.ro}

Abstract: Beyond the network applications there are increasing concerns regarding reducing risks for the
security properties of the final product in the embedded systems domain as early as possible during the
development cycle. Current design based on security models proved functional but inefficient when
designing embedded software systems. This paper aims to attain the main problems in designing
embedded software systems in terms of security and draw a minimal security model specifically designed
for them. A systematic analysis of the architecture based on design principles and threats modeling at the
conceptual level and model-based at the concrete level is the solution that may guarantee the achievement
of security policies specified in requirements.

Keywords: security, software architecture, embedded systems, analysis, model

1. INTRODUCTION

For many years, embedded systems have been quietly
working behind the scenes of almost all modern domains,
from automotive to industrial process control to health care
and space exploration. Traditionally embedded systems are
doing control. They are responsible for the availability and
functionality of many critical systems, from factory
automation to gas pipeline monitors to networking equipment
(Werner et al, 2008). Increasingly, these critical embedded
systems often incorporate networking requirements and are
built from software components and services (Eby et al,
2007). Components of embedded systems communicate with
each other and with the external environment (e.g, sensors
and actuators) at multiple levels (network-on-chip, board-
level, cluster-level, local-area networks, wide-area networks)
by wire-bound and wireless methods, observing given timing
and dependability constraints even in the presence of adverse
environmental conditions.

Usually networking refers to control loops to be supported at
network level, communication service reliability to be at
different levels depending on the application specific
parameters, or to follow established protocol standards
(Ethernet, USB, CAN, Bluetooth, etc). Integrity and security
models and mechanisms are required to prevent undetected
modification of hardware and software by unauthorized
persons or systems, meaning defence against message
injections, message replay or message delay on the network.

Just as the early networked desktop computers and server's
were unprepared to address the new security concerns of
network connectivity, today's embedded systems introduce a
significant new security concern, which must be addressed
immediately and systematically. Unfortunately, the critical
importance of embedded systems is seldom matched with a
strong, comprehensive security infrastructure (Ken Dixon et

al, 2005). An efficient conceptual design and analysis in the
early stages of development reduces these costs of
operational resources over-dimensioning of the final product
and others related to time and development resources. Also it
eliminates the risks that the final product may not be
consistent with the functional requirements specification and
quality.

Software architecture is the main tangible artifact in a system
development cycle. A higher abstraction level of embedded
systems design makes no distinctions between software and
hardware. Also software architectures provide design-level
models and guidelines for composing software systems. The
goal of architectural analysis is to get measures of
compliance with regard to requirements specification. In the
case of embedded systems it is very important to identify
which are the relevant properties and how analysis techniques
and methods could be applied in this domain. Analysis
methods take advantage of architectural concepts to analyze
quality attributes in a systematic way. It is very important to
identify potential risks and to verify that the quality
requirements have been addressed in the architecture design.
Analysis could be applied on various stages from the
conceptual model to a detailed concrete design. Also it could
be associated with the design in an iterative improvement of
the architecture. There are specific techniques that could be
applied at various development stage and also there are
specific costs in time and resources that matter. The potential
risk of systems development is minimized if the interactions
of quality attributes are considered in the analysis method.

Nowadays security becomes an important property of
embedded systems. Novel approaches are required to deal
with malicious attacks from intruders, to maintain the
confidentiality of sensitive data and to protect intellectual
property (IP) and digital rights management (DRM) for
embedded systems that are connected to open networks such
as the Internet. This paper examines several significant

52 CONTROL ENGINEERING AND APPLIED INFORMATICS

embedded systems security models that could be considered
during a systematic analysis at the architectural level. In the
beginning it is discussed about risks analysis in the
development process, and then it is outline the principles of
secure design, for software security and security mechanisms.
Section 4 describes and analysis the main security models
and finally we propose a solution of integrating them into a
security-based software architecture development for
embedded systems. Authors present in section 5 the main
steps in security software design for a generic embedded
device.

2. BACKGROUND

2.1. Software Architecture

Software architecture description is organized in multiple
views. Each view is conform to a viewpoint that represents a
related set of concerns from a stakeholder perspective. It
consists of a model or a diagram that are described with well
defined notation such as Unified Modeling Language (UML).
Multiple view descriptions of an architecture may be
performed at various abstraction levels. Thus it could be a
conceptual level with a coarse-grain architectural elements
and a concrete level with a detailed design model (Dobrica
and Niemela, 2008).

Conceptual
Structural

View

Conceptual
Behavior

View

Conceptual
Deployment

View

Conceptual
Development

View

Concrete
Structural

View

Concrete
Behavior

View

Concrete
Deployment

View

Concrete
Development

View

Fig. 1. Software architecture description.

The need for different architectural views depends on three
issues: the size, the domain and the number of different
stakeholders. Although a multiple view approach helps in
developing software products, it is easy to introduce errors
and inconsistencies in a multiple view model. It is therefore
necessary to provide support for consistency checking among
the multiple views.

Architectural styles and patterns are the starting point for
architecture development. Architectural styles and patterns
are utilized to achieve qualities. A style is determined by a set
of component types, the topological layout of the
components, a set of semantic constraints and a set of
connectors (Bass et al, 1998). A style defines a class of
architectures and is an abstraction for a set of architectures
that meet it. A small taxonomy identifies five style
categories: independent components, data flow centered,
data-centered, virtual machine, and call-and return style. An
architectural pattern is a documented description of a style or
a set of styles that expresses a fundamental structural
organization schema applied to high-level system
subdivision, distribution, interaction, and adaptation

(Buschmann, 1996). Design patterns, on the other hand, are
on a lower level. They refine single components and their
relationships in a particular context, and idioms describe how
to implement particular aspects of components using the
given language (Gamma et al., 1994).

Under a software perspective architectural styles are
recurring patterns of system organization whose application
results in systems with known, desirable properties. As such,
styles are key software design idioms. In practice, an
architectural style consists of rules and guidelines for the
partitioning of a system into subsystems and for the design of
the interactions among subsystems. The subsystems must
comply with the architectural style to avoid a property
mismatch at the interfaces between subsystems.

Collections of architecture styles and patterns may be
included in a knowledge base that allows their evaluation in
terms of both quality factors and concerns, and anticipations
of their use. A ”pre-scored” of architectural patterns is
feasible in order to gain a sense of their relative suitability to
meet particular security of a system. In addition to evaluating
individual patterns, it is necessary to evaluate compositions
of patterns that might be used in architecture. Identifying
patterns that do not compose well (the result is difficult to
analyze, or the quality factors of the result are in conflict with
each other) should steer a designer away from “difficult”
architectures towards those made of well-behaving
compositions of patterns. The knowledge base built in this
way helps to move from the notion of architectural styles
toward the ability to reason (whether quantitatively or
qualitatively) based on security-specific models. The goals of
having a knowledge base are to make architectural design
more routine-like and more predictable, to have a standard set
of security-based analysis questions, and to tighten the link
between design and analysis by means that can be used to
provide context-dependent measures.

2.2. Risks in the embedded systems development process

Many embedded systems require developers to give priority
to performance, which in some cases can lead to less priority
and consideration of qualities. As most of these systems are
conceived and designed for a particular purpose, non-
conventional and ad-hoc techniques are often used by
developers to introduce new and sometimes unknown classes
of threats, not known in general or present in non-embedded
devices.

A systematic analysis for embedded systems domain should
be related to software components such as:

• Operating System Basic Components
• Memory Management Subsystem
• Third party application programming interfaces
• Bespoke communications protocols

During the activities of a development process (Fig. 2) a
comprehensive security review usually is involved in test
cases generation, static source code analysis and black box
testing. For each one the following risks are considered:

CONTROL ENGINEERING AND APPLIED INFORMATICS 53

 1. Test case generation. Based on an initial threat
modeling exercise, test cases are developed that are
geared specifically towards embedded systems and its
security.
2. Static source code analysis. A combination of static
analysis tools for automatic and manual analysis
techniques are used to identify potential vulnerabilities in
the source code, prioritize components with a higher
attack area.
3. Black Box Testing. Manual techniques such as
analysis, reverse engineering and fuzzy testing are used to
evaluate the system while running and detailed static state
without documentation of design or implementation.

A software architecture that integrates security must offer a
way by focusing on the analysis of system architecture -
providing the ability to detect problems with availability,
security, and timeliness early on, before they conspire to raise
costs, reduce effectiveness and predictability, and shorten
lifespan. Most of these products are expected to do more and
be more secure, and many are made to be portable or used in
network environments. Software engineers are called on to
deliver increasingly complex software systems that provide
more functionality while consuming less power and costing
less to develop and operate. Unfortunately, system engineers
do not have insight into critical system characteristics - such
as performance, safety, reliability, time criticality, security or
fault tolerance. Using traditional means, system integration
becomes high risk, and system evolution (lifecycle support)
becomes expensive and results in rapidly outdated
components (SEI, 2007).

Analysis Views
Interface Consistency, Latency,

Scheduling, Fault Tolerance, Processor
Use, Bus Utilization, Security

Requirements
Engineering

Software
Architectural

Design

System
Design

Component
Software
Design

Top-Level
Verification

Items
Acceptance

Test

High
Level
Model

Detailed
Model

Specify
Model-Code

Interface

System
Test

Integration
Test

Unit
Test

Code Development

Fig. 2. Integrating security software architecture for
embedded system design.

Improved embedded systems engineering practice is
architecture-based and model driven. Well-defined software
system architecture provides a framework to which system

components are designed and integrated. System models that
precisely capture this architecture provide the basis for
predictable system engineering. Model-based engineering for
embedded systems:

• reduces risk through early and repeated analysis of
the system architecture;

• permits the engineer to see system-wide impacts
of architectural choices;

• increases confidence by validating model
assumptions in the operational system and
permitting the system models to evolve in multiple
fidelity;

• reduces cost through fewer system integration
problems and simplified life cycle support;

Integrating security software architecture must permit to:

• represent embedded systems as component based
system architecture;

• model component interactions as flows;
• service calls and shared access;
• model task execution and communication with

precise timing semantics;
• model the binding of applications to execution

platforms;
• represent operational modes and fault tolerant

configurations;
• support component evolution and large-scale

development;
• accommodate reliability and safety analyses.

3. SYSTEMS SECURITY ARHITECTURE

3.1. Security requirements of embedded systems

Embedded systems deal with resource-constrained devices
where parameters such as memory capacity, power
consumption, processing power, time to market, and cost
must strike a balance with security requirements. A synthesis
of requirements specification (ARTEMIS, 2005) that refers to
security for embedded systems of various application
domains includes the following:

R1. The architecture shall assure that authentication is done
at link establishment and during execution. Any changes of
network addresses and any link modifications have to be
detected.
Rationale: There shall be trust and security with respect to
network connectivity and the level of trusted embedded
environments.

R2. The architecture shall support unique, but uniform
identification of the subsystems (at different abstraction
levels).
Rationale: Naming is a key topic in networking.

R3. The architecture shall provide mechanisms to prevent the
disclosure of information to unauthorized persons or systems.
Rationale: This property is relevant for domain specific
information (e.g. personal data in office applications,
performance data and product recipes in automation systems)

54 CONTROL ENGINEERING AND APPLIED INFORMATICS

as well as for information specific to the security mechanisms
themselves (e.g. passwords).

R4. The architecture shall provide mechanisms to prevent the
disclosure of intellectual property at different abstraction
levels (e.g. the contents of an FPGA or of on-chip flash
memory).
Rationale: Reverse engineering should be progressively
difficult.

R5. The architecture shall provide mechanisms to prevent
undetected modification of hardware or software (on platform
level and application level) by unauthorized persons or
systems.
Rationale: In safety-critical applications, integrity can be a
safety-relevant property with respect to information like
sensor values or control commands. In many cases the
integrity of a given set of data is explicitly required (e.g.
mileage counter of car, transaction via online banking).The
assurance of integrity includes defence against message
injections, message replay, and message delay on the
network.

R6. Tuning protection of on-chip Flash memory via a
password mechanism with protection option for each flash
sector shall be supported. (On chip Flash memories shall
support read/program/erase protection option, if the debug
ports are active; the activation of the debug port will be
disabled by software, the password should be unique for each
chip.)
Rationale: In some cases suppliers want to assure that their
hardware can be used only with their own software.

R7. The architecture shall provide mechanisms to ensure that
unauthorized persons or systems cannot deny service access
to authorized users.
Rationale: Violation of availability, also known as denial-of-
service may cause economic damages by a significant
reduction of the user-value of a given system. Furthermore
safety issues can also be affected as operators may lose the
ability to monitor and to control a safety-critical process.

R8. The architecture shall provide mechanisms to determine
the true identity of a system or a user.
Rationale: Authentication is a prerequisite for authorization.

R9. The architecture shall provide mechanisms to prevent
users or systems from accessing a given service without the
permission to do so.
Rationale: The basic objective of authorization is to
distinguish between legitimate and illegitimate users with
respect to a given service.

R10. The architecture shall provide mechanisms to “provide
irrefutable proof to a third party of who initiated a certain
action in the system, even if the actor is not cooperating”.
Rationale: This requirement is relevant to establish
accountability and liability. Non-repudiation is becoming
extremely important to commerce.

R11. The architecture shall provide mechanisms to bind any
content (e.g. music, videos, etc) unambiguously to given
license, and to enforce the usage-restrictions (e.g. defined

time intervals where usage is allowed) that are stated in the
license.
Rationale: This is demanded by digital media publishers in
order to allow them to control any duplication and
dissemination of their content.
Comment: Component industry: “We want to know how
much of our company’s IP is in your system”.

R12. It shall be possible to protect content that is exchanged
via streaming media from being copied.
Rationale: Many content providers want to prevent the
copying to disc of a high definition stream with full
resolution. Therefore a stream can only be received (decoded)
by authorized devices that prevent the digital output of the
decoded full resolution stream.

3.2. Guidelines and principles of secure design

Security is a system requirement just like performance,
availability, reliability, etc. Therefore, it may be necessary to
trade off certain security requirements to gain others during
architectural design process. For instance security and
dependable architectures are sometimes conflicting. The
trade-off between multiple requirements is effective after an
analysis at the architectural level to identify sensitivity points
where multiple attributes interact. Such an analysis at the
conceptual level should be based on the verification of well-
known principles from domain knowledge. In embedded
systems domain we can identify the principle of threat
modeling, principles of secure design, principles for software
security and others related to protection mechanisms.

Threat modeling principle is based on the assumption that
every system has intrinsic value that is worth protecting.
(Giordano, 2009). However, because these systems have
value, they are also open to internal or external threats, which
can, and often will, cause damage to the end product. Threat
modeling can be difficult, but it is necessary. Despite the
resource challenges, it is possible to develop a working
system that allows a final product to be effective in the
presence of adverse environmental conditions by carefully
considering a threat model and designing a system to work
within the limitations of the available computing power
addressing that model. A threat model is defined as
identifying a set of possible attacks to consider coupled with
a risk assessment strategy. Having a threat model it allows
assessing the probability, the potential damage, and the
priority of attacks. It involves thinking about how a system
can be attacked. When successful, it addresses potential
system security failures such as how it fails and what happens
when it fails.
Principles of secure design (Savolainen P. et al, 2007)
provide guidelines at a coarse-grain level for developer to
follow such as:

• Design security from the start;
• Allow for future security enhancements;
• Minimize and isolate security controls;
• Employ least privilege;
• Structure the security relevant features;
• Make security friendly;
• Don’t depend on secrecy for security.

CONTROL ENGINEERING AND APPLIED INFORMATICS 55

Principles for software security are associated to kind of
techniques that are related to this quality attribute. Examples
may be the following:

• Secure the weakest link;
• Practice defense in depth;
• Fail securely, meaning that if the software has to

fail, make sure it does it securely;
• Follow the principle of least privilege;
• Compartmentalize, meaning to minimize the amount

of damage that can be done by breaking the system
into units;

• Keep it simple. Complex design is never easy to
understand;

• Promote privacy. Try not to do anything that
compromises the privacy of the user;

• Remember that hiding secrets is hard;
• Be reluctant to trust. Instead of making assumptions

that need to hold true, you should be reluctant to
extend trust;

• Use your community resources. Public scrutiny
promotes trust;

Design principles for protection mechanisms are:

• Least privilege - should only have the rights
necessary to complete your task.

• Economy of mechanism - should be sufficiently
small and as simple as to be verified and
implemented – e.g., security kernel. Complex
mechanisms should be correctly understood,
modeled, configured, implemented and used.

• Complete mediation - every access to every object
must be checked.

• Open design- let the design be open. Security
through obscurity is a bad idea.

• Should be open for scrutiny by the community -
better to have a friend/colleague find an error than a
foe.

• Separation of privilege - access to objects should
depend on more than one condition being satisfied.

• Least common mechanism - minimize the amount of
mechanism common to more than one user and
depended on by all users.

• Psychological acceptability - user interface must be
easy to use, so that users routinely and automatically
apply the mechanisms correctly. Otherwise, they
will be bypassed.

• Fail-safe defaults- should be lack of access.

4. SECURITY MODELS

A more detailed analysis of security at the architectural level
should consider building of specific security models. Security
models are built based the security policies, which are
documented and express clearly and concisely what the
protection mechanisms are to be achieved. More concrete a
policy is a statement of the security we expect from the final
system. Thus a security model is a specification of a security
policy and it mainly describes the entities governed by the

policy and it states the rules that constitute the policy (Yu H.
et al, 2005).

A security model maps the abstract goals of a policy to the
embedded system terms by specifying explicit data structures
and techniques that are necessary to achieve the security
policy. A security model is usually represented in
mathematics and analytical ideas, which are then mapped to
system specifications, and then developed by programmers
through programming code. For example, if a security policy
states that subjects need to be authorized to access objects,
the security model would provide the mathematical
relationships and formulas explaining how x can access y
only through the outlined specific methods. A security policy
outlines goals without regard to how they will be
accomplished (Feng Q. et al, 2005). A model is a framework
that gives the policy form and solves security access
problems for particular situations.

There are various types of security models. We can mention
the following:

• Models that capture policies for confidentiality
(Bell-LaPadula) or for integrity (Biba, Clark-
Wilson).

• Models that apply to environments with static
policies (Bell-LaPadula) and models that considers
dynamic changes of access rights (Chinese Wall).

Security models can be informal (Clark-Wilson), semi-
formal, or formal (Bell-LaPadula, Harrison-Ruzzo-Ullman).

Several models are described bellow. Our discussion refers to
lattice models, state machine models, noninterference
models, Bell-LaPadulla confidentiality model, Biba integrity
model,

4.1. Lattice Models

A lattice is a mathematical construct that is built upon the
notion of a group. A lattice is a mathematical construction
with:

• a set of elements
• a partial ordering relation
• the property that any two elements must have unique

least upper bound and greatest lower bound
A security lattice model combines multilevel and multilateral
security. Lattice elements are security labels that consist of a
security level and set of categories.

4.2. State Machine Models

In state machine model, the state of a machine is captured in
order to verify the security of a system. A given state consists
of all current permissions and all current instances of subjects
accessing the objects. If the subject can access objects only
by means that are concurrent with the security policy, the
system is secure. The model is used to describe the behavior
of a system to different inputs. It provides mathematical
constructs that represents sets (subjects, objects) and
sequences. When an object accepts an input, this modifies a
state variable thus transiting to a different state.

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

4.3. Noninterference Models

The model ensures that any actions that take place at a higher
security level do not affect, or interfere with, actions that take
place at a lower level. It is not concerned with the flow of
data, but rather with what a subject knows about the state of
the system. So if an entity at a higher security level performs
an action, it can not change the state for the entity at the
lower level. The model also addresses the inference attack
that occurs when some one has access to some type of
information and can infer(guess) something that he does not
have the clearance level or authority to know (WikiBooks,
2009).

4.4. Bell—LaPadula Confidentiality Model

It was the first mathematical model with a multilevel security
policy that is used to define the concept of a secure state
machine and models of access and outlined rules of access.
It is a state m/c model that enforces the confidentiality
aspects of access model. The model focuses on ensuring that
the subjects with different clearances (top secret, secret,
confidential) are properly authenticated by having the
necessary security clearance, need to know, and formal
access approval-before accessing an object that are under
different classification levels (top secret, secret, confidential).
The rules of Bell-Lapadula model are:

• Simple security rule (no read up rule): It states that a
subject at a given security level can not read data
that resides at a higher security level.

• Star property rule (no write down rule): It states that
a subject in a given security level can not write
information to a lower security levels.

• Strong star property rule: It states a subject that has
read and write capabilities can only perform those
functions at the same security level, nothing higher
and nothing lower.

4.5. Biba Integrity Model

It is developed after Bell – Lapadula model. It addresses
integrity of data unlike Bell – Lapadula which addresses
confidentiality. It uses a lattice of integrity levels unlike Bell
– Lapadula which uses a lattice of security levels. It is also an
information flow model like the Bell – Lapadula because they
are most concerned about data flowing from one level to
another. The rules of Biba model are:

• Simple integrity rule(no read down): it states that a
subject can not read data from a lower integrity
level.

• Star integrity rule(no write up): it states that a
subject can not write data to an object at a higher
integrity level.

• Invocation property: it states that a subject can not
invoke(call upon) a subject at a higher integrity
level.

4.6. Clark—Wilson Integrity Model

It was developed after Biba and addresses the integrity of
information. This model separates data into one subject that
needs to be highly protected, referred to as a constrained data
item (CDI) and another subset that does not require high level
of protection, referred to as unconstrained data items(UDI).

Components of the model are:
• Subjects (users): are active agents.
• Transformation procedures (Tp’s): the s/w

procedures such as read, write, modify that perform
the required operation on behalf of the subject
(user).

• Constrained data items (CDI): data that can be
modified only by Tp’s.

• Unconstrained data items (UDI): data that can be
manipulated by subjects via primitive read/write
operations.

• Integrity verification procedure (IVP): programs that
run periodically to check the consistency of CDIs
with external reality. These integrity rules are
usually defined by vendors.

Integrity goals of Clark – Wilson model are

• Prevent unauthorized users from making
modification (addressed by Biba model).

• Separation of duties prevents authorized users from
making improper modifications.

• Well formed transactions: maintain internal and
external consistency i.e. it is a series of operations
that are carried out to transfer the data from one
consistent state to the other.

4.7. Access Control Matrix

This model addresses access control issues. Commonly used
in operating systems and applications.

4.8. Information Flow Models

In this model, data is thought of as being held in individual
discrete compartments. Information is divided based on two
factors: classification and need to know

The subjects clearance has to dominate the objects
classification and the subjects security profile must contain
the one of the categories listed in the object label, which
enforces need to know.

4.9. Graham—Denning Model

This model defines a set of basic rights in terms of
commands that a specific subject can execute on an object. It
proposes the eight primitive protection rights, or rules of how
these types of functionalities should take place securely.

• How to securely create an object.
• How to securely create a subject.
• How to securely delete an object.
• How to securely delete a subject.
• How to provide read access rights.

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

• How to provide grant access rights.
• How to provide delete access rights.
• How to provide transfer access rights.

4.10. Harrison—Ruzzo—Ullman Model

The HRU security model (Harrison, Ruzzo, Ullman model) is
an operating system level security model which deals with
the integrity of access rights in the system. The system is
based around the idea of a finite set of procedures being
available to edit the access rights of a subject s on an object.
The model also discussed the possibilities and limitations of
proving safety of a system using an algorithm.

4.11. Brewer—Nash (Chinese Wall)

This model provides access controls that can change
dynamically depending upon a user’s previous actions. The
main goal of this model is to protect against conflicts of
interests by user’s access attempts. It is based on the
information flow model, where no information can flow
between subjects and objects in a way that would result in a
conflict of interest. The model states that a subject can write
to an object if, and only if, the subject can not read another
object that is in a different data set.

5. EXAMPLE OF INTEGRATED SECURITY ANALYSIS
IN ARCHITECTURE DESIGN

An architecture development method can be applied
iteratively integrating design and analysis techniques.

Based on this the architecture description is revealed more
detailed and improved until the requirements are realized on
the architecture design and it can proceed with the
implementation. Security concerns that have been introduced
previously are integrated in this method as in the following
figure (Fig. 3). Architecture description at conceptual level
integrates security guidelines and the architecture description
at the concrete level allows analysis based on security
specific models.

After this phase, the activities involved in concrete
architecture design and the second phase of architecture
analysis are performed.

Architecture
description

at conceptual
level

Embedded Systems
Domain Knowledge

Knowledge base
of security guidelines

Architecture
description
at concrete

level

Requirements
Specification

Security-specific
models

Design

Analysis

Fig 3. Iterative architecture development.

For a generic embedded device with such requirements
specification an iterative architecture development must
follow the next software design and analysis steps:

(1) draw the main functions of the device in a conceptual
level architecture description;

(2) analyze the risks of the conceptual level description based
on security guidelines;

(3) describe the architecture at a more concrete level;

(4) analyze risks on the architecture design by modeling the
threats for the real device;

(5) identify and implement in the concrete design the
measures to reduce the risks;

(6) at the end of the development cycle re-analyze the level of
the final risks and remodel the threats;

(7) in a next generation architecture design re-use from the
domain knowledge an architecture and the models of security
and the feedback from the real world to build a better
architecture.

6. CONCLUSIONS

Security system requirements and activities for realizing
security should be considered in the early stages of
development. In the context of complex embedded system an
architecture-driven approach is the solution that provides the
quality of the final system. A systematic analysis of the
architecture based on design principles at the conceptual level
and model-based at the concrete level is the solution that may
guarantee the achievement of security policies specified in
requirements. In this paper we have discussed about the
main problems in designing embedded software systems with
security requirements and we have presented the current
design and analysis techniques that could be applied at the
architectural level.

ACKNOWLEDGEMENTS

This work is supported by the Romanian research grant
CNCSIS IDEI no. 627/2009.

REFERENCES

Eby M., J. Werner, G. Karsai, A. Ledeczi, (2007) Embedded
Systems Security Co-Design, Institute for Software
Integrated Systems.

Feng Q., R. Lutz, (2005) Bi-directional safety analysis of
product lines, Journal of Systems and Software, 78, pp.
111-127.

Ken Dixon, ConnectForte, Jerry Krasner (2005) FIPS 140-2
and the Embedded Marketplace: Does FIPS Really
Matter?

Dobrica L., Niemelä E. (2008), A UML-based variability
specification for product line architecture views , Procs.
of the Third International Conference on Software and

58 CONTROL ENGINEERING AND APPLIED INFORMATICS

Data Technologies (ICSOFT 2008), vol. SE, INSTICC
Press, pp. 234-239.

Bass L., P. Clements, and R. Kazman, (1998) Software
Architecture in Practice. Addison-Wesley.

Buschmann F., R. Meunier, and H. Rohnert, (1996) Pattern-
Oriented Software Architecture: A System of Patterns.
John Wiley and Sons.

Gamma E., R. Helm, R. Johnson, and J. Vlissides, (1994),
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley.

Sachitano A., R.O. Chapman, and J.A. Hamilton, (2004)
Security in Software Architecture: A Case Study.

Savolainen P., E. Niemelä, R. Savola, (2007) A Taxonomy of
Information Security for Service Centric Systems, Procs.
of Euromicro-SEAA, 2007, pp.5-12.

Werner J., M. Eby, J. Mathe, G. Karsai, Y. Xue, J.
Sztipanovits, (2008) Integrating Security Modeling in
Embedded System Design, Institute for Software
Integrated Systems, Vanderbilt University, Nashville.

Software Engineering Institute - http://www.sei.cmu.edu/
(2007) - Predictable, Model-Based Engineering for
Embedded Systems.

Yu H., X. He, Y. Deng, L. Mo, (2005) Integrating Security
Administration into Software Architectures Design.

ARTEMIS Strategic Research Agenda (2005),
<http://www.artemis-office.org/DotNetNuke/Portals/0/
Documents/sra.pdf>

Giordano Philip, (2009), How Secure is Secure for
Embedded Systems’ Design, Analog Devices, Inc.

WikiBooks - http://en.wikibooks.org (2009) - Security
Architecture and Design

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

