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Abstract: This paper aims at introducing a novel approach to the automatic detection of meteor echoes in 
spectrograms of radio recordings. The proposed meteor detection solution uses an artificial neural 
network to analyze data extracted from spectrograms and identify the meteor echoes present within. The 
success of the neural network based solution greatly depends on the network's architecture and training 
process. Several tests were performed to find the optimal neural network, while its training process was 
done using a manually built data set to insure the presentation of a sufficiently large set of data examples 
to the neural network. The final trained network is evaluated using a new set of spectrogram data and two 
distinct feature areas identification methods. The results obtained by this neural network were found to 
provide a statistical significant count of the meteor echoes in the BRAMS spectrograms, with correct data 
classification rates of over 88%. 
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

1. INTRODUCTION 

An important number of small-sized extraterrestrial objects 
enter Earth's atmosphere every day. These space objects, 
called meteoroids, interact with the atmospheric molecules 
and most will disintegrate due to ablation, a process which 
leaves behind a trail of plasma, referred to as a meteor. 
Studies have shown that between 4.4 and 7.4 tons of space 
material enter the upper atmosphere daily (Mathews et al., 
2001). Observing meteors is an important research topic 
because it provides data into the meteoroids that fly through 
the atmospheric layers, such as physical properties or 
velocities. Through such studies, scientists attempt to obtain 
more information on the meteoroid streams, which is relevant 
for the better understanding of asteroids, comets and the solar 
system's evolution. 

Typically, meteor observation is done using radio or video 
recordings systems, which are deployed as singular 
observatories or as multi-station networks. Such systems 
generate large amounts of data each day, which are, most 
often, manually analyzed by the scientists using the 
radio/video systems. The full automation of meteor 
observations is yet to be achieved, even though such systems 
would speed up scientific research and allow for the 
collection of data that may not be recorded otherwise. Steps 
towards the automation of radio/video observation of meteors 
have been taken through the implementation of automatic 
meteor detection solutions. Examples of automatic detection 
approaches in radio observations have been proposed in 
(Wan et al., 2005) and in (Roelandts, 2014), while automatic 
solutions for video observations are described in (Molau, 
1999; Gural, 2007; Jenniskens et al., 2011 and Weryk et al., 
2013). Also of interest in the field of meteor studies is the 
simultaneous radio and video observation of meteors, with an 

example of an automatic meteor detection solution described 
in (Weryk and Brown, 2012). 

Artificial neural networks (ANNs) are mathematical models 
that attempt to imitate certain structures, characteristics and 
functions found in the human nervous system. They are used 
in a wide range of research areas to solve various modelling 
or pattern recognition problems. An ANN is a massively 
parallel model made up of simple processing units, called 
artificial neurons, which are grouped in interconnected layers. 
Each layer of neurons in an ANN has a specific role, with all 
ANNs typically having an input layer, where the input data is 
presented to the network, and an output layer, where the 
neural network's response is given. One or more other layers 
of neurons may be implemented in between the input and 
output layer in order to provide the neural network with data 
processing capabilities. A particular feature shared by all 
ANNs is that in order to achieve their design objective, they 
have to be subjected to a knowledge accumulation phase, 
called training. Through this learning process, the ANNs will 
be able to extract salient features or patterns in the input data. 
This knowledge is stored by the ANNs in the interneuron 
connections, also known as synaptic weights (Haykin, 1999). 
ANNs are known for their ability to work with high-
dimensional data, to learn complex patterns, as well as for 
their ability to generalize in noisy environments. 

Previous studies aimed at providing automatic meteor 
detection solutions based on ANNs have tackled two 
different meteor detection approaches. One automatic 
detection approach was built to search for meteor echoes in 
the time signal representation of radio recordings. This 
method, first described in (Roman and Buiu, 2014), and then 
expanded in (Roman and Buiu, 2015b), samples the radio 
recordings using a 0.1s long sampling window and then uses 
two types of ANNs, a multi-layer perceptron (MLP) and a 
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manually-identified self-organizing map (SOM), to analyze 
each data sample and decide which contains a meteor echo 
and which doesn’t. Furthermore, a software tool named 
MESCAL, aimed at training and testing the two types of 
ANNs used in the study, is proposed in (Roman and Buiu, 
2015b). A second automatic meteor detection solution based 
on ANNs was described in (Roman and Buiu, 2015c). This 
approach detects meteor samples in spectrogram 
representations of radio recordings. To do so, the proposed 
approach samples the input data as slices containing either 4 
or 5 vertical lines and then, after calculating the average radio 
signal power in each data sample, uses a MLP to detect 
which samples contain meteor echoes. 

In the present study, a novel ANN-based approach is used to 
search in spectrogram data from radio recordings and detect 
the meteor echoes within. The proposed solution extracts data 
from the spectrograms in a very simple manner and uses 
these samples to train an ANN using an unsupervised training 
algorithm. Through this process, the ANN will cluster the 
input data based on the similarity between the input samples. 
The neural networks trained in this manner are then turned 
into a feature classification tool by attributing each data 
cluster to one of the feature classes used in this study. After 
the training and cluster labeling processes are finished, the 
ANN is used to analyze a new set of data and its 
classification abilities are tested. An early attempt at using a 
manually-identified SOM to detect meteor echoes using the 
same spectrogram sampling approach as the one used here is 
described in (Roman and Buiu, 2015a). The results in the 
present study, which expand those presented in (Roman and 
Buiu, 2015a), consist of: a larger, better performing 
manually-identified SOM, a new, automatically-identified 
SOM-based detection solution, as well as an in depth look at 
how the two proposed ANN-based detection solutions fare at 
detecting the meteor samples found in the test dataset. 

This paper's main contribution is an ANN-based approach to 
automatic meteor detection in spectrograms of radio 
recordings. This original approach implements a simple 
spectrogram sampling technique, one that avoids using signal 
or image processing techniques, and trains a neural network, 
through an unsupervised process, to analyze the spectrogram 
data and detect the meteor echoes present inside. 

This paper is organized as follows. In section 2, the radio 
recordings used are presented and the spectrogram sampling 
process is described. In sections 3 and 4, the neural networks 
are introduced and detailed. The testing of the ANN-based 
approach and the results obtained are presented in Section 5. 
And finally, the study's conclusions are drawn in Section 6. 

2. RADIO DATA EXTRACTION 

The radio recordings used to develop and test the meteor 
detection approach described in this study were recorded at 
BRAMS (Belgian RAdio Meteor Stations), the Belgian 
meteor detection network (Calders and Lamy, 2012). 
BRAMS is a radio-only system which uses the forward 
scattering of radio waves to detect meteor trails in the 
atmosphere. It is composed of one transmitting beacon 
located in Dourbes, Belgium, and 26 receiver stations spread 
all over Belgium. The beacon emits a purely sinusoidal radio 

wave at a frequency of 49.97 MHz and all receiver stations 
record over a 2.5 kHz bandwidth centred on this frequency. 
Radio data recorded by BRAMS is stored as 5-minute-long 
WAV (sound) files, but the default way to visualize it is 
through spectrograms generated by the BRAMS Viewer 
(Lamy et al., 2013). 

A spectrogram is a visual representation of a signal's 
spectrum of frequencies as they vary over time. Spectrograms 
are represented as two-dimensional graphics, in which time 
and frequency are represented along the orthogonal axes, and 
the signal's power is represented as the intensity at a 
particular time and frequency, usually using colour coding. A 
spectrogram is obtained by calculating the fast Fourier 
transform of the original time signal. A typical BRAMS 
spectrogram is presented in Fig. 1. 

 

Fig. 1. Graphic representation of a typical BRAMS 
spectrogram.  

The frequency range of the spectrogram is 200 Hz around the 
beacon's frequency. The central horizontal line is the beacon's 
directly received signal. The long-lasting, inverse S-shaped 
lines are airplane echoes. The short, vertical lines are radio 
echoes of underdense meteors, while the more complex shape 
to the left of the figure is an overdense meteor echo. 

The reason for choosing to detect meteors in an automatically 
fashion using the proposed ANN-based approach in the 
BRAMS spectrograms is because spectrograms allow for an 
easy discrimination of the meteor echoes from other spurious 
echoes, such as the airplane reflections, as well as carrying 
information on the line-of-sight speeds of the meteors (Lamy 
et al., 2013). Due to the size of BRAMS spectrograms the 
data had to be sampled before it could be used with the 
proposed ANN-based detection approach. A rectangular 
sliding window was chosen to move across the BRAMS 
spectrograms and extract data samples. The size of the 
sampling window was chosen with respect to how most 
meteor echoes appear in BRAMS spectrograms, which is as 
short-lasting signals that have a broad frequency range. For 
this reason, a 30x20 pixels sampling window was used. The 
movement of this sampling window was designed to be done 
with an overlap of 10 pixels for a horizontal slide and an 
overlap of 15 pixels for a vertical slide. Lastly, the vertical 
average of each sample was calculated, thus obtaining a one-
dimensional representation of the average power of the 
signal. One example of a spectrogram sample generated 
through this process can be seen in Fig. 2. 
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The meteor detection solution proposed in this paper uses an 
ANN to analyze and classify spectrogram data samples. Since 
the purpose of this study is to detect meteor echoes in 
spectrograms, it was decided that the spectrogram data be 
classified as either meteor or non-meteor. But in order for this 
approach to function, the ANN has to be trained first. To do 
this, a training set of data is required, one which contains 
sufficient examples of both classes of samples the ANN is 
expected to detect. Therefore, a number of 24 BRAMS 
spectrograms (2 hours worth of data) were sampled to build 
the training set. Additionally, an extra set of meteor samples 
was extracted from 96 other spectrograms (8 hours of data) 
and was included in the training data to provide even more 
examples of meteor data for the ANN to train with. In total, 
the training data set contained 767 meteor samples and 89359 
non-meteor samples. The spectrogram data used in this study 
is available at (Roman and Buiu, 2015d). 

 

Fig. 2. Graphical representation of a meteor sample extracted 
for this study.  

The figure on the left represents the 30x20 pixels sample, as 
it was extracted from the radio spectrogram. The figure on 
the right represents the final form of the data sample, 
obtained through the vertical averaging of the spectrogram 
sample. 

3. SELF-ORGANIZING MAPS 

The ANN used in this study to automatically detect meteors 
is the self-organizing map, which is also known as the 
Kohonen neural network (Kohonen, 2001). A SOM is a 
neural network based on competitive learning that generates a 
topographic map of the input patterns. SOMs are built as 
two-layered ANNs in which the output layer is formed as a 
one- or two-dimensional lattice of neurons, as seen in Fig. 3. 
Through the competitive learning process, the neurons in the 
SOM will selectively adapt to the various classes of patterns 
in the input data set, thereby creating a map over the output 
lattice in which similar input patterns are clustered in the 
same area of the map, while dissimilar input patterns will be 
clustered in different areas of the resulting map. The 
development of SOMs was motivated by the way the human 
brain maps different sensory inputs (e.g. acoustic, tactile, 
visual, etc.) onto different areas of the cerebral cortex in a 
topologically ordered way (Haykin, 1999). 

The training of a SOM is the process which transforms the 
initial random distribution of neurons on the SOM's output 
lattice into a topographic map composed of areas where 
similar input patterns are clustered together. Thus, each area 
of the map can be considered a feature classifier. The training 
process, which takes place over many iterations (called 
epochs), uses a competitive learning algorithm during which 
the neurons in the output lattice compete to be activated by a 
particular input vector, with only one neuron in the lattice 
being activated at a given time. This competitive process is 
based on a discriminant function and the neuron which 
generates the largest value for this function will be the one to 
be activated. The adaptation of the neurons in the SOM is a 
process of cooperation, where a topological neighbourhood is 
determined around the neuron that won the competition for 
activation (called wining neuron) and all neighbouring 
neurons within this neighbourhood, as well as the winning 
neuron will have their synaptic weights modified to better 
resemble the input pattern. 

 

Fig. 3. A simple graphic representation of a self-organizing 
map. 

The SOM training process can be summed up as follows: 

1. Initialize the SOM and all neuron weight vectors. 

2. Choose a random vector from the training set and 
present it to the neural network. 

3. Calculate the discriminant function for all neurons in 
the lattice and determine the neuron which generates 
the largest value. This neuron will be called the best 
matching unit (BMU). 

4. Determine the topological neighbourhood around 
the BMU and all neurons that are part of this 
neighbourhood. 

5. Adjust the weight vectors of the BMU and all 
neighbouring neurons. 

6. Repeat steps 2-5 for all the vectors in the training 
set. 

7. Repeat steps 2-6 for a number of training epochs. 

The initialization of a SOM refers to choosing initial values 
for the weight vectors jw (0)  of the neurons in the output 
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lattice. The only restriction here is that all weight vectors 
have to be different for all the neurons in the SOM. 

For the competitive phase of the training process, an input 
vector is presented to all the neurons and a discriminant 
function is used to calculate the unit that best matches the 
input vector. For this study, the BMU is determined as the 
neuron whose weight vector is closest to the input sample in 
terms of the Euclidean distance, which is calculated as: 

2
j i ji

i

d(x, w ) (x w ) ,          (1) 

where x is the input sample and jw  is the weight vector of 

neuron j. Therefore, the competitive process aims at finding 
the neuron which has the smallest Euclidean distance to the 
input sample x. If we use i(x) to identify the best matching 
unit, then it can be determined as: 

j
j

i(x) arg min x w .     (2) 

Once the BMU has been determined, the SOM's training 
process will determine the neighbourhood j,ih   around it and 

calculate which other neurons are part of this neighbourhood. 
A typical choice for the BMU neighbourhood, which is used 
in this study, is the Gaussian function: 

2
j,i
2

d
j,i 2 (t)

h (t) exp ,


 
  

 
   (3) 

where j,id  is the distance between the BMU i and the neuron 

j, while (t)  is the radius of the BMU's neighbourhood. The 

unique feature of the SOM training process is that it uses a 
shrinking neighbourhood, so that less neurons get trained as 
the epochs go by. The parameter that is modified every epoch 
to insure the shrinking of the BMU neighbourhood is the 
radius   , as per: 

 
1

t
0(t) exp .       (4) 

The parameter 0  is the value of the neighbourhood's radius 

at the start of the training process, 1  is a time constant, 

while t is the current epoch. Typically, the neighbourhood 
radius   starts out quite large, sometimes as big as the entire 
network, but it ends up very small, to the point where only 
the BMU will be trained using the input vector. 

The adaptation of the BMU and all neurons within its 
neighbourhood is done using the following rule: 

j j j,i jw (t 1) w (t) (t)h (t)(x w (t)),      (5) 

where jw (t)  is the current weight vector of neuron j, (t)  is 

the learning rate and x is the input vector. This equation 
shows that the weight vector's change through learning is 
directly proportional to the distance between a neuron and the 
BMU, therefore the closer a neuron is to the BMU, the more 
it will adapt to the input vector, while the BMU is the neuron 

to adapt the most. The training algorithm's learning rate (t)
, similarly to (t) , is a parameter that will shrink over time. 

This is done to control the level of change in a neuron's 
weight vector. While at first a larger (t)  will lead to a 

larger change in a neuron's weights, towards the end, the ever 
smaller learning rate will only induce a small change to the 
weight vector. The learning rate (t)  is modified through: 

 
2

t
0(t) exp ,       (6) 

where 0  is the initial value of the learning rate, while 2  is 

another time constant. 

After the training process is finished, the neurons in the 
output lattice will have formed a topographic map in which 
the vectors used for training have been clustered in several 
areas, with each such area corresponding to a class of features 
in the input data space. Through these areas of similarity, the 
SOM will be able to analyze new data and classify the input 
vectors based on which area they are mapped to. It should 
also be noted that the SOM training algorithm works in an 
unsupervised manner, where the user is not required to 
provide target classes for each input vector in the training set. 
Instead, the training algorithm will create feature classes by 
itself by clustering input vectors that contain similar patterns 
onto the same areas of the topographic map. 

The process of training a SOM into a feature detector is 
reliant on a number of elements. The training data set has to 
contain a large number of examples of input patterns for all 
the feature classes defined for the given problem in order for 
the SOM to recognize similar patterns when new data will be 
processed by the network. Meanwhile, the number of neurons 
in the output lattice and the duration of training will influence 
the formation of areas of similarity on the resulting 
topographic map. Therefore, when designing a SOM, these 
three elements have to be properly chosen for the neural 
network to perform correctly. Aside from these factors, the 
quality of the SOM can also be assessed using two other 
metrics that will determine the network's ability to preserve 
the topological properties of the input data set. The first of 
these two metrics is the quantization error (Uriarte and 
Martin, 2008), which measures the average distance between 
each input vector and the best matching unit associated with 
it: 

1
xn

qe x bmu ,     (7) 

where n is the number of vectors in the input set, x is a data 
vector and xbmu  is its associated BMU. This error will 

determine how well the input data is mapped onto the SOM 
developed during training. A well trained SOM will typically 
generate the smallest quantization error, which means that the 
BMU neurons in the output lattice closely resemble their 
associated input vectors. The second metric analyzed is the 
topographic error. This error measure determines how well 
preserved is the topology of the input data by the SOM. The 
topographic error calculates the proportion of input vectors 
for which the BMU and the second BMU are not adjacent on 
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the topographic map (Uriarte and Martin, 2008). The error is 
calculated as follows: 

1
n

te f (x),     (8) 

where n is the number of input vectors, while f(x) is 1 if the 
first and second BMUs of vector x are adjacent, and is 0 
otherwise. As with the quantization error, a small topographic 
error is indicative of a good SOM. 

The optimal self-organizing map to be used for meteor 
detection was found after a series of tests done on SOMs 
trained with different values for the size of the output lattice 
and the duration of the training process. One goal of these 
tests was to reduce the quantization and topographic errors of 
the neural networks, as it was found out during this study that 
obtaining good values for these metrics is directly 
proportional to the ability of the SOMs to detect meteors. The 
other goal was to obtain a SOM that correctly classifies as 
many input samples as possible. The tests done during this 
study revealed that a SOM with 924 neurons in the output 
layer, displayed as a grid of 33x28 neurons, which was 
trained for 500 epochs, was the best performing neural 
network. 

4. MULTI-LAYER PERCEPTRONS 

The other type of ANN employed in this study, which was 
used to identify the feature areas on the topographic map, is a 
multi-layer feedforward network, also known as the multi-
layer perceptron (Haykin, 1999). Typically, such a neural 
network is composed of an input layer of sensory neurons, 
one or more hidden layers of computational neurons and an 
output layer of neurons, where the network's response to an 
input signal is given. Being a feedforward ANN, all input 
data will be propagated through the network in a forward 
direction, from the input to the output layer. The signal that is 
generated at the output layer of a MLP is a result of very 
simple calculations done in the computational layers of the 
network: each neuron in such a layer calculates the weighted 
sum of all his inputs and passes this result to a nonlinear 
activation function, which determines that neuron's output 
signal. 

Since the data processing and output generation in a MLP are 
directly influenced by the weight vectors of the neurons in 
the network, it becomes obvious that the performance of a 
MLP will benefit from having an appropriate set of weights 
assigned to each neuron in the network. The process through 
which a MLP is able to adjust the weights of its neurons in 
order to produce desired outputs is called the network's 
training. The MLP uses a supervised training process, where 
an error measure is propagated backward through the 
network, from the output to the input layer, in order to adjust 
the neurons' weights. The typical error measure used by an 
MLP is calculated as the difference between the network's 
actual and desired outputs: 

j j je (t) d (t) y (t),     (9) 

where jy (t)  is the MLP's actual output and jd (t)  is the

 desired output. The best known MLP training algorithm is 
the backpropagation algorithm (Rumelhart et al., 1986). 

The training of a MLP is done over many epochs in order to 
gradually decrease the neural network's output error. During 
one training epoch, the MLP will be trained with all data 
vectors in the data set. Each vector is propagated through the 
neural network and it will generate a specific output signal. 
This signal is compared to that vector's desired output and the 
error thus generated will be propagated backward through the 
network to adjust the neuron weights in the MLP. The weight 
correction rule used by the backpropagation algorithm can be 
summed as (Haykin, 1999): 

ji j iw (t) (t)y (t).      (10) 

The term jiw (t)  is the weight correction that will be 

applied to the link (synapse) between neurons j and i,   is 

the learning rate parameter, which tells how much the 
weights of the neurons will change, j(t)  is the local 

gradient and iy (t)  is the output signal generated by neuron i, 

which is also the input signal received by neuron j. 

In this study, a three-layer feedforward MLP is trained using 
the data extracted from the BRAMS spectrograms and with a 
set of desired outputs for each sample in the training set. 
Since the data analyzed in this study is to be classified as 
being either meteor or non-meteor, the MLP was designed 
with 20 neurons in the input layer, corresponding to the size 
of the spectrogram data vectors, and with 2 neurons in the 
output layer, one corresponding to meteor data and the other 
to non-meteor data. The number of neurons in the MLP's 
third layer ( hidn ), the processing layer, and the number of 

epochs the training algorithm is run for ( epon ) are however 

independent of the problem at hand. Still, their values will 
greatly influence the network's performance, therefore they 
have to be chosen with great care. 

Determining the optimal values of these two parameters was 
done using a procedure through which MLPs were trained 
with increasing values of one parameter, while the other one 
was fixed to a certain value. The scope of this process was to 
gradually decrease the mean square error value of the neural 
network to the point where for several values of the variable 
parameter, the MSE would not decrease any further. After 
one parameter was deduced through this procedure, its value 
was fixed to the optimal value and the other parameter's 
values were increased until the MSE of the MLP would not 
decrease for several different values of the variable 
parameter. Using this procedure, the optimal value found for 

epon  was 184 epochs, while the optimal value for hidn  was 

deduced to be 211 neurons. 

In the end, a multi-layer perceptron having the previously 
mentioned parameters was trained using the training data set 
extracted from spectrograms. This MLP was used to 
automatically determine the meteor and non-meteor areas on 
the topographic map built during the training of the optimal 
SOM. 
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5. METEOR DETECTION RESULTS 

In order to test the SOM-based meteor detection solution 
proposed in this paper, a new data set was built using 
previously unused recordings from the BRAMS network. In 
total, 120 new spectrograms were sampled, which is the 
equivalent of 10 hours of recordings. Because evaluating the 
performances of the proposed detection approach requires 
that the samples in the test data set are known, a process of 
manual identification and labelling of these samples was 
done before the data was presented to the SOM. Through this 
process, a number of 1252 samples were identified as being 
meteor samples, while the other 447870 were labelled non-
meteor samples. It should be noted that the even though 
sample labelling was done by a human operator, the test data 
set may contain some mislabelled samples. 

Before the proposed SOM-based approach could be tested at 
classifying the spectrogram samples, a process of identifying 
the meteor and non-meteor areas on the map had to be done. 
Through this process, all neurons in the SOM's output layer 
are analyzed to identify which neurons have become, through 
training, meteor classifying units and which have become 
non-meteor classifiers. In this manner, meteor and non-
meteor areas will be delimited on the topographic map, areas 
which can then be used to classify the test data into the two 
data classes used in this study. 

(a) 

 
(b) 

 

Fig. 4. Visual representations of two instances of the 
manuSOM.  

The representation in 4(a) is the manuSOM's hits plot for the 
entire training data, while that in 4(b) is the hits plot for the 
meteor samples in the training data. Each hexagon in the two 
figures represents one neuron in the SOM's output lattice. 
The number in each hexagon represents the total number of 
input samples that were mapped to that particular neuron. In 
both figures, the red line is used to delineate the two meteor 
areas on the SOM (in the top and bottom left of the map). 
The rest of the SOM was labeled as a non-meteor area. 

The first process of feature areas identification was done 
manually, after analyzing the topographic map that resulted 
through training. This was possible due to the fact that data in 
this study is divided in only two classes, meteor and non-
meteor. It should be noted that for situations where the data is 
divided in more classes, a manual identification of the areas 
on the map would be much harder to do. In the case of this 
study, the area identification was done by analyzing not only 
the topographic map generated through training, but also the 
map obtained by presenting the SOM with only the meteor 
samples in the training set. These two maps, presented in Fig. 
4, tell where the meteor data is mapped, as well as where the 
bulk of the non-meteor data is found. With this information, 
it was decided to separate the SOM into three areas, two 
meteor areas to the left of the map and a larger non-meteor 
area occupying the central and the right parts of the map, as 
can be seen in Fig. 4. Having obtained these two areas, the 
SOM could then be used to analyze and classify the samples 
in the test data set. 

The results of the manually delimited SOM's (called 
manuSOM from now on) classification of the test data are 
found in Table 1. The results presented there, which were 
validated by hand, indicate that the proposed approach has a 
good ability to correctly classify spectrogram data samples, 
and is equally able at correctly classifying both types of 
spectrogram data. The overall rate of correctly detected 
samples obtained using the manuSOM is equal to 97.29%, 
which is a very encouraging result. 

Table 1.  The detection results obtained using the 
manually delimited SOM. 

 

Correctly 
detected 

Incorrectly 
detected 

# % # % 

Meteor 
samples 

1219 97.36 33 2.64 

Non-
meteor 
samples 

435745 97.29 12125 2.71 

Because the approach proposed in this paper is intended to be 
a fully automatic solution to the detection of meteor echoes in 
spectrogram data, a new process of identifying the feature 
areas on the topographic map was done using the MLP 
trained with spectrogram samples. The SOM's output lattice 
contains neurons which, during the learning phase, adapt to 
the data in the training set by trying to become more alike to 
the patterns found in the input data. Therefore, the output 
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neurons of a SOM can be analyzed with another classifying 
tool and be classified to one of the feature classes. For this 
study, the weight vectors of all neurons in the SOM's output 
lattice where presented to the MLP, whose classification 
results were used to associate each output neuron with one of 
the two data classes. In this manner, the feature areas on the 
topographic map were determined in an automatic fashion, as 
can be seen in Fig. 5, and the SOM could be used to classify 
the spectrogram data. 

 

Fig. 5. Visual representation of the autoSOM's hits plot.  

Delineated with red color are the feature areas that were 
identified by the MLP to be meteor areas. The rest of the 
SOM was classified as a non-meteor area. 

The meteor detection results obtained using the automatically 
delimited SOM (called autoSOM from now on) are presented 
in Table 2. They show that the autoSOM also obtains a good 
detection score. The first observation that can be made is that 
this SOM is less able to detect meteor samples than the 
manually delimited SOM. At the same time, though, it can be 
seen that the second SOM is able to correctly classify more 
non-meteor samples and also has a higher overall correct 
classification rate of 99.63%. 

Table 2.  The detection results obtained using the 
automatically delimited SOM. 

 

Correctly 
detected 

Incorrectly 
detected 

# % # % 

Meteor 
samples 

1102 88.02 150 11.98 

Non-meteor 
samples 

446357 99.66 1513 0.34 

Analyzing the two SOMs tested in this paper, one can see 
that both perform really well at correctly detecting the 
samples extracted from the BRAMS spectrograms. The 
manuSOM is better at detecting the meteor samples in the 
test data, but the process of transforming it into a feature 
classifying tool is highly dependent on the operator's 

knowledge on the problem at hand and his ability to analyze 
the topographic map obtained through training the SOM. In 
comparison, the autoSOM, though less able to detect meteor 
samples, manages to correctly detect more non-meteor 
samples, and by doing so, has a better ratio of correctly 
detected test data samples. Still, it should be pointed out that 
the autoSOM's performances are highly dependent on using a 
well trained MLP. This is because the feature areas 
identification process for this case depends not only on the 
SOM having undergone a thorough training process, but also 
on the MLP's correct data classification ability. 

The performance of the two SOMs tested in this study can 
also be compared using the confusion matrix of the detection 
results. This matrix is used to determine the percentage of 
correctly and incorrectly detected data samples from the total 
number of samples classified by the SOMs in each of the two 
classes. The results, included in Table 3, show that the 
autoSOM correctly detects a greater number of meteor 
samples from the total number of samples it has classified as 
being meteors. On the other hand, the manuSOM, although it 
correctly detects more of the meteor samples in the test data, 
has correctly classified only 9.14% of the total number of 
samples it has classified as meteor data. These results show 
that a solution which correctly detects more meteor samples 
is not necessary the better solution. In the case of this study, 
the manuSOM will generate a larger number of false counts 
compared to the autoSOM. As for the confusion results 
obtained by the two SOMs for the non-meteor data, it can be 
observed that the results are quite similar, with the autoSOM 
generating a larger number of misclassified data samples 
compared to the manuSOM. 

Table 3.  The confusion matrix for the two SOMs tested in 
this study. The “Total no. of samples” column contains 
the total number of samples that the SOM classified as 

being meteor or non-meteor. 

  Total 
no. of 
samples 

Detection # % 

manuSOM 

Meteors 13344 Correct 1219 9.14 

Incorrect 12125 90.86 

Non-
meteors 

435778 Correct 435745 99 

Incorrect 33 1 

autoSOM 

Meteors 2615 Correct 1102 42.14 

Incorrect 1513 57.86 

Non-
meteors 

446507 Correct 446357 99 

Incorrect 150 1 

Analyzing the spectrogram samples included in the meteor 
data of the test set, one could see that the meteor samples are 
characterized not only by the shape of the signal, with a 
typical meteor shape being presented in Fig. 2, but also by the 
power of the received signal, as well as by the existence of 
non-meteor contributions, typically from airplanes, to the 
signal. Therefore, it is worth analyzing how the two proposed 
SOMs fare at correctly classifying the meteor samples in 
regards to their main characteristics. In order to do this study, 
the meteor data in the test set was divided into three classes. 
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One of the three classes, called the “Airplane” class, was 
built with all the spectrogram samples that contained both 
meteor and airplane radio echoes. This class is worth 
studying to analyze how airplane contributions in the data 
samples affect the classification abilities of the proposed 
SOMs. This is due to the fact that airplane echoes bring 
changes to the power of the radio signal in each sample, as 
well as modifying the shape of the received signal. An 
example of such a sample is presented in Fig. 6. Through 
manual analysis of the meteor data, 105 samples were 
extracted and included in this class. 

 

Fig. 6. Example of a meteor echo sample from the “Airplane” 
class.  

It can be seen in the left figure how the airplane echo (the 
diagonal line) overlaps the meteor echo (the vertical line). 
The result of the airplane's contribution is shown in the final 
shape of the spectrogram sample in the right figure. 

The other two classes studied were built based on the 
maximum power of the signal in each sample. To separate the 
data, a threshold was set at the 40 dB level. All samples 
whose maximum signal power was below this threshold were 
included in the class called “Faint”, while all samples with a 
maximum signal power equal to or greater than 40 dB were 
included in the class called “Strong”. It should be pointed out 
that the samples in these two classes contained no airplane 
echo contributions to the extracted radio signal. A graphic 
example of a sample from the “Faint” class can be found in 
Fig. 7, while an example of a sample from the “Strong” class 
is presented in Fig. 2. After analyzing the meteor data in the 
test set by hand, 473 samples were included in the “Faint” 
class, while 674 were included in the “Strong” class. 

 

Fig. 7. An example of a meteor echo sample from the “Faint” 
class. 

All three classes of meteor data were presented to both SOMs 
tested in this study, and the results are presented in Table 4. 
The manuSOM correctly classified more than 94% of the 
samples in the three classes, with the lowest result obtained 
for the meteors in the “Faint” class. The autoSOM, which has 
a lower meteor detection ability, as per Table 2, struggles 
visibly to correctly classify the samples in the “Airplane” 
class. The results for the other two classes are good, with the 
best results obtained for the samples in the “Strong” class. 

Table 4.  The detection results obtained by the two SOMs 
when analyzing the data samples in the three meteor 

classes. 

  Total 
no. of 
samples 

Correctly 
classified 

Incorrectly 
classified 

# % # % 

manuSOM Airplane 105 100 95.24 5 4.76 

Faint 473 446 94.29 27 5.71 

Strong 674 673 99.85 1 0.15 

autoSOM Airplane 105 70 66.67 35 33.33 

Faint 473 380 80.34 93 19.66 

Strong 674 652 96.76 22 3.26 

The first conclusion that can be drawn from this test is that 
both SOMs are able to detect meteor samples with a strong 
received radio signal. Apparently, the correct meteor 
detection ability of the ANNs is reduced by a decrease in the 
power of the received signal, with the autoSOM being more 
influenced by this factor. It is worth pointing out that the 
largest number of incorrectly classified meteor samples by 
each SOM is that of samples from the “Faint” class. Lastly, 
only the autoSOM appears to be underperforming in 
detecting samples from the “Airplane” class, while the 
manuSOM manages to correctly classify most samples in this 
class. 

6. CONCLUSIONS AND FURTHER DEVELOPMENTS 

An original approach to the automatic detection of meteor 
echoes in spectrograms of radio data recorded by the 
BRAMS network is presented and tested in this paper. The 
proposed solution implements a spectrogram sampling 
process that is operator independent and easy to reproduce. 
Data extracted from spectrograms is used to train a self-
organizing map to recognize meteor samples, which is then 
manually processed to have its feature areas identified. A 
second neural network, a MLP, is trained with the same input 
data and then used to automatically identify the feature areas 
on the topographic map generated through the SOM's 
training. 

The SOM trained in this paper, in both variants of feature 
areas identification, was tested using a new set of 
spectrogram samples. The results obtained during testing 
showed that the SOMs were able to correctly identify more 
than 88% of the test samples, while the overall detection rates 
were above 97%. But while both SOMs provided 
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encouraging results, several differences were found between 
the two ANNs. Thus, while the manually delimited SOM was 
able to detect more of the meteor samples, the automatically 
delimited SOM correctly detected more overall samples from 
the test data and generated less false meteor sample 
detections. Furthermore, when analyzing the influence of the 
characteristics of the meteor samples over the SOMs' 
detection abilities, it was found out that while the manuSOM 
was able to detect the samples in the three meteor classes in 
an almost equal fashion, the autoSOM struggled to correctly 
detect the samples in the “Airplane” class, while also having 
a bit of trouble with the samples in the “Faint” class. It is 
worthwhile pointing out the samples in the “Faint” class of 
meteor data were the ones most misclassified by both SOMs, 
which hints that in the proposed form, the two SOMs are 
sensible to the power of the signal in the spectrogram 
samples. 

In order to assess the performances of the meteor detection 
solution proposed in this paper, a comparison can be made 
with previously reported meteor detection results. When 
comparing the results presented in this paper to those of 
previous automatic detection solutions based on ANNs, such 
as those described in (Roman and Buiu, 2014; Roman and 
Buiu, 2015b, c), it can be seen that the detection approaches 
described in this study are able to provide equally good or 
better results. For example, the meteor detection solution 
described in (Roman and Buiu, 2015c), which also works 
with spectrogram data, is only able to correctly identify 
between 80 and 82% of the meteor samples and between 83 
and 85% of the non-meteor samples, whereas the SOM-based 
solutions proposed here are able to detect 88% or even more, 
depending on the SOM used for detection, while non-meteor 
samples detection results are correct more than 97% of the 
time. The meteor detection solutions described in (Roman 
and Buiu, 2015b) use a manually-identified SOM, as well as 
a MLP used for detection, therefore they can be better 
compared to the results presented here. Comparing the two 
manually-identified SOMs, it can be seen that the SOM 
described here fares better at detecting meteor samples, 97% 
of the samples to the 91% reported in (Roman and Buiu, 
2015b), as well as non-meteor data samples, with more than 
97% to the 88.7% reported in (Roman and Buiu, 2015b). At 
the same time, it can be observed that while the 
automatically-identified SOM described in this paper 
manages to correctly identify less meteor samples than the 
SOM in (Roman and Buiu, 2015b), it fares much better at 
correctly detecting non-meteor data samples. Lastly, when 
comparing the results of the SOMs described here to the 
detection results obtained in (Roman and Buiu, 2015b) using 
a MLP, it can be noted that both ANNs in this paper have a 
better ability to correctly detect both meteor and non-meteor 
data samples than the MLP-based solution is able (86% of the 
meteor samples and 86.4% of the non-meteor samples). 

Comparing the meteor detection results of the two SOMs 
presented in this paper with other, non-ANN-based detection 
approaches is, in ways, harder to do, as the methods of data 
sampling and meteor recognition vary greatly. Still, a brief 
look into other techniques can be taken in order to assess the 
abilities of the meteor detection solutions provided here. An 

automatic meteor detection solution working with radio 
recordings is the one described in (Roelandts, 2014). In a 
later study (Lamy et al., 2015) it is shown that this method is 
able to detect between 40% and 85% of the meteor echoes, 
depending on the parameters it uses. Still, in the same paper, 
it is shown that solutions that provide good meteor detection 
results also have a high percentage of misclassified non-
meteor samples (i.e. which are classified as meteor samples). 
In this regard, the authors argue that for the given test, 
choosing a set of parameters which leads to a 65% meteor 
detection result will also lead to a small enough rate of false 
positive results. In a different paper, a meteor detection 
solution is proposed for working with video data. In that 
paper (Weryk et al., 2013), the authors report that their 
meteor detection solution is able to detect, based on the 
parameters it uses, between 67 and 90% of the recorded 
meteors. These results are also correlated to the number of 
well-tracked meteors, with the 67% meteor detecting 
configuration being able to better track more of the detected 
meteors than the 90% detecting configuration. And because 
the main interest of the authors was to have more well-
tracked meteors, the decsion was to calibrate the system to 
the parameters of the 67% detecting configuration. If the 
results described in these two papers were to be compared to 
the results presented here, one could argue that the SOM-
based solutions in this paper are better performing. These two 
results give an idea of what some requirements are in the 
field of meteor detection. It should be pointed out that both 
solutions described in this paragraph are able to detect whole 
meteor echoes and do not work with smaller data samples, 
therefore a direct comparison between those two approaches 
and the ones described in this paper cannot be made. 

The results obtained by the SOMs proposed in this paper are 
closely related to the processes of identifying the feature 
areas on the topographic map. In this regard, the manual 
feature areas identification process would benefit from a 
more precise analysis and manual identification of the feature 
areas on the map, while the automatic identification process 
would be improved if a better performing MLP was used to 
determine the feature areas on the topographic map. The 
SOM's performances, as well as those of the MLP, are also 
influenced by the training data. Therefore, the two ANNs 
would benefit from an extended training data set, which 
would contain more examples of meteor and non-meteor 
samples. Also altering the performances of an ANN are the 
number of neurons in the network, or the duration of its 
training process. Thus, using different values for these 
parameters, or even adding extra layers of neurons, in the 
MLP's case, could maybe improve the meteor detection 
abilities of the neural networks. 

In its present form, the ANN-based solution is used to 
analyze spectrogram samples obtained from one station in the 
BRAMS system and to classify these samples as being 
meteor or non-meteor data. As it is right now, the detection 
approach offers no other information on the meteor data it 
detects. One improvement that could be added would be to 
train the SOMs to discriminate which meteor samples were 
generated by underdense meteors and which were generated 
by overdense meteors. The proposed meteor detection 
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solution may also be upgraded with a function that can 
extract the exact time moment in the original radio recording 
of each meteor sample detected using the SOMs. 

Another development worth exploring would be to 
implement a multi-station system based on the meteor 
detection approach presented in this paper. This multi-station 
system would require analyzing how the SOM-based 
approach handles meteor echoes detected by multiple 
stations, as well as evaluating if such multi-station data 
would improve or damage the SOM's detection abilities. 
Developing a multi-station system may also require the 
training and implementing of distinct neural networks, one 
for each station in such a system. 
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