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Abstract: This paper studies passive fault tolerant control (PFTC) of three phase induction motors (IMs). 
First, a nonlinear block control (NBC) transformation is applied to handle nonlinearities of motor faulty 
model. Afterwards, a fault tolerant speed controller is developed based on sliding mode control (SMC) 
technique with linear sliding surface. However, the utilized NBC transformation needs multiple 
derivatives calculations which make it computationally burden. In addition, this NBC transformation has 
unmatched fault rejection problem which SMC controller is not able to remove the fault. To avoid the 
mentioned drawbacks, a novel and simple NBC transformation is proposed for IM. Also, a new nonlinear 
sliding surface is presented in order to enhance the SMC controller performance. Comparative 
simulations demonstrated performance of the proposed controllers for matched and unmatched faults and 
load torque uncertainties. 
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

1. INTRODUCTION 

When a fault occurs in a system components including 
sensors, actuators, and plant, it can cause performance 
degradation and even instability of the system. Therefore, 
there is a crucial need to design fault tolerant controllers 
(FTCs) to compensate faults effects and guarantee system 
reliability and stability with an acceptable performance. 
Generally speaking, the FTCs can be classified into two types 
(Kanev, 2006; Zhang and Jiang, 2008; Campos-Delgado et 
al., 2008): active fault tolerant control (AFTC) and passive 
fault tolerant control (PFTC). The AFTC technique usually 
needs a fault detection and isolation (FDI) scheme that has 
the task to detect and localize faults that eventually occur in 
the system. The PFTC is based on robust control techniques 
which makes system insensitive to certain faults that taken 
into account in the design step. This technique requires no 
redesign and online detection of faults, and therefore is 
computationally more interesting. 

Three phase induction motors (IMs) are very important in 
industry because of their reliability, high performance and 
low costs (Gaied, 2014b). However, due to mechanical, 
environmental, thermal and electrical stresses, IMs are 
subjected to multiple faults. Stator and rotor failures 
including eccentricity and broken bars are the most famous 
asymmetric faults. The eccentricity faults can be categorized 
into two types: static eccentricity and dynamic eccentricity. 
The static and dynamic eccentricities can cause stator and 
rotor asymmetries, respectively (Vas, 1994; Bonivento et al., 
2004).  

From AFTC point of view, different FDI techniques have 
been proposed for dynamical systems such as IMs for 
designing reliable controllers. In (Cho et al., 1992; Bachir et 
al., 2006; Karami et al., 2010), the authors have detected the 
broken bar fault by model-based parameter estimation 
techniques. Multiple signal processing techniques like fast 
Fourier transform (FFT) are studied in (Hedayati Kia et al., 
2004; Vaimann and Kallaste, 2011). In (Filippetti et al., 2000; 
Benbouzid  et al., 2007; Zidani et al., 2008), artificial 
intelligence techniques have discussed for fault detection. 
Also, some other sliding mode (Yan and Edwards, 2007), 
adaptive (Najafabadi  et al., 2011), and sensorless methods 
(Holtz, 2006; Aurora and A. Ferrara, 2007; Ghanes and 
Zheng, 2009a; Ghanes et al., 2010b; Gaeid et al., 2012a) are 
proposed in the recent years.  

From PFTC point of view, in recent years, many methods 
have been employed and combined with each other's for 
providing reliable controllers for linear and nonlinear 
systems. A reliable H  controller has been proposed in (Shi 

et al., 2014). In (Jin et al., 2013), a non-fragile H  

compensation filter has been designed in the framework of 
linear matrix inequalities (LMIs) technique. An output 
feedback fuzzy controller has been developed in (Wang et al, 
2013) for T–S fuzzy systems with sensor faults based on 
LMI. Passivity technique is discussed in (Benosman and 
Lum, 2010a, 2010b) with respect to loss of actuator 
effectiveness. Moreover, SMC technique have received great 
attentions for spacecraft and quadrotor vehicles control due to 
its robust behaviour against model uncertainties (Li et al., 
2013; Mirshams et al., 2014; Merheb et al., 2015). 
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In recent two decades, some studies have been developed for 
IMs control with PFTC (Bonivento et al., 2004, Fekih, 2007, 
Djeghali et al., 2011, 2013), and the most interesting 
approach is the SMC. In (Fekih, 2007), the author have 
proposed an approach which detects the occurrence of fault 
and switch itself between a nominal operation controller and 
sliding mode faulty controller. In (Djeghali et al., 2011, 
2013), a second-order sliding mode controller (SOSMC) is 
designed based of backstepping technique. The SOSMC is 
utilized to avoid the chattering phenomenon, also the 
backstepping technique is applied to bring the IM model 
nonlinearities into the control inputs direction. But both of 
the mentioned literatures only have studied the rotor broken 
bar fault and there is no attention on other faults like the 
stator eccentricity. 

In this paper, two passive fault tolerant sliding mode 
controllers are developed for IM in order to attenuate the 
effects of the stator and rotor faults (broken bar plus 
eccentricity) and the load torque variations. The first 
controller is developed based on NBC technique which is 
reported in (Loukianov, 2002a; Loukianov et al., 2002b). 
This NBC technique is a powerful tool to handle 
nonlinearities of IM model. But it is computationally burden 
and it is not able to remove the complete effects of non-
vanishing unmatched faults/uncertainties. To solve the 
mentioned problem an improved NBC technique is proposed, 
which is the first novelty of this study. On the other hand, 
since the SMC with linear sliding surface presents slow 
transient responses and considerable tracking errors (Shoja 
Majidabad and Toosian Shandiz, 2012), then a novel 
nonlinear sliding surface is suggested that shows fast 
transient response with small tracking errors. This technique 
is known as nonlinear sliding mode control (NSMC). 

This paper is organized as follows: In Section 2, the IM 
healthy and faulty dynamical models are presented. Two 
NBC transformation techniques are implemented for IM 
faulty model in Section 3. In Section 4, two robust fault 
tolerant sliding mode controllers are developed based on the 
NBC transformed models. In Section 5, the merits of the 
designed controllers are verified by the simulations on IM 
subjected to the matched/unmatched faults and load torque 
disturbances. Finally, conclusions are given in Section 6.  

2. DYNAMIC MODEL OF IM AND VECTROR 
CONTROL 

In this section, healthy and faulty models of IM are 
expressed. In addition, the model simplification based on 
field-oriented control (FOC) technique is explained. 

2.1. Healthy Model 

Under balance operation, the state space model of IM is 
presented in the synchronously rotating reference frame (d-q) 
by the following equations (Fekih, 2007; Djeghali et al., 
2013; Krause et al., 2013):  
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where qsds ii ,  are the components of the stator current, 

qrdr  ,  are the components of the rotor flux, qsds vv ,  are 

the stator voltage components, qrdr vv ,  are the rotor voltage 

components, s  is the stator pulsation, r  is the electrical 

angular speed, m  is the mechanical speed, sR  and rR  are 

stator and rotor resistances, sL  and rL  are stator and rotor 

inductances and mL  is the mutual inductance, p  is the 

number of pole pairs, eT  is the electromagnetic torque, LT  is 

an unknown load torque, J  is the moment of inertia 
coefficient, and F  is the friction coefficient.  

Based on the FOC strategy, the coupling between the rotor 
flux vector T

qrdr ],[ 
 
and the electromagnetic torque eT  

should be reduced. This coupling is reducible by selecting the 
rotor flux orientation as follows (Fekih, 2007; Djeghali et al., 
2013): 

 0,  qrrdr                                                               (2)  

From the above assumption, the IM model will be simplified 
as:  
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2.2. Faulty Model 

In this study, two classes of faults in the IM model are 
considered (Vas, 1994; Bonivento et al., 2004):  

1- Rotor asymmetries, mainly due to broken rotor bars or 
dynamic eccentricity. Broken rotor bars lead to the rotor 
resistance variation. This variation can be modeled by 
substituting rr RR   instead of rR  in the IM dynamic 

model (3). 

2- Stator asymmetries, mainly due to static eccentricity.  

From [6], it turns out that in the presence of static and 
dynamic eccentricities, faults generates asymmetries in the 
induction motor, yielding some slot harmonics in the stator 
winding. In the (d− q) reference frame, it is possible to model 
this effect by adding a sinusoidal corruption term to the stator 

currents values. Specifically, letting  )(tiuf
d  and )(tiuf

q denote 

the values of the stator current in the absence of faults and 

)(ti f
d and )(ti f

q  are corresponding values in the presence of 

faults, the current can be expressed in the form 
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Where the amplitude A and the phases are unknown, they 

depend on the stator or rotor faults entity. 

Supposing that faults only occur when induction motor is 
working in a steady operation, then )()( tt sc    the faults 

concerning static eccentricity are concerned, 

0, )(2)()( sslrefmsc tpfttt                           (6)  

The faults concerning dynamic eccentricity are concerned, 

0, )()2(2)()( sslrefmslsc tptkftt          (7)                         

where refmssl p ,   is the slip angular frequency, 

refm,  is the rotor speed reference, f  is the supply 

frequency, 0s  is the unknown position of the reference 

frame once the fault occurs, Nk ,....1 is the finite integer. 

From the above mentioned faults, the IM faulty model can be 
described as  
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Where )()( 11 sdq
L ih
J

T
th  , ),()( 22 rsdq Rihth  , 

),()( 33 rsdq Rihth  and ),()( 44 rsdq Rihth   represent 

the fault and uncertainty terms due to rotor resistance 

variation, harmonics in the stator winding ( uf
sdq

f
sdqsdq iii  ) 

and load torque variation. It is worthy to notify that the load 
torque LT  is added with the fault terms due to its typically 

uncertain nature. 

The control objective is to design sliding mode controllers for 
governing the rotor mechanical speed m  and the rotor flux 

T
qrdrr ],[   in the presence of the faults and 

uncertainties. By taking a glance in the IM faulty model (8), 
it is evident that the model is not in the companion form. 
Therefore, SMC technique is not applicable directly. To solve 
this problem, the NBC transformation technique will be 
developed in the next section. 

3. NBC TRANSFORMATION 

In this section, two types of NBC transformation techniques 
are expressed. The first one is the conventional NBC 
technique which is presented in (Loukianov et al., 2002; 
Loukianov, 2002). But because of non-vanishing uncertainty 
problem and high computational characteristic, we proposed 
the second and new method. More details are presented in 
below:  

To make the IM faulty notations (8) less complex, consider 
the following new variables:  
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Hence, the motor dynamics can be written as 
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The system model (10), can be represented in the following 
NBC-form as 
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The NBC-form (11) is composed of two blocks, where 2X  is 

the fictitious control for the first block, and )(1 tH  and )(2 tH  
are the unmatched and matched fault vectors, respectively.  
Assumption 1: Assume that the fault vectors be bounded as 

max11 )( HtH                                                                    (12)  

max22 )( HtH                                                                   (13)  

where max1H and max2H  are known positive constants. 

3.1. Conventional NBC 

Now, let us to define the following tracking errors 
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where refX ,1  is the desired value of 1X .  

The time derivative of (14) is 
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Substituting the first block of  (11) in (15), yields 
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Let the fictitious control input 2X  for (16) be chosen as 
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0,0, 1211  kk  is the control gain matrix. 

Inserting the virtual control law (17) in (16), results in the 
first transformation block in the new coordinates 
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From (17), 2Z  can be derived as follows 
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The time derivative of (19) is
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The above equation can be represent as 
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with the following details 
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From (18) and (21), the IM first transformed model can be 
expressed in the new coordinates ( 1Z , 2Z ) as follows 
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Remark 1: The above transformed model contains three 
main drawbacks: 
1- Deriving the second block dynamic is troublesome due to 
the high derivational computation (20). Also, for high 
dimensional systems this problem will be a real challenge, 
and needs to be solved. 
2- In designing controllers, low tracking error ( 01 Z ) is
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 hard to achieve due to the non-vanishing uncertainties like 

LT  in the unmatched vector )(1 tH . To avoid this problem, 

the load torque LT

 

should be known by measuring or 

approximating it. 
3- There is no reference value for 2X . In the other word, 

governing the virtual state 2X  is not considered so 

important, while this inconsideration cases some problems in 
practical applications. 
The next transformation technique is able to improve the 
mentioned problems. 

3.2. Improved NBC 

Consider the following tracking errors 
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Taking time derivative of 1Z

 

and substituting the first block 

of (11) in it, yields 
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refref

refref

ref













   (24) 

In (24), we replaced 2X

 

by 2,2 ZX ref  . Hence, refX ,2  will 

be the fictitious control input instead of 2X . This 

replacement is the main reason for the derivational 
calculation reduction. 

Now, let propose the fictitious control input refX ,2  for (24) 

as  

 )/tanh()()( 11111,1111
1

1,2 ZKZKXXfXBX swrefref     (25) 

where )tanh(  is the hyperbolic tangent function and is the 

approximation of )sgn( , 1  is an enough small positive 

constant, and 









12

11
1 0

0

sw

sw
sw k

k
K

 
is the sliding gain and 

should be selected in such a way that max11 HKsw  . 

By substituting the virtual control law (25) in (24), we have  

)()/tanh()( 1111211111 tHZKZXBZKZ sw           (26)  

Moreover, calculating time derivative of 2Z

 

and inserting the 

second block of (11) into it, yields 

)()(),( 22,22122,22 tHtuBXXXfXXZ refref     (27) 

From (26) and (27), the IM second transformation model can 
be expressed in the new coordinates ( 1Z , 2Z ) as follows 

)()(),(

)()/tanh()(

22,22122

1111211111

tHtuBXXXfZ

tHZKZXBZKZ

ref

sw






 
        (28)  

It is worthy to notify that compared to the conventional NBC:  
1- The second block dynamic (27) is determined easily with 
no more derivational calculations. 
2- The non-vanishing unmatched fault and uncertainty effects 

can be attenuated by the robust term )/tanh( 111 ZKsw . 

3- Converging 02 Z , will result refXX ,22   . 

4. PASSIVE FAULT TOLERANT SLIDING MODE 
CONTROL 

In this section, two passive fault tolerant sliding mode 
controllers are designed for the conventional and the 
improved NBC transformed models.  

4.1. SMC with the conventional NBC  

Let us define the following sliding manifold 

0)()( 2  tZts                                                                   (29)  

By taking time derivative from (29) and using (22), we can 
get 

)()()(),,,,()( 12,1121 tHtuXBXXXZZFts ref             (30)  

Theorem 1: Consider the IM first transformed NBC model 
(22) with the linear sliding surface (29) and Assumption 1, 
then the following control law  


))(sgn(

),,,,()()(

2

222,11211
1

tsK

ZKXXXZZFXBtu

sw

ref



 

        (31)  

guarantees zero convergence of 2Z , and boundedness of 1Z  

around zero. Hence, the IM speed and flux tracking errors 
convergence around the origin will be assured. Where 

0,0,
0

0
2221

22

21
2 








 kk

k

k
K , 










22

21
2 0

0

sw

sw
sw k

k
K , 

and )(max tHHKsw  . 

Stability proof: In order to assure the closed-loop system 
stability, consider the following Lyapunov candidate 

222

1
ssV T                                                                          (32)  

Taking time derivative from (32) and using (30) and (31), 
results in  

 )()sgn(

))()sgn((

))()()(),,,,((

222222

22222

12,11212

2222

tHZKZZZK

tHZKZKZ

tHtuXBXXXZZFZ

ZZssV

sw
TT

sw
T

ref
T

TT







 

 (33)  

Selecting maxHKsw  , yields 
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0222  ZZKV T                                                               (34)  

which fulfills 02 Z . Then, the first transformation model 

(22) can be reduced as 

)(0 1111 tHZKZ                                                        (35)  

From (35), it is obvious that 1Z

 

will converge to zero for 

vanishing uncertainties, while )(1 tH  have the non-vanishing 

term LT

 

in )(1 th . Therefore, the flux convergence is possible 

( refdrdr ,  ), but the mechanical speed will have 

deviations from the reference speed ( 0,   mrefm ).  

It is worthy to note that choosing large values for 1K , can 

reduce the speed tracking error. But it is not able to remove 
the error permanently.  

4.2. NSMC with the improved NBC 

In this part, the NSMC is applied for the second transformed 
NBC model (28). In the other word, a nonlinear sliding 
surface is proposed to improve the conventional SMC slow 
responses. 

Consider the following nonlinear sliding manifold 

 dZctZts
t


0

22 )()()(                                                  (36)  

where  Ttststs )(),()( 21 , 10 
q

p , and qp,  are 

rational odd numbers, also c  is a positive constant.  

Taking time derivative from (36), yields 


22)( cZZts                                                                     (37)  

Inserting (28) in (37), results in 

)()(),()( 222,2212 tHtuBcZXXXfts ref            (38)  

Theorem 2: Consider the IM second transformed NBC 
model (28) with the nonlinear sliding surface (36) and 
Assumption 1, then the following control law  


))(sgn(

)(),()(

2

22,2212
1

2

tsK

tsKcZXXXfBtu

sw

ref



  
            (39)  

guarantees 1Z  and 2Z  zero convergence. Hence, the IM 

speed and flux tracking errors convergence is assured. Where 











22

21
2 0

0

k

k
K , and max22 HKsw  . 

Stability analysis: Let us define the following Lyapunov 
function 

)()(5.0)( tststV T                                                              (40)  

Taking time derivative from (40) and using (38) and (39), we 
can get  
 

 
 

 )())(sgn()()()()(

)())(sgn()()()(

)()(),()()(

)()()(

222

222
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sw
TT

sw
T

ref
T

T



















                    

                                                                                            (41)  

Selecting max22 HKsw  , yields 

0)()()( 2  tsKtstV T                                                     (42)  

which guarantees the second block state vector zero 
convergence ( 02 Z ). Then, the equation (28) can be 

rewritten as 

)()/tanh(0 1111111 tHZKZKZ sw                         (43)  

To analyze (43) stability, consider the following Lyapunov 
function 

111 5.0)( ZZtV T                                                                  (44)  

Calculating the time derivative of (44) and substituting (43) 
in it, results in 

 
 )()/tanh(

)()/tanh()(

11111111

1111111111

tHZKZZKZ

tHZKZKZZZtV

sw
TT

sw
TT








    (45)  

By selecting the sliding gain max11 HKsw  , we have 

0)( 1111  ZKZtV T                                                           (46)  

which assures 01 Z . The inequality (46), is the main 

advantage of the second transformation form (28) and the 
control law (39) against the first transformation form (22) 
with the control law (31).  

5. SIMULATION RESULTS 

To testify the performance of the sliding mode block 
controllers, series of MATLAB/SIMULINK simulation tests 
for a 4 kW cage rotor induction machine with 50 Hz and 220 
V power supply is carried out. The nominal electrical and 
mechanical parameters of the IM are shown in Table 1. Also, 
the induction motor control block diagram based on FOC 
technique is illustrated in Fig. 1. This figure contains rotor 
flux estimation block which is applied to avoid the use of 
flux sensor. The flux estimation block dynamic is selected as:  

)(
1

)(ˆ si
s

L
s ds

r

m
dr 




  

Comparative simulations of the discussed PFTC controllers 
(31) and (39) (SMC with the conventional NBC vs. NSMC 
with the improved NBC) are presented in Figs. 2-7. The IM 
speed response, electromagnetic torque, rotor flux, stator 
currents, speed and flux tracking errors and new 
transformation variables are showed in these figures. 
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Table. 1 Nominal parameters of the IM adopted for the 
simulation (Benbouzid et al., 2008). 

Description Parameter Value Units 
stator resistance sR  2.1    

rotor resistance rR  8.1    
stator inductance sL  1554.0  H  

rotor resistance rL  1566.0  H  
mutual inductance mL  15.0  H  

rotor inertia J  024.0  2.mKg  
friction coefficient F  011.0  radsmN /..

number of pole 
pairs 

p  2  - 

rated speed mN  1440  rpm

 

The simulation test involves the following operating 
sequences: 
1- To test the robustness of the proposed controllers with 
respect to rotor faults, we have considered the responses of 
the IM in the presence of rotor resistance variation rR%100 , 

this resistance variation is taken into account at st 2 . 

2- The motor shaft is subject to a step load torque variation of 
Nm4  at st 3  which is considered unknown. 

3- To investigate the proposed controller’s performance 
under stator faults, simulations are performed in the presence 
of static eccentricity. To simulate stator fault, the stator 
currents have been destroyed by assuming that 5.0A , 0  

and )()( tt sc    is computed using (6). The time of stator 

fault occupancy is considered at st 9 . 

 

Fig. 1. Block diagram of the designed fault-tolerant 
controllers for IM. 
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a) SMC with the conventional NBC. 
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b) NSMC with the improved NBC. 

Fig. 2. IM speed response. 
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a) SMC with the conventional NBC. 
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b) NSMC with the improved NBC. 

Fig. 3. Electromagnetic torque. 
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a) SMC with the conventional NBC. 
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b) NSMC with the improved NBC. 

Fig. 4. Rotor flux. 
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a) SMC with the conventional NBC. 
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b) NSMC with the improved NBC. 

Fig. 5. Stator currents. 
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a) SMC with the conventional NBC. 
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b) NSMC with the improved NBC. 

Fig. 6. Speed and flux tracking errors. 
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a) SMC with the conventional NBC. 

New coordinate variables  
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b) NSMC with the improved NBC. 

Fig 7. New coordinate variables. 

From Figs. 2-7, in is evident that the NSMC with the 
improved NBC technique has low tracking error and low 
variation against different faults in comparison with the SMC 
with the conventional NBC approach. İn addition, the 
unmatched fault effects are removed effectively. Also, 
NSMC with the improved NBC method chattering is less 
than the SMC with the conventional NBC method. 

6. CONCLUSIONS 

In this study, passive fault tolerant sliding mode control of 
three phase induction motors is investigated. First, the SMC 
with the conventional NBC technique is designed. But the 
conventional NBC technique has some flaws like unmatched 
fault/uncertainty rejection problem. İn addition, the SMC 
controller shows a slow response with considerable tracking 
error. Then in the second step, to solve the mentioned 
problems, the NSMC with the improved NBC technique has 
been proposed. Comparative simulation results revealed the 
effectiveness of the proposed method for multiple rotor and 
stator faults. 
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