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Abstract: Cirrhosis is a lethal disease that can also precede liver cancer. The golden standard for 
diagnosing this affection, the biopsy, is invasive and dangerous. The noninvasive detection of the 
cirrhosis severity grades is a major challenge in these conditions. The objective of our research is to 
automatically discover the cirrhosis evolution stages from ultrasound images, through unsupervised 
classification techniques, based on textural features. In this work, the role of the textural microstructure 
co-occurrence matrices in the detection of the cirrhosis severity grades was studied. The textural features 
were provided at the input of unsupervised classification methods.  Through specific techniques, the 
relevant textural features for class separation and their specific values for each severity grade were 
determined. The method was validated through cluster visualizations and supervised classification, the 
resulted accuracy being above 90%. The effect of the Principal Component Analysis (PCA) technique 
upon the discovery process of the cirrhosis grades was also studied.  

Keywords: ultrasound image analysis, textural microstructure co-occurrence matrices (TMCM), 
unsupervised classification, cirrhosis severity grades, computer-aided diagnosis. 



1. INTRODUCTION 

Cirrhosis represents a diffuse liver disease, which marks the 
beginning of hepatic restructuring.  The main characteristics 
of this affection are the association of fibrosis, regeneration 
nodules and necrosis, leading to important changes in the 
structure of the hepatic parenchyma. Cirrhosis constitutes the 
end stage of multiple liver diseases and sometimes it leads to 
death by itself. The regeneration nodules, specific to 
cirrhosis, can also transform into dysplastic nodules, evolving 
into hepatocellular carcinoma (HCC), the most frequent form 
of liver cancer.  

The B-mode ultrasonography is a non-invasive examination 
method, being safe, inexpensive, repeatable and easy to 
apply. Alternative methods for patient examination, such as 
the Computer Tomography (CT), Magnetic Resonance 
Imaging (MRI), the elastographic techniques (e.g. Transient 
Elastography, Acoustic Radiation Force Imaging, etc) or even 
Contrast Enhanced Ultrasonography (CEUS) are usually 
irradiating and/or expensive (Carr, 2010).  We aim to build 
safe computer assisted diagnosis systems, which can be 
widely implemented, considering also those medical units 
that are not endowed with sophisticated, last generation 
equipment. This method is supposed to be applied repeatedly, 
in order to monitor the disease evolution with the best 
accuracy.  In our research, the information derived from B-
mode ultrasound images, processed through advanced texture 
analysis methods was considered, in order to assess its ability 
for characterizing the cirrhosis severity grades. This 

represents an important step towards a computerized, non-
invasive, virtual biopsy system. 

Within ultrasound images, cirrhosis is featured mainly by the 
tissue homogeneity decrease, due to the fact that the nodules 
continuously appear and evolve. These nodules could be 
hypo-echogenic, or even unapparent. Other changes that 
could occur are: increased volume, in the case of toxic 
cirrhosis; decreased volume, in the case of viral cirrhosis; 
shape and contour modification; vessel structure 
modifications. An eloquent example of a cirrhotic liver, 
together with the rectangular region of interest (ROI) selected 
on it is illustrated in the next figure (Fig. 1).  

 

Fig. 1.  ROI selected inside the liver affected by cirrhosis. 
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As cirrhosis is a very serious disease, monitoring its severity 
presents a great importance. We take into account that type of 
cirrhosis which has a C virus origin, so, in this case, in order 
to establish the severity grade of the associated fibrosis, the 
Metavir grading system is usually considered appropriate. 
Though, conversion formulas to other scoring systems exist 
and can be applied, as well. The Metavir classification system 
assimilates cirrhosis with the last evolution phase of liver 
fibrosis (Bedossa, 1996). Concerning cirrhosis, some existing 
medical assessment systems, reveal the next evolution stages 
for this affection: Stage A – incipient, "compensated"; Stage 
B – intermediate phase, beginning to decompensate; Stage C 
– final stage, "decompensated" (Peters, 2013). However, no 
significant study exists for establishing an objective 
quantification of the cirrhosis severity grades, using refined 
information, derived from ultrasound images through 
advanced computerized methods,  so this will be the aim of 
the current work. 

The most relevant existing studies, regarding the detection 
and characterization of some important diseases and of their 
severity grades, from medical images, are detailed below. An 
important approach concerning the recognition of the diffuse 
liver diseases from ultrasound images through supervised 
classification methods was described in (Cavouras, 1997). 
Thus, in order to differentiate among the diffuse liver 
diseases, the authors employed a hierarchical tree, structured 
in the following manner: at the first level, the differentiation 
between the normal and the unhealthy liver was performed, 
using textural features such as the GLCM mean and energy; 
at the second level, the difference between steatosis and 
cirrhosis was highlighted, using features such as the GLCM 
mean and variance; at the last level, the authors differentiated 
between multiple severity grades of steatosis and cirrhosis, 
using GLCM features such as the variance, entropy, sum 
entropy, difference entropy. For supervised classification, a 
Multilayer Perceptron (MLP) classifier was employed 
(Cavouras, 1997).  The differentiation between healthy and 
cirrhotic liver regions, based on MRI images, through 
unsupervised classifiers, was performed in (Lee, 2008). The 
implemented methods were a k-means clustering classifier 
and textural features based on finite differences of the 
intensity function. The performance, measured through the 
area under ROC, was 0.704. In (Mala, 2010) the authors 
aimed to differentiate between cirrhotic and fatty livers, using 
the information provided by computerized tomography (CT) 
images, by employing Wavelet-based statistical textural 
features and several neural-network based classifiers. The 
maximum resulted accuracy was 96%.  The most recent 
approach involving the differentiation between the cirrhotic 
and the normal liver, from M-mode ultrasound images, in 
supervised manner, was presented in (Fujino, 2014). For this 
purpose, the authors adopted higher-order local 
autocorrelation (HLAC) features, feature selection methods 
and a nearest neighbour classifier. The average error rate 
resulted in these conditions was 12.11%. Concerning the 
activity of grading the severity of other affections, the most 
important approaches involved detecting the evolution stages 
of the glioma tumours, by combining hierarchical 
classification methods and dimensionality reduction 
techniques (Yang, 2014), respectively distinguishing HCC in 

incipient phase through a combination between supervised 
and unsupervised classification methods (Ciocchetta, 2000).  

As it results from the methods described above, no significant 
research exists concerning the detection of the cirrhosis 
grades from ultrasound images, through unsupervised 
classification methods. Thus, in our work, the objective was 
to discover the cirrhosis evolution stages, by using textural 
features and clustering methods. In (D. Mitrea, 2013), a 
preliminary study was performed in order to detect the 
cirrhosis grades form ultrasound images, in unsupervised 
manner.  

In this paper, the focus was put on the role that the Haralick 
features derived from the newly defined TMCM matrix of 
order two and three had in the above-mentioned process. For 
performing unsupervised classification, clustering methods, 
such as Expectation Maximization (EM) (Witten, 2011) and 
X-means (Pelleg, 2000) were chosen, and also an 
unsupervised meta-classifier was considered, in order to 
obtain dense clusters (Zaki, 2014).  A textural model of the 
cirrhosis evolution stages was defined, consisting of the 
relevant textural features for class separation and of their 
specific values for each class: mean, standard deviation, 
probability distribution. Thus, specific methods for the 
selection of the relevant textural features, in the context of the 
unsupervised classification process, were developed and 
appropriate techniques for determining the specific values of 
the relevant textural features were employed. The effect of 
the Principal Component Analysis (PCA) dimensionality 
reduction technique upon the performances of the 
unsupervised classification process was also analysed. The 
correlation of the most important textural features with the 
physical and visual properties of the cirrhotic parenchyma 
was discussed, as well. The newly developed methods were 
assessed through performance parameters specific for the 
unsupervised classification, such as the log-likelihood, for the 
EM method (Witten, 2011), respectively the distortion, for X-
means clustering (Pelleg, 2000). The results were also 
validated by performing data visualization through Self 
Organizing Maps (SOM) (Yin, 2008) and by employing 
supervised classification methods, well known for their 
performance, such as the Multilayer Perceptron (MLP), the 
Support Vector Machines (SVM), decision trees, AdaBoost 
and multiclass meta-classifiers in combination with the basic 
learners (Witten, 2011).   

This paper was structured in the following manner: after the 
introduction, which described the state of the art and the 
contribution of the current work, the proposed solution was 
presented, by describing in details the developed and applied 
methods; then, the performed experiments were detailed and 
the obtained results were discussed; at the end, the 
conclusions were stated and the possibilities of further 
research were proposed. 

2. THE PROPOSED METHODS 

In our work, the aim was to discover the existing cirrhosis 
grades, corresponding to the classes (clusters) that existed in 
the data derived from ultrasound images, as well as the 
characteristics of each grade, in terms of the relevant textural 
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features, able to provide the best class separation. The 
specific values of the textural features for each resulted class 
were determined, for the purpose of computer-assisted 
diagnosis. Thus, the textural model of the cirrhosis severity 
grades was defined, consisting of the relevant features for 
class separation, respectively of the specific values associated 
to the relevant textural features: arithmetic mean, standard 
deviation, probability distribution. The method was validated 
by performing cluster visualizations using advanced specific 
techniques and through supervised classification. The steps of 
the corresponding methodology were the following: 

1. Compute the textural features, by applying texture analysis 
methods (the image analysis phase). 
2. Discover the existing classes and their properties, 
performing the sub-steps described below (the learning 
phase): 

2.1. Apply clustering methods in order to discover the 
classes (clusters) that exist in the data; 

    2.2. Determine the set of the relevant textural features, 
then re-evaluate the existing clusters by applying the 
clustering methods again, considering the derived 
feature set;  
2.3. Compute the specific values of the relevant textural 
features. 

3. Validate the method by performing cluster visualizations 
using Self Organizing Maps (SOM) (Yin, 2008); apply 
supervised classification methods, providing at the 
classifiers’ inputs the values of the relevant textural features 
and assess the classification performance in each case (the 
validation phase).  

The methods specific for each step were described in the next 
sub-sections. 

2.1. The computation of the textural features (the image 
analysis phase) 

Already existing methods for texture analysis (Toennies, 
2012) were implemented, and new methods were defined, as 
well.  First order statistics of the grey levels, and also the 
Grey Level Co-occurrence Matrix (GLCM) of order two, 
together with the associated Haralick features (Davis, 1981) 
were employed. Edge based statistics, the autocorrelation 
index, and also first order statistics based on textural 
microstructures (arithmetic mean and frequency), detected by 
applying the Laws’ convolution filters (Laws, 1980) were 
adopted as well. Also, the Textural Microstructure Co-
occurrence Matrix (TMCM) was defined, as described in (1), 
the intention being that of providing a more refined texture 
characterization: 
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In (1), #S is the size of the set S (the number of elements) and 
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is the set of the displacement vectors. 

The TMCM matrix was determined after applying a certain 
Laws’ convolution filter (S5S5, R5R5, S5R5, or R5 S5) (Laws, 
1980), for detecting textural microstructures, such as spots 
and ripples or their combinations, as the frequencies of these 
elements resulted as relevant textural features in our previous 
work (D. Mitrea, 2013; D. Mitrea, 2012). The definition of 
this matrix was firstly provided in (D. Mitrea, 2014). 
However, in the current work, a k-means clustering method 
(Witten, 2011) was also employed, after the convolution 
process. Each element of the newly defined TMCM matrix 
represents the number of n-tuples of pixels having the spatial 
coordinates (xi, yi), iє {1,.., n}, respectively the values of the 
cluster labels ci, iє{1,..,n}, assigned by k-means clustering. A 
represents the attribute associated to each pixel - in our case, 
the appropriate cluster label. The spatial relation between the 
pixels is defined by the vectors depicted in (2).  

The TMCM matrices of order two and three were 
determined. In the first case, the following directions were 
considered for the vectors of displacement: 0°; 90°; 180°; 
270°. The absolute values of these vectors were 0 or 2, the 
resulting Haralick features being computed as the arithmetic 
means of the parameters corresponding to the individual 
matrices. For TMCM of order three, the following 
combinations of directions were taken into account, in the 
case of the co-linearity of the pixels: (0°, 180°); (90°, 270°); 
(45°, 225°); (135°, 315°). Also, the following direction 
combinations were considered: (0°, 90°); (90°, 180°); (180°, 
270°); (0°, 270°); (45°, 135°); (135°, 225°); (225°, 315°); 
(45°, 315°), when the three considered pixels were 
constituted in a right angle triangle, having the current pixel 
in the right angle vertex position. The absolute values for the 
displacement vectors were 0 or 2, as in the previous case. At 
the end, the extended Haralick parameters, defined as in (D. 
Mitrea, 2012) were averaged. 

2.2 Discovering the cirrhosis grades and their specific 
properties (the learning phase) 

2.2.1. Clustering methods 

The Expectation Maximization (EM) method (Witten, 2011) 
was adopted, as it is a well-known, powerful and flexible 
technique, which iteratively estimates the desired parameters, 
by maximizing the log-likelihood of the model.  

The likelihood was computed using the formula (3), the log-
likelihood being the natural logarithm of the likelihood 
(Witten, 2011): 
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 In (3), n is the number of instances, m is the number of 
clusters, pj are the cluster priors and Pr[xi|j] represents the 
conditional probability that the instance xi  appears within 
cluster  j. The parameters to be estimated in our context were 
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the number of clusters and the sample distributions within the 
clusters.  

The X-means clustering method was also employed, as it is 
an improved version of the k-means clustering technique. The 
classical k-means clustering method (Witten, 2005) has some 
drawbacks, the most important being the execution speed, as 
well as the fact that a fixed value for k must be provided a-
priori. The method of X-means clustering expects a 
maximum and a minimum value for the k parameter and it 
performs the following steps:   

(1.) Run conventional k-means to convergence, for a fixed 
value of k. 
(2.) Decide whether new cluster centroids should appear or 
not, by splitting the old centroids into two. 
(3.) If k>kmax, then stop and report the best model identified 

during the algorithm, according to the Bayesian Information 
Criterion – BIC (Pelleg, 2000).  

The BIC criterion is used both in order to decide which 
centroids have to be split, and also to identify the best 
resulted model.  

The overall algorithm performance is estimated by the 
distortion measure, expressing the average squared distance 
from the points to their centroids, for the best model (Pelleg, 
2000).  

Specific methods for obtaining dense clusters were 
additionally used, for result confirmation. These methods are 
based on the principle that the clusters are dense point 
regions separated by sparse point regions and aim to discover 
classes for which the distances between the points and the 
corresponding cluster centroid are as small as possible. Also, 
the density-based clusters don’t make any prior assumption 
concerning the point distributions, trying to provide the best 
fitting probability density.   

An unsupervised meta-classifier, in combination with the 
above-mentioned elementary methods, was used in the 
current work, in order to wrap each clustering method and to 
make it return dense clusters together with the corresponding 
probability distributions. The performance of this method 
was measured by the log-likelihood, associated to the best-
resulted model (Zaki, 2014).  

2.2.2 Dimensionality reduction techniques applied in the 
context of unsupervised classification 

2.2.2.1. Method for relevant feature selection 

The relevant features for the unsupervised classification 
process were selected, in order to provide best class 
separation, meaning that the overlapping region between two 
clusters must be as small as possible. For each textural 
feature f, a relevance score was defined according to our 
formula described in (4): 
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In (4), i and j are neighboring classes (clusters). The 
relevance of each feature is dependent on the cumulated size 

of the overlapping regions that exist between each pair of 
neighboring clusters. The overlapping region size was 
determined as described in (5), assuming a Gaussian 
distribution for each feature: 
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In (6), μ_min_f represents the minimum value of the arithmetic 
mean for the feature f, considering the two clusters, i and j; 
σ_min_f stands for standard deviation of the textural feature f 
considering the cluster where μ is minimum, μ_max_f is the 
maximum arithmetic mean of f, within the clusters i and j, 
while σμ_max_f is the standard deviation of  f  inside the cluster 
where μ has maximum value. Formula (5) estimates the size 
of the overlapping region for the two clusters, i and j, with 
respect to the feature f. Thus, if S≤0, no overlapping region 
exists for the two considered clusters. If the centers of the 
clusters i and j are overlapped considering the feature f (the 
arithmetic means have the same values), then the size of this 
overlapping region will be twice the minimum standard 
deviation.  

 2.2.2.2. Principal Component Analysis (PCA) 

The method of Principal Component Analysis (PCA) is a 
well-known dimensionality reduction technique, which maps 
the original dataset in a new space, where the main variation 
modes are emphasized. In mathematical terms, the classical 
PCA technique aims to determine a linear mapping M, in 
order to maximize the quantity  MTcov(X)M, where cov(X) is 
the covariance matrix of the dataset X. The matrix M is 
formed by the first d eigenvectors that correspond to the 
highest eigenvalues of the covariance matrix, from which the 
arithmetic means are subtracted. In our work, the classical 
PCA algorithm was implemented and its generalized version, 
kernel PCA, with Gaussian and polynomial kernels, was 
considered as well (van der Maaten, 2008), their effects upon 
the performance of the unsupervised classification methods 
being analyzed. 

2.2.3. Detecting the specific values of the relevant textural 
features 

The arithmetic means, corresponding to the cluster centers 
and the standard deviations for each relevant textural feature 
were determined in the case of each cluster. Graphical 
representations of the normalized arithmetic means of the 
most important textural features, for all the existing clusters, 
were performed, in order to study the evolution of these 
values with the severity grade of cirrhosis.  The specific 
intervals of variation for each feature were determined as 
well, using the probability distribution tables provided by the 
Bayesian Belief Networks technique (Witten, 2011). This 
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method detects causal influences among the features, by 
building a dependency network, represented as a directed, 
acyclic graph. In this graph, the nodes stand for the 
considered features, while the edges correspond to the causal 
influences between them, having associated the values of the 
conditional probabilities that correspond to certain 
dependences. Every node X in the graph has a set of parents 
P, respectively a set of children C. The probabilities of the 
nodes are determined through a complex inference 
mechanism. Thus, in a Bayesian Belief Network, each node 
has a probability distribution table, indicating the specific 
intervals of values for that node given the values of its 
parents. Considering the textural features that are relevant for 
each class, this method provides the most probable variation 
intervals for each of them, depending on the value of the 
class. 

Establishing correlations between the newly defined TMCM 
features in the case of cirrhosis, was another objective of this 
work. The types of correlations considered for assessment 
were: linear, logarithmic, inverse, quadratic, cubic, power, 
compound, S, logistic, growth, exponential. The strength of 
these correlations were measured by the R-Square coefficient 
(Jalobeanu, 2001).  

 2.3. The validation phase 

2.3.1. Validation through supervised classification 

Each sample in the experimental set was annotated with the 
label of the class determined by using the clustering methods, 
applied after the selection of the most relevant textural 
features. Then, supervised classifiers were employed, in order 
to estimate the accuracy of the automatic diagnosis for the 
cirrhosis grades. Basic classification methods were 
implemented, which provided natural extensions to the case 
of multiple classes, as well as meta-classifiers, which reduced 
the multi-class case to a set of binary classifications, using 
specific strategies (Aly, 2005). 

As basic learners, the methods of Multilayer Perceptron 
(MLP), Support Vector Machines (SVM), and the C4.5 
decision trees algorithm (Witten, 2011), respectively the 
AdaBoost meta-classifier in combination with C4.5, which 
provided the best results in our former experiments (D. 
Mitrea, 2012; D. Mitrea, 2014), were taken into account. The 
accuracies (recognition rates) obtained when considering the 
entire group of textural features (old and newly defined), 
respectively only the formerly existing features, were 
compared. Other performance parameters, such as the 
sensitivity (TP rate), the specificity (TN rate) and the area 
under the Receiver Operating Characteristic (ROC) curve 
(Witten, 2011) were also estimated.  The method of 
Correlation based Feature Selection (CFS) was also used in 
the context of supervised classification, in order to refine the 
set of the relevant textural features specific for each severity 
grade.  This method determines the best subset of the relevant 
textural features, which have strongest correlations with the 
class parameter (Weka, 2015). 

2.3.2. Self-Organizing Maps (SOM) 

The method of Self Organizing Maps (SOM) (Yin, 2008) 
represents an unsupervised learning instrument, being a 
subclass of the techniques based on Artificial Neural 
Networks (ANN) (Witten, 2011). SOM is designed according 
to the model of an associative memory, performing 
topographic mappings of the similar items in the same spatial 
neighborhood. The usual Kohonen SOM is a feed-forward 
neural network with a single computational layer, looking 
like a bi-dimensional map, of rectangular or hexagonal form, 
built by neurons, each of them being connected to all the 
instances of the input data. Each neuron, i, has associated a 
weight vector, wi, of the same dimension (n) as the input data. 
At the beginning of the algorithm, all the weights {w1, w2, ..., 
wm}, where m is the total number of the neurons, are 
initialized randomly, to small numbers, these weights being 
updated during the SOM specific algorithm. This algorithm 
finds the neuron whose weight is closest to the input data, 
then updates the weight of this neuron and extends the 
updates in its neighborhood, as well. At the end, the Self 
Organizing Map illustrates the similar groups (clusters) that 
exist in the original data. In our work, the SOM method was 
used in order to put into evidence how well the classes and 
the subclasses that corresponded to various severity grades of 
cirrhosis were emphasized before and after the selection of 
the relevant textural features (Yin, 2008). 

3. EXPERIMENTS AND DISCUSSIONS 

The experimental dataset contained 75 patients affected by 
cirrhosis, biopsied for diagnostic certification. B-mode 
ultrasound images were acquired for each patient, using an 
ultrasound machine of type Logiq 7, under the same settings 
– frequency: 5.5 MHz, gain: 78, depth: 16 cm.  A ROI of 
50x50 pixels was selected on the cirrhotic tissue, for each 
ultrasound image. The texture analysis methods, described in 
section 2.1, were applied on each ROI; these methods were 
implemented using our software application developed in 
Visual C++. Most of the clustering methods, as well as the 
supervised classifiers, the method of Bayesian Belief 
Networks, and the CFS method for feature selection in the 
supervised classification context, were employed by using the 
Weka 3.6 library (Weka, 2015). The classical PCA, as well as 
the kernel PCA techniques, were employed in the Matlab 
environment, using the dimensionality reduction toolbox 
(Dimensionality Reduction, 2008). The correlations between 
the newly defined textural features were established using the 
IBM SPSS 20 environment (IBM SPSS Statistics, 2015). The 
method of SOM was implemented in Matlab, using the SOM 
toolbox (SOM, 2005). 

3.1. Detecting the severity grades through unsupervised 
classification methods 

The methods of Expectation Maximization (EM), 
respectively X-means clustering (XMeans), were applied for 
this purpose, individually, as well as in combination with the 
Make Density based Clusterer technique (Weka, 2015). For 
EM, the numClusters parameter was initially set to –1, in



CONTROL ENGINEERING AND APPLIED INFORMATICS                     101 

     

 
 

 order to automatically detect the number of clusters through 
cross-validation (Weka, 2015).  In this situation, the number 
of clusters was found as being 4. Then, the number of clusters 
was also successively set to 2, 3 and 5, the log likelihood 
being estimated in each situation. When setting the 
numClusters parameter to n>5, the difference between the 
proportions of the resulted clusters was very increased, so the 
result was not considered as being relevant. The values of the 
log-likelihood, together with the maximum difference 
between the cluster proportions, for each value of the 
numClusters parameter, are depicted in Table 1. 

Table 1. The classification performance obtained for the 
EM method. 

Number 
of clusters 

Log 
Likelihood 

Maximum difference 
between cluster 

proportions 

2 4.50  32 

3 10.64  47 

4 14.05  19 

5 15.24  23 
 

X-means clustering, with Cebyshev distance, which provided 
the best results, was also applied, after setting the kd-trees 
option to true, in order to increase the execution speed. The 
performance parameters, obtained for each value of the 
resulted number of clusters, are illustrated in Table 2.  

Considering the results depicted within Table 1 and Table 2, 
the number of clusters obtained when setting the –1 value of 
the numClusters parameter for the EM method, respectively 
the fact that the difference between the cluster proportions 
should not be very large, the conclusion was that the final 
number of clusters was 4.   

Table 2. The classification performance obtained for the 
X-means clustering method. 

Number of 
clusters 

Distortion Maximum difference 
between cluster 

proportions 

2 33.27 15 

3 31.63 24  

4 30.61 17 

5 29.73 18  
 

The Make Density based Clusterer technique (Weka, 2015), 
in combination with the above mentioned unsupervised 
classifiers provided the same results, validating the existence 
of four clusters within the data. This confirmed, as well, the 
result previously obtained in (D. Mitrea, 2013), and also the 
previously existing medical hypotheses expressed in the 
introduction, considering the fact that also cirrhotic liver 
parenchyma surrounding incipient HCC was taken into 
account in our dataset.  

3.2. Dimensionality reduction techniques 

3.2.1. Deriving the set of the relevant textural features 

Within Table 3, the most relevant textural features were 
illustrated and the values for the relevance indexes, computed 
according to the algorithm described in the sub-section 
2.2.2.1, under the hypothesis that four clusters existed in the 
data, were provided as well.   

The relevant features were determined for each of the 
considered unsupervised classification methods and the final 
relevance score resulted as an average between the individual 
scores obtained. Only the features that had a relevance score 
above 0.65 were taken into consideration. 

Table 3.  The relevance score for the most important 
textural features. 

Feature Relevance score 
Mean_spots  0.9196 
Mean_edges 0.9169 
Mean_level    0.9155 
Mean_waves     0.9147 
Mean_wavelet    0.9110 
TMCM3_Correlation_S5R5     0.9087 
TMCM3_Correlation_R5S5    0.9060 
Edge_frequency   0.9030 
TMCM3_Entropy_S5R5    0.8989 
Wave_frequency     0.8949 
TMCM3_Entropy_R5S5     0.8935 
Spot_frequency 0.8932 
TMCM_Entropy_S5R5     0.8904 
Wavelet_frequency     0.8871 
Level_frequency     0.8814 
GLCM_Entropy     0.8718 
TMCM_Entropy_R5S5    0.8641 
GLCM_Correlation     0.8297 
TMCM3_Homogeneity_S5R5   0.8254 
TMCM3_Correlation_ripples    0.803 
TMCM3_Homogeneity_R5S5     0.787 
TMCM3_Correlation_spots    0.7379 
TMCM_Entropy_spots    0.726 
Edge_orientation_variability     0.722 
TMCM_Homogeneity_S5R5     0.6895 
TMCM3_Variance_S5R5 0.6876 
TMCM_Variance_spots    0.6854 
TMCM3_Variance_spots  0.6854 
TMCM3_Variance_R5S5 0.6532 

 

According to Table 3, it results that the most relevant 
parameters were the arithmetic mean and the frequency of the 
textural microstructures detected by using the Laws’ 
convolution filters, together with the Haralick features 
derived from the second and third order TMCM matrix. 
These features highlighted the importance of the first, second 
and third order statistics based on textural microstructures in 
characterizing the evolution of cirrhosis. The GLCM 
parameters entropy and correlation were important as well, 
illustrating the chaotic structure of the liver tissue in evolved 
phases of cirrhosis, respectively differences in granularity 
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between various disease evolution phases. Features like the 
edge orientation variability also resulted as being relevant, 
denoting the fact that the complexity of the cirrhotic tissue 
structure increased during the restructuring process.   

After the feature selection process, the performance of the 
clustering methods was assessed again, under the hypothesis 
that there were 4 clusters in the data.  

Thus, in the case of the EM method, the final value for log-
likelihood was 58.57, estimated to a 78.90% probability for a 
certain data instance to belong to the corresponding cluster, 
while for X-means clustering, the final value for distortion 
was 27.15, better (smaller) than before feature selection.  

The same values were obtained while employing the Make 
Density based Clusterer technique, in combination with the 
EM and X-means classifiers. In the case of the combination 
with X-means clustering, the log-likelihood provided by this 
method was 13.26 before feature selection, respectively 55.64 
after feature selection. Comparing these values with those 
depicted in Table 1 and Table 2 it results that, in both cases, 
the performance was better after feature selection.  

3.2.2.  The effect of Principal Component Analysis (PCA) 

The effect of the PCA technique upon the accuracy of the 
unsupervised classification process was studied as well. For 
the classical PCA method, the best results were obtained 
when taken into consideration 54 components, while for 
generalized PCA, the best results were obtained in the case of 
the Gaussian kernel, for 50 components.  The initial dataset 
contained 77 attributes.   

The values of the classification performance parameters 
obtained before and after the application of the PCA method 
were depicted in Table 4.  Both the EM and X-means 
clustering methods were considered, and also the Make 
Density based Clusterer technique combined with the two 
basic classifiers was evaluated.   

Table 4. The effect of PCA upon the unsupervised 
classification process. 

  
EM – 

(log-
likelih.) 

MakeDen-
sity + EM 
(log –
likelihood) 

XMeans 
Distortion 

MakeDen-
sity + 

Xmeans 

Distortion 

Origi-
nal set 

14.05  14.05 30.61 30.61 

PCA  -88.44 -88.44 27.75 27.75 

Kernel 
PCA 34.57  34.57 27.73 27.73 

According to Table 4, it resulted that the classical PCA 
method led to a decrease of the classification performance, in 
the case of the EM method, while in the case of the X-means 
clustering technique, it led to an improvement of this 
performance. The kernel PCA technique with Gaussian 
kernel always led to improvements of the classification 
performance, for all the considered unsupervised classifiers. 

However, the accuracy of the unsupervised classification 
process was better after performing feature selection, than in 
the case of applying the PCA techniques.  

3.3. The specific values for the relevant textural features  

The values of the normalized arithmetic means for some of 
the most relevant textural features corresponding to each 
cluster center were illustrated in the figure below (Fig. 2). As 
it results from this figure, the cluster c0 corresponded, most 
likely, to the incipient stage of the disease, as the GLCM 
homogeneity had maximum value, while the entropy, contrast 
and variance derived from the second and third order TMCM 
matrices had minimum values. The cluster c3 corresponded, 
most probably, to the most advanced disease stage (when the 
tumors begin to appear), as the GLCM homogeneity had a 
minimum value, the entropy computed from the TMCM 
matrix based on spot microstructures had increased values, 
while the contrast and variance based on the second and third 
order TMCM had maximum values, denoting an increased 
structural complexity, due to the advanced restructuring 
process. The clusters c1 and c2 corresponded to intermediate 
evolution stages. In the case of cluster c2, the entropy derived 
from the TMCM matrix based on spot microstructures had a 
high value, this fact leading us to the conclusion that class c2 
corresponded to a more advanced disease evolution phase, 
preceding the final stage. The probability density table, 
obtained by applying the method of Bayesian Belief 
Networks with K2 search and BMA estimation (Weka, 2015), 
for the variance parameter derived from the third order 
TMCM matrix based on R5S5 microstructures is illustrated in 
Table 5. For the cluster c0 (the incipient stage) the above 
mentioned parameter was situated, with the highest 
probability (91.3%), in the interval of the lowest values. For 
the most advanced stage (cluster c3), the third order TMCM 
variance belonged, most likely (60%), to the interval that 
corresponded to the highest values, denoting an increased 
tissue structure complexity, while for the intermediate stages 
(clusters c1 and c2), the considered third order TMCM 
variance was situated in the interval of middle values (92% 
for cluster c1, respectively 97.4% for cluster c2). The same 
method was applied as well for the other features, in order to 
determine their variation intervals for each class, the final 
purpose being to provide a reliable instrument for computer 
assisted diagnosis.   

 

Fig. 2. The specific values of the most relevant textural 
features, for each cluster. 
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Table 5. The probability distribution table for the 
TMCM3_R5S5_variance. 

Class (-∞, 742.36] (742.36, 
1013.32] 

(1013.32, ∞) 

c1 0.04 0.92 0.04 

c2 0.013 0.974 0.013 

c3 0.067 0.333 0.6 

c0 0.913 0.044 0.043 

The existing correlations between the newly defined TMCM 
features in the case of cirrhosis were also assessed, using the 
functions of the IBM SPSS Statistics environment. The 
strongest correlations (R-Square > 0.990) were noticed 
among the variances of the second order TMCM matrix, 

respectively of the third order TMCM matrix, based on the 
same textural microstructures. Other cases of relevant 
correlations resulted between the parameters derived from the 
third order TMCM matrix based on S5R5 microstructures, 
respectively from the third order TMCM matrix based on 
R5S5 microstructures, especially between the entropies and 
homogeneities.  

Thus, in the case of the entropies, all the correlation types had 
increased values, the R-Square coefficient being around 
0.990. In the case of the homogeneities, the linear and 
logarithmic correlations had associated the most increased 
values of the R-Square parameter (0.779 for linear 
correlation, respectively 0.772 for logarithmic correlation). 
These results were graphically illustrated in the next figure 
(Fig. 3) and indicated that, although the R5S5 and S5R5 
convolution kernels were mathematically different, the 
entropy and homogeneity features varied in the same way in 
the case of cirrhosis. 

(a.) (b.) 

(c.) (d.) 

Fig. 3. The correlations between the parameters: (a.) TMCM_Variance_Spots and TMCM3_Variance_Spots (b.) 
TMCM_Variance_Ripples and TMCM3_Variance_Ripples  (c.) TMCM3_Entropy_S5R5, and TMCM3_Entropy_R5S5; (d.) 
TMCM3_Homogeneity_S5R5, respectively TMCM3_Homogeneity_R5S5. 
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 3.4. The validation phase  

3.4.1. Validation through supervised classification 

In order to assess the value of the model discovered through 
unsupervised classification, respectively the power of the 
newly defined textural features in the context of cirrhosis 
severity grade detection, the following classifiers from the 
Weka 3.6 library were employed: the SMO classifier, 
standing for the SVM method (Weka, 2015), having a 3rd  
degree polynomial kernel, this configuration corresponding to 
the best obtained results; the Multilayer Perceptron (MLP) 
classification technique, having a learning rate of 0.2, a 
momentum (α) of 0.8, and the number of nodes from the 
unique hidden layer equal with a, where 
a=(nr_input_features + nr_classes)/2; the J48 method, the 
Weka equivalent of the C4.5 algorithm for decision trees. 
Also, the multiclass meta-classifier was employed, which 
reduced the classification process to a set of binary 
classifications, in combination with the above-mentioned 
elementary classifiers and the Exhaustive correction code 
strategy.  A cross-validation process with 5 folds was 
performed in order to assess the classification performance. 

Concerning the classification performance parameters in the 
case when taking into consideration the set containing both 
the formerly existing and the newly defined textural features, 
the maximum recognition rate, of 96.29%, was obtained in 
the case of the Multilayer Perceptron (MLP) classifier. The 
comparison between the classification accuracies obtained 
when considering only the old textural feature set, 
respectively the set formed by the old and new textural 
features is illustrated in Fig. 4. It results an increase in

 accuracy, for all the classifiers, due to the newly defined 
textural features.  

The accuracy of distinguishing the most advanced evolution 
phase (cluster c3) from the other severity grades of cirrhosis 
was assessed as well. The AdaBoostM1 meta-classifier in 
combination with J48 was taken into consideration, as well 
(Weka, 2015). The classification performance is illustrated in 
Table 6. The maximum accuracy (recognition rate), of 
93.75%, respectively the maximum AuC, of 96.6%, resulted 
in the case of the MLP classification technique. Increased 
specificity (TN rate) values can be observed for all the 
classifiers, expressing a reduced risk of an erroneous 
diagnostic in the case of the healthy patients.  

The set of the relevant textural features that best separate the 
most advanced evolution phase of cirrhosis, from the other 
evolution phases, was also derived, using CFS method, 
specific for supervised classification (Weka, 2015). The 
resulted relevant feature set is provided in (7). 

{GLCM_Energy, TMCM_Contrast_S5R5, 
TMCM3_Contrast_S5R5,  
TMCM_Homogeneity_S5R5, TMCM3_Entropy_S5S5, 
TMCM_Entropy_R5R5, TMCM3_Entropy_S5R5, 
TMCM3_Entropy_R5S5,  Level_Frequency} 

 
(7) 

Table 6. The classification performance resulted 
when distinguishing class c3 from the other classes. 

 Recog. 
Rate  

TP 
Rate 

 TN 
Rate 

AuC 

MLP 93.75% 90.9% 94.3% 96.6% 
SVM 92.18% 81.8% 94.3% 88.1% 
J48 89.06% 63.6% 94.3% 79.5% 
AdaBoost+J48 92.18% 72.7% 96.2% 81.7% 

 

 

Fig. 4. The increase in accuracy due to the newly defined textural features. 

In (7), the presence of the GLCM energy, of the contrast 
derived from the second and third order TMCM matrix based 
on combined microstructures (S5R5), of the entropies derived 
from the second and third order TMCM matrices based on 
spot, ripple and combined microstructures, of the 
homogeneity derived from the 3rd order TMCM matrix based 

on combined microstructures (S5R5), as well as of the level 
frequency, was noticed.  All these features emphasized the 
chaotic, heterogeneous and complex structure of the liver 
parenchyma affected by the last cirrhosis stage and also the 
importance of the TMCM based features in characterizing the 
evolution of the restructuring process.  
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3.4.2. Modeling the clusters using SOM 

In order to visualize the data structure, with respect to the 
existing classes, the method of Self Organizing Maps (SOM) 
was applied, before and after the selection of the relevant 
textural features. For SOM generation, the default option was 
used, corresponding to the batch-training algorithm.  

This implied the existence of a first training phase, in which 
both the learning rate and the neighborhood radius were 
large, and also of a second phase, of refined training, when 
both the learning rate and the neighborhood radius took small 
values (SOM, 2005).  

  

(a.) (b.) 

Fig. 5. The U-Matrices corresponding to the Self Organizing Maps (SOM) obtained before (a.) and after (b.) feature selection. 

As visualization form, the Unified Distance Matrix (U-
Matrix) was chosen, in order to emphasize the distances 
between neighboring map units, and to provide the cluster 
structure of the map.  In this context, high values of the U-
matrix indicated a cluster border, while uniform areas of low 
values indicated the clusters themselves (SOM, 2005). The 
SOM structures, in the form of the U-matrices for the original 
data (a.), as well as for the data obtained after the selection of 
the relevant textural features (b.), are illustrated in Fig. 5. 
Thus, in Fig. 5 (a.), the existing clusters can be hardly 
distinguished, while in Fig. 5 (b.), these classes are more 
obvious, as the cluster edges, marked by high intensity 
elements (most of them being traced with dark pink) are 
better emphasized and the color contrast between the various 
groups is higher.  

4. CONCLUSIONS 

The textural features, especially those derived from the 
TMCM matrices, proved to be efficient concerning the 
detection and characterization of the cirrhosis severity grades, 
improving the previously obtained results in this domain. The 
unsupervised classifiers revealed the existence of four 
evolution stages for cirrhosis. The relevant textural features 
and their specific values for each severity grade confirmed 
the existing medical knowledge in the domain and brought 
new information, concerning the differences in granularity 
between the evolution phases of the considered disease. Also, 
the newly defined textural features led to an increase in 
accuracy in comparison with the old textural feature set, the 
maximum obtained recognition rates being above 90%. In the 
context of our future research, the role that the co-occurrence 
matrices based on more complex textural microstructures 
have in the detection and characterization of the cirrhosis 
severity grades will be also analyzed. Other dimensionality 
reduction methods, such as Multidimensional Scaling (MDS), 
Laplacian Eigenmaps (Van der Maaten, 2008), Independent 
Component Analysis (ICA) (Yang, 2014), respectively the 

Curvilinear Component Analysis (CCA) (Demartines, 1997) 
will be employed as well and their performance will be 
compared with that corresponding to the already employed 
equivalent technique (PCA). More powerful unsupervised 
classification methods based on optimization techniques 
(Das, 2008) will be considered, as well. The experiments will 
be performed on larger datasets, for the validation of the 
results. A score that quantifies the cirrhosis severity grades 
will be also derived, based on a weighted mean that considers 
the normalized values of the relevant textural features and 
their relevance index, as described by (8), where fi are the 
normalized values of the relevant textural features, ri is the 
relevance of the feature fi and n is the number of the relevant 
textural features: 





n

i
ii frR

1

        (8) 

Using the formula (8) and considering the specific values of 
the relevant textural features for each cirrhosis severity grade, 
as indicated by technique of Bayesian Belief Networks, the 
value R can be associated to a score that indicates the 
cirrhosis severity grade, each severity grade corresponding to 
a specific interval of values of R. Thus, this score will be 
employed in order to monitor the disease evolution and when 
its value indicates certain risks, the medical treatment, as well 
as the corresponding examination frequency can be adapted 
accordingly. For validation, this score will be compared with 
the already existing scores for cirrhosis severity 
quantification, such as the Child-Turcotte-Pugh score, or the 
Model for End Stage Liver Disease (MELD) score (Peters, 
2013). Establishing correlations between the newly defined 
score and the already existing scores, as well as their 
combined use, will be also taken into account, the final 
purpose being the increase in accuracy of the cirrhosis 
severity grading and the improvement of the survival chances 
for the affected patients.   
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