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Abstract: Partitioning geometric data into two sets, one corresponding to high frequencies
and the other to low frequencies, is a critical operation in the second generation wavelet
multiresolution analysis. From a geometric point of view, a region with high variability within a
vertex neighborhood at a certain scale indicates a correlation with a signal having a frequency
that dominates at that scale. We thus prospect the abilities of several geometric variability
descriptors to robustly identify features. We consider three descriptor families: based on principal
component analysis, surface fitting and quadric error metrics. To assess the quality of each
descriptor, we employ a lazy wavelet simplification of digitized 3D models since these usually
contain noisy geometric structures from which multiple scales of resolutions can be inferred.
The difference between a simplified model and the highest resolution representation is measured
objectively using averaged local distance functions.
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1. INTRODUCTION

Modern object scanners produce very high density digi-
tized models, but the raw data itself does not immediately
lend itself to a qualitative interpretation, relevant to an
end-user. Thus, the data density richness can also become
a disadvantage when direct statistical or semantic process-
ing is applied. In particular, hierarchical representations of
the data at different resolution levels can greatly facilitate
the identification of features at different scales. One of the
most widely accepted techniques for constructing such rep-
resentations is through the use of wavelet multiresolution
analysis (WMRA), a term recognized by many authors
as a synonym for this goal. With the advent of second
generation wavelet transform, where the lifting scheme
introduced by Sweldens (1996) plays a pivotal role, a com-
prehensive gamut of applications for geometry processing
were proposed, with active research still being conducted.

The connection between WMRA and scale-dependent fea-
ture analysis is easier to establish by examining a series of
relevant works on this topic. Even recently, Nader et al.
(2014) proposed an adaptive, multi-scale point cloud edit-
ing algorithm that acts on the scale specific features of
the geometric model similarly to the wavelet-based frame-
works of Guskov et al. (1999) and Zorin et al. (1997). The
key difference between feature-based model analysis and
second generation wavelet analysis methods is the focus
of the first category on the data variability instead on
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predict-update filter design. Nevertheless, this distinction
is not conspicuous in the sense that the first category could
be included into a broader class of a lazy wavelet decom-
position, a term popularized by Sweldens (1996), where a
geometric process is used to predict samples at different
scales. Ranging from the influential work of Hoppe (1996)
on progressive mesh representation to a linear predictive
coding of 3D mesh sequences as described by Stefanoski
et al. (2007), the implications of feature-driven geometry
simplification, compression and filtering also motivate our
present work.

WMRA approaches based on the lifting scheme exploit
data redundancy and can operate directly on the spa-
tial domain. Lazy wavelet decomposition, as an integral
part of the lifting scheme, can be guided by a feature
discrimination mechanism, as discussed by Cioaca et al.
(2016). In this respect, geometric variability is a relevant
redundancy indicator and can serve the purpose of par-
titioning the data samples. By convention, the samples
deemed as disposable are assigned to a set called the odd
subset, while the remaining samples are placed in a set
called the even subset. The lifting mechanism implies that
the odd samples be estimated from the even ones. Data
compression then becomes possible by working on the set
of wavelet coefficients, which are the differences between
the odd samples and their predicted values.

In this work, we examine the performance of several
geometric variability descriptors in conjunction with a
lazy wavelet partitioning strategy. We achieve this by
computing a dense scalar descriptor function (i.e. defined
at each individual sample point) and then sorting the
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samples according to their descriptor values. For this goal,
the following properties are desirable:

• scale dependence: the descriptor must reflect the
variability of the data at a certain scale of interest,
• robustness to noise: the descriptor must be able to

discriminate salient features even in the presence of
noise.

1.1 Related work

The term ”descriptor” has broad connotations depending
on whether it represents single points or entire regions,
or whether it takes on vector or scalar values. Some
of the most common applications of descriptors involve
shape matching for rigid or deformed objects. For the
purpose of this work, where an importance value has to
be assigned to all point samples, the discussion will be
limited to scalar valued descriptors. One prominent choice
involves computing robust principal curvatures estimators
at multiple scales. To achieve this, Yang and Shen (2012)
employed principal component analysis of ball and sphere
vertex neighborhoods. Ho and Gibbins (2009) used the
Casorati curvature to extract multi-scale features from
surfaces and unstructured point clouds. The multi-scale
shape index analysis developed by Bonde et al. (2013) gen-
eralized another curvature-based descriptor. Boyer et al.
(2002) and Cipriano et al. (2009) resorted to local sur-
face fitting for robust curvature estimation and saliency
discrimination, while Sipiran and Bustos (2011) extended
the Harris corner detector to 3D meshes by computing
the Harris response in a vertex neighborhood of variable
radius again by performing paraboloid fitting. Saliency
and scale were further combined by Liu et al. (2007) in an
algorithm for detecting critical points by averaging scalar
vertex descriptors. A more complex automatic and robust
scale selection mechanism based on curvature evolution
according to the heat equation was proposed by Fadaifard
and Wolberg (2011). For large point sets, Shtrom et al.
(2013) have constructed a saliency map based on point
feature histogram descriptors. Park et al. (2012) employed
tensor voting and eigenanalysis to detect features and
scales automatically for noisy point clouds. Maximo et al.
(2011), Wu et al. (2013) and Tao et al. (2015) introduced
a new descriptor class based on the Zernike coefficients
of a patch sample, a method suited only for measuring
geometric variability and akin to a spherical harmonics
decomposition. Although robust to noise and scale inde-
pendent, this type of descriptor requires the computation
of 25 such coefficients on a regular, 16 × 16 grid around
each vertex via heightmap fitting. Tangelder and Veltkamp
(2008) and Tang and Godil (2012) performed a survey
analysis of several existing shape descriptors in the context
of 3D shape retrieval, while Creusot et al. (2013) described
a machine learning approach aggregating several types of
scalar descriptors for the purpose of identifying landmark
features on face scans.

1.2 Main contributions

The contribution of this work can be summed up as
follows:

• We compared the feature preserving capabilities of 3
families of scale-dependent descriptors.

• We extended the normal field variation of Hussain
(2010) to variable size vertex neighborhoods.

• We proposed a principal component construction of
a new quadric error metric that is more robust to
noise, scale dependent and extensible to multiple
dimensions.

• We improved the selectivity of the Harris 3D Sipiran
and Bustos (2011) corner detector.

The rest of this article is structured as follows. In section
2, the notions of scale dependent neighborhoods and dense
scalar descriptors are introduced, highlighting their role in
driving a lazy wavelet partitioning algorithm. Two PCA-
based descriptors are then presented in section 3. Three
descriptors based on paraboloid fitting are examined in
section 4. Two new descriptors based on the quadric
error metric matrices are presented in section 5. The
performance of all seven descriptors is discussed in section
6. Conclusions and future work directions are given in
section 7.

2. SCALE FEATURES AND LAZY WAVELET
SIMPLIFICATION

2.1 Scale dependent neighborhoods

As input, we consider a mesh, denoted by M = (V,E),
consisting of the initial set of points, V ⊂ R3, and the set
of triangle edges, E. Working with a mesh representation
has two interesting advantages: it facilitates local neigh-
borhood analysis and allows operating local topological
changes efficiently. Besides being the focus of local queries
and processing, neighborhoods are also a means of defining
the concept of scale, as exemplified in the works of Yang
and Shen (2012), Rocca et al. (2011) and Ho and Gibbins
(2009). When referring to vertices and their neighbors, one
common concept is the so-called n-ring neighborhood (see
Botsch et al. (2010)) of a vertex v ∈ V , denoted by Nn

v (v).
By definition, a vertex vi ∈ V is an element of the Nn

v (v)
set if the shortest topological path connecting it to vertex
v consists of at most n edges. If one desires to include the
interiors of the mesh triangles in the definition of the n-
ring, the distinct notation Nn

f (v) is used to emphasize the
inclusion of faces. Since most meshes are irregular in terms
of sampling density and vertex degree (i.e. the number
of edges incident at that vertex), an n-ring neighborhood
alone may not accurately reflect a geometric scale. A more
suitable concept is that of a local surface patch of radius
r (see Mitra et al. (2006)), centered at vertex v, denoted
by Pv(v, r). Another vertex, vi, is an element of this set if
the distance between v and vi is less than or equal to r. A
common choice for measuring distances across surfaces is
the geodesic distance, but, for small local neighborhoods,
the Euclidean distance is also a suitable approximation
to the otherwise more computationally complex geodesic
distance. By combining the n-ring neighborhood and the
local surface patch of a vertex, we can further define the
notion of a local window,

Wn
v (v, r) = Nn

v (v) ∩ Pv(v, r), (1)

comprising all vertices within an r radius around v, but
no further than n rings from it (see figure 1).

The local window set defined in formula (1) can be en-
dowed with a mechanism capable of measuring the ge-
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Fig. 1. A window neighborhood Wn
v (v, r) with n = 2. The

blue vertices are inside the window, while the orange
vertices are outside the sphere of center v and radius
r. The red vertex, although inside this sphere, is more
than 2 topological rings away from v.

ometric variability of the vertex patch contained within
this window. Formally, this mechanism is represented by
a dense descriptor function (see Bronstein et al. (2011)),
D(v, n, r) : V × N∗ × (0,∞) → [0,∞). At a certain
scale identified through the number of rings, n, and the
maximum radius, r, the set pair (V,D(V, n, r)) can be used
to discriminate between and order the vertices of the mesh.
In particular, by sorting the vertices in descending order
according to the values of the descriptor function, the more
salient features relevant to the (n, r) scale parameters can
be identified.

2.2 Feature-driven lazy wavelet simplification

The scale and feature descriptor concepts defined earlier
serve the purpose of constructing a multiresolution mesh
representation. The resulting representation is a hierar-
chical chain of increasingly coarser approximations of the
input mesh, M = ML ⊃ ML−1 ⊃ . . . ⊃ M0. Any two
consecutive elements in this chain are meshes whose sets
of vertices are related through the following expression:

V i+1 = V iE ∪ V iO, (2)

where V iE = V i is called the even subset and V iO =
V i+1 \ V i is called the odd subset. This terminology is
adopted from wavelet analysis theory, where the even-
odd partitioning of the samples of a signal is also referred
to as lazy wavelet decomposition. The reason behind this
categorization of samples is to exploit the local redundancy
of the signal and express one subset of samples from the
other. One immediate application is information compres-
sion by compressing the differences between the estimated
samples and their local approximations derived from the
samples of the coarser set. Usually, the odd samples are
estimated from their even neighbors at each level i in
the hierarchical decomposition. Besides compression, other
applications of wavelet analysis include multiresolution
editing and filtering. Multiresolution editing is a process
where a coarser representation is edited and local details
are added automatically from the precomputed difference

vectors. Filtering implies working with the sets of differ-
ence vectors at each level i, treating them as frequency
band equivalents. These vectors can be scaled, offering the
possibility of either enhancing or suppressing certain scale-
dependent features.

A feature weighing mechanism, which is offered by the
D(v, n, r) function, can be used to guide the lazy wavelet
partitioning of samples since it offers a means to measure
redundancy. Ideally, at each scale, the odd samples should
be selected in such a way that removing them altogether
from the denser set would incur the lowest approximation
error if the fine scale model were replaced with the coarser,
even subset. By exploiting the mesh connectivity, a reliable
means of constructing the even-odd partition is described
in algorithm 1.

Algorithm 1 Descriptor-driven lazy wavelet partitioning

Require: M = (V,E), n ∈ N∗, r > 0
Ensure: V = VE ∪ VO
VE ← ∅, VO ← ∅
V ′ ← SORT(V, key(v) = D(v, n, r))
for all v ∈ V ′ do

if v /∈ VE then
VO ← VO ∪ {v}
VE ← VE ∪N 1

v (v)
end if

end for

Intuitively, the values of the descriptor function are used
to greedily select those vertices with the lowest geometric
saliency first and tag them as odd, while automatically
including their one-ring neighbors in the even subset. In
theory, other partitioning schemes are possible where an
odd sample can be connected to other odd samples, but
such strategies lead to poor estimations of the odd values
from the even ones. Thus, assuming a semi-regular mesh
connectivity, where each vertex is connected, on average,
to six others, the odd-even cardinality percentage with
respect to the total number of samples is, on average,
25%-75% (instead of the 50%-50% decimation ratio that
classic, 1D wavelet analysis commonly is known for).
Also, to reflect the change of scale after each odd subset
is removed, the search radius r can be increased by a
user selected factor (usually between 1.5 and 2). The
number of rings does not need to be increased as it
only acts as a barrier for the number of samples in
regions with nonuniform density. The effect that both
radius and ring number parameters have is also important
when dealing with data corrupted by noise. In this sense,
increasing these parameters strengthens the robustness
to noise of the D(v, n, r) descriptor function. The trade-
off is thus between distinguishing high frequency details
and coherently estimating the geometric variability of the
patch even in the presence of noise.

3. PRINCIPAL COMPONENT ANALYSIS AND
SURFACE VARIATION

3.1 Surface variability index

Computing the principal components of the covariance
matrix inside aWn

v (v, r) window constitutes a more robust
alternative to evaluating discrete curvatures as a measure
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for surface variability. Pauly et al. (2002) proposed com-
puting D(v, n, r) using a surface variation cost equivalent
to the separability index of the singular value decomposi-
tion of the data matrix of the interest window. In practice,
it suffices to compute the eigenvalues of the covariance
matrix,

C(Wn
v (v, r)) =

 (vi1 − v̄)>

· · ·
(viN − v̄)>

> ·
 (vi1 − v̄)>

· · ·
(viN − v̄)>

 , (3)

where N = |Wn
v (v, r)|, and v̄ = 1

N

∑
vik
∈Wn

v (v,r)

vik is

the centroid of the window. Then the eigenvalues can be
indexed according to their increasing order λ0 ≤ λ1 ≤ λ2.
The associated separability index is expressed as

D(v, n, r) =
λ0

λ0 + λ1 + λ2
. (4)

The geometric reasoning behind this feature descriptor
is based on the interpretation of the eigenvectors of
C(Wn

v (v, r)). The eigenvectors corresponding to λ1 and
λ2 span a plane that offers a good approximation for the
tangent plane to the mesh support surface at v. Sim-
ilarly, the eigenvector corresponding to the direction of
least variation approximates the surface normal. In the
presence of noise, these approximations are more robust
than typical tangent plane and normal estimators that
are based only on the one-ring elements around v. Thus,
the separability index defined in formula (4) attains large
values for highly deformed, far from planar regions. It is
important to mention that windows having N ≥ 3 samples
are considered, otherwise the descriptor evaluates to zero,
corresponding to a rank deficient covariance matrix.

3.2 Normal field variation via normal voting

Hussain (2010) suggested measuring the one-ring variation
of the normal field in order to iteratively simplify a mesh.
Previously, Koibuchi and Yamada (2000) have used a
similar measure, referred to as the bending energy, to study
the first order phase transition of a mesh membrane. For
the one-ring neighborhood of a vertex v, this descriptor
can be evaluated as:

NFV (v) =
∑

vi∈N 1
v (v)

(1− n̂ᵀn̂i), (5)

where n̂ and n̂i are the normalized normals at vertices v
and vi, respectively.

We propose extending this descriptor to a window patch
by computing the Gaussian weighted sum of normal vari-
ations over the window:

D(v, n, r) =
1

S

∑
vi∈Wn

v (v,r)

w(vi)(1− n̂ᵀn̂i), (6)

where S =
∑

vi∈Wn
v (v,r)

w(vi) is the sum of the Gaus-

sian weights w(vi) = exp
(
−‖vi−v‖2

(r/3)2

)
. The evaluation of

vertex-wise normals is sensitive in the presence of noise
and corrupts the discriminative abilities of the window
descriptor. To counteract this disadvantage, we suggest
smoothing out the normal field through the normal voting

method of Page et al. (2002). Their algorithm does not
modify the positions of the vertices and it requires gath-
ering normal votes from the same window from formula
(6). Individual normal votes are collected from the vertices
in this window, each vote consisting of an orientation
estimation. More explicitly, the vote that a vertex vi
casts implies transporting the normal vector at vi along a
circular arc connecting this vertex to v. Since the (n̂i,vi)
pair completely defines a plane, the circular arc then lies
on the sphere which is tangent to this plane and passes
through v. Referring to figure 2, the expression for the
normal vote from vi at v is:

ñi = n̂i − 2
n̂i · (vi − v)

‖vi − v‖2
(vi − v). (7)

v

vi

n̂i

ñi

Fig. 2. Normal vote cast from v to vi.

To actually recover the robust estimate of the normal
vector at v, a covariance matrix of the normal votes must
be constructed:

Cnormal(v) =
∑

vi∈Wn
v (v,r)

w(vi)

‖ñi‖2
ñiñ

ᵀ
i , (8)

where the w(vi) weights attenuate the contribution of
those vertices that are not close to v. The eigenvector
corresponding to the largest eigenvalue of the covariance
matrix is the sought-after normal estimate. We denote this
normalized normal estimate by n̄ and rewrite formula (6)
as:

D(v, n, r) =
1

S

∑
vi∈Wn

v (v,r)

w(vi)(1− n̄ᵀn̄i). (9)

4. PARABOLOID FITTING

4.1 Curvature estimation via paraboloid fitting

The problem of measuring discrete curvatures on meshes
or point clouds has been well studied and we refer the
interested reader to the work of Brentzen et al. (2012).
The majority of these methods rely on discretizations
of Differential Geometry concepts. Often, only the one-
ring neighborhood of vertices is used in the computations,
leading to noise sensitivity. One may argue that noisy
data sets could be subjected to a denoising treatment,
but this kind of approach is not always desirable since it
can smooth out certain features or it may be undesirable
in scenarios where the original information is not allowed
to be changed. Since computing curvatures on polynomial
surfaces of the type z = f(x, y) is trivial, one common
solution is to fit paraboloid surfaces in each window.
This approach is inherently more robust to noise than
the one-ring alternatives, the main trade-off being the
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requirement to solve a least squares problem. In case
the input set contains outliers, one may replace the least
squares solver with a nonlinear RANSAC (see Kang et al.
(2011)) to diminish their impact. The vertices ofWn

v (v, r)
can be seen as samples on a Monge patch, each having
its coordinates written as (x, y, f(x, y)). Thus, in the local
window of a vertex v, assumed to be the origin, the height
function is approximated by a paraboloid:

f(x, y) = ax2 + bxy + cy2 + dx+ ey. (10)

The fitting process inside Wn
v (v, r) consists of the follow-

ing steps:

(1) compute a pseudonormal at v, e.g. n̄ =
∑

vi∈Wn
v (v,r) n̂i.

(2) eliminate normal outliers by replacing the search
window with Wn

v (v, r)′ = {vi ∈ Wn
v (v, r) : n̂i ·

n̄ ≥ 0}.
(3) translate the window so that v corresponds to the

origin of a local coordinate system, i.e. Wn
v (v, r)′′ =

{vi − v : vi ∈ Wn
v (v, r)′}.

(4) construct Wn
v (v, r)′′′ by rotating the Wn

v (v, r)′′ set
such that n̄ becomes aligned with the ẑ = (0, 0, 1)

ᵀ

axis. One may argue that this rotation should cancel
the first degree terms in formula (10), but such a
situation would occur only if the fitted paraboloid
had its origin normal perfectly aligned with n̄.

(5) minimize
∑

p∈Wn
v (v,r)′′′

‖f(xp, yp)− zp‖2 in the least

squares sense, where p = (xp, yp, zp)
ᵀ
.

Given the above transformations, it suffices to compute
the principal, mean and Gaussian curvatures at f(0, 0)
since these values correspond to v. Based on the principal
curvatures, κ1(v) ≤ κ2(v), two feature descriptors can be
formulated:

κC(v) =

√
κ21(v) + κ22(v)

2
, (11)

i.e. the Casorati curvature at v, and

SI(v) =
2

π

∣∣∣∣arctan

(
κ2(v) + κ1(v)

κ2(v)− κ1(v)

)∣∣∣∣ , (12)

usually known as the shape index. Both of these descriptors
are versatile enough to describe how the local surface is
bending. For more information on these descriptors, we
refer the interested reader to the work of Koenderink and
van Doorn (1992).

4.2 3D Harris response

The Harris corner detector, introduced by Harris and
Stephens (1988), is an efficient feature identification mech-
anism for grayscale images. As its name implies, the
features that are easily recognized correspond to regions
where the gradient of the image has a high variation in
both horizontal and vertical directions. Thus, if I(x, y)
represents the image value at pixel coordinates (x, y),
and if W(x,y) represents a window centered at this pixel,
the corner features correspond to those pixels where the
following autocorrelation function attains local maxima:

E(∆x,∆y) =
∑

(xi,yi)∈W(x,y)

w(xi, yi)·

· [I(xi, yi)− I(xi + ∆x, yi + ∆y)]
2
, (13)

where w(xi, yi) is the (Gaussian) weight of the (xi, yi) pixel
and (∆x,∆y) is a 2D shift vector.

Using a first order Taylor expansion of the image function,
the autocorrelation function in expression (13) becomes:

E(∆x,∆y) ≈ S
∑

(xi,yi)∈W(x,y)

w(xi, yi)[
Ix(xi, yi)

2 Ix(xi, yi)Iy(xi, yi)
Ix(xi, yi)Iy(xi, yi) Iy(xi, yi)

2

]
Sᵀ, (14)

where S = [ ∆x ∆y ]. By denoting the weighted matrix
sum in formula (14) with M(x, y), we can rewrite this
expression in a condensed form:

E(∆x,∆y) = SM(x, y)Sᵀ. (15)

The Harris response for the (x, y) pixel then takes the
following expression:

h(x, y) = det(M(x, y))− kTr(M(x, y))2, (16)

where k is a threshold parameter empyrically chosen in the
[0.04, 0.07] range.

Sipiran and Bustos (2011) have extended the Harris corner
detector to triangular meshes by using a paraboloid fitting
to substitute the I(·, ·) image function. The fitting process
is performed just as described in subsection 4.1, but the
pseudonormal n̄ is estimated by computing the PCA of the
Wn
v (v, r) window, i.e. being the eigenvector corresponding

to the smallest eigenvalue. The authors justify this normal
choice due to its increased insensitivity to noise.

The M(x, y) matrix is still a 2× 2 matrix:

M(x, y) =

(
A(x, y) C(x, y)
C(x, y) B(x, y)

)
, (17)

where the A(x, y), B(x, y), C(x, y) elements are computed
as follows:

A(x, y) =
1√
2πr

∫
R2

e

(
−(u2+v2)

2r2

)
fx(u, v)2dudv, (18)

B(x, y) =
1√
2πr

∫
R2

e

(
−(u2+v2)

2r2

)
fy(u, v)2dudv, (19)

C(x, y) =
1√
2πr
·
∫
R2

e

(
−(u2+v2)

2r2

)
fx(u, v)fy(u, v)dudv.

(20)

Through experimentation, we have found that the for-
mulation of the Harris 3D feature response, as expressed
in formula (16), has very poor discriminative properties.
Instead we propose the following expression for the Harris
response descriptor:

D(v, n, r) =
2 det(M(x, y))

ε+ Tr(M(x, y))
, (21)

where ε is a small design parameter, meant to avoid
division by zero in flat regions, set in our experiments to
ε = 10−5.

5. QUADRIC ERROR METRICS

5.1 Smoothed quadric error metric

Initially conceived for incremental mesh simplification, the
quadric error metric (Garland and Heckbert (1998)) was
extended to cope with meshes with vertex-wise attributes
such as color, texture coordinates or any other data. To
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better understand how this mechanism can be adapted to
a multiscale scenario, we briefly recall its local definition.
When dealing with meshes, one is interested in efficiently
computing the distance between a vertex v and the sup-
port plane of a triangular face f with unit normal nf which
contains a point p. The square of this distance is:

d(v, f)2 = (nf · (v − p))2 =

= vᵀ(nfn
ᵀ
f )v − 2(pᵀnf )nᵀ

fv + (nᵀ
fp)2. (22)

It can be observed that formula (22) can be expressed in
matrix form as:

d(v, f)2 =

(
v
1

)ᵀ

Qf

(
v
1

)
, (23)

where Qf is the following block matrix:

Qf =

(
A b
bᵀ c

)
, (24)

with A = nfn
ᵀ
f , b = (pᵀnf )nf , c = (nᵀ

fp)2. A fundamen-
tal property of the Qf matrices is that the sum of squared
distances from v to two different faces, fi and fj , can be
obtained by employing formula (23), where Qf = Qfi +
Qfj . This property is extremely useful because the geo-
metric variation in the one-ring neighborhood of a vertex
can be stored in a matrix form as Qv =

∑
f∈N 1

f
(v) Qf

at each vertex v. Moreover, since the basic incremental
simplification operation is the edge contraction where the
end-point vertices vi,vj are replaced by a single vertex
v̄, it is easy to incorporate the variation contribution by
setting the quadric matrix of v̄ to be Qv̄ = Qvi + Qvj .

In terms of feature scale, the quadric error metric is
capable of measuring only the variation within the one-
ring of a vertex. A natural extension is to include all the
vertices from theWn

v (v, r) window using Gaussian weights
to derive a matrix that reflects the variation in the entire
window:

QWn
v (v,r) =

1

S
·

∑
vi∈Wn

v (v,r)

w(vi)Qvi
. (25)

In consequence, the descriptor value using these averaged
matrices can be expressed similarly as:

D(v, n, r) =
1

S
·

∑
vi∈Wn

v (v,r)

w(vi)

(
vi
1

)ᵀ

QWn
v (v,r)

(
vi
1

)
.

(26)

5.2 PCA-based quadric error metric

In the presence of noise, the Qvi
matrices no longer accu-

rately reflect the local geometric variation, and computing
their smoothed window average will not solve the issue.
Both quadric error metric and principal component anal-
ysis can visually represent this variability as isosurfaces
that are quadrics. Bearing this in mind and given the
properties of the eigenvectors of a covariance matrix, we
can also construct a PCA-based definition of a quadric
metric matrix. If λi is an eigenvalue corresponding to the
ei eigenvector, we can scale ei by αi = 1

1+λi
. This scaling

helps to construct a non-Euclidean distance function that
attains larger values for any vector quantities aligned with
the axes of highest variation, just like the Mahalanobis dis-
tance does. To proceed with the constructions, we arrange
the eigenvectors into an orthonormal matrix:

R = ( e1 e2 . . . ed ) , (27)

where d is the number of dimensions of the space into
which the mesh is embedded (in our case, d = 3, but the
same logic is valid in the general case). If S is the scaling
matrix with si,i = α−1i and si,j = 0 for i 6= j, then the RS
product represents a change of basis transforming a vector
vu written in the scaled local principal component space
into another vector ve written in the canonical Euclidean
space. Thus, the reciprocal transform becomes:

vu = S−1R−1ve, (28)

where R−1 = Rᵀ considering the definition of R.

The squared norm of the vu vector can be easily computed
from formula (28):

vᵀ
uvu = vᵀ

eMve, (29)

where M = R(S−1)2Rᵀ. If p is a vertex of the mesh
for which the R and S matrices have been computed,
the squared pseudo-Mahalanobis distance from p to an
arbitrary vector x can be written in matrix form as:

dpM (p,x)2 = (x− p)ᵀM(x− p). (30)

Through basic algebraic manipulation, we can also derive
a block matrix expression for this distance such that:

dpM (p,x)2 = xᵀMx− 2bᵀx + c, (31)

where A is a d× d matrix with elements

ai,k =
∑
j=1,d

eji · α
2
jejk, (32)

and b = Mp is a d× 1 vector, and c = pᵀMp is a scalar
term. Using these M, b and c block elements, we can now
define the PCA-based quadric error matrix for a vertex v
as:

QPCA
v =

(
M b
bᵀ c

)
. (33)

The descriptor value at vertex v is then computed as
described in formula (26) by replacing QWn

v (v,r) with

QPCA
Wn

v (vi,r)
. By construction, this PCA-based quadric error

metric design is not as sensitive to the presence of noise,
although an objective measure needs to be applied to
better confirm this quality.

6. RESULTS

To distinguish between the qualities of the descriptors, we
have conducted a series of experiments using four different
mesh sets and compiled the results of these experiments
according to two criteria: colormap comparison and aver-
age local distance.

We now examine the approximation quality and ro-
bustness of the descriptors presented in the previous
sections. To generate the approximations, we have re-
peatedly used algorithm 1 and produced a chain of 8
fine-to-coarse approximations of 4 datasets. Two of the
sets are closed, genus 0 meshes (available at liris.
cnrs.fr/meshbenchmark/, the Dragon model, consist-
ing of 50,000 points, and the Ramesses model, totaling
820,000 points). The other two sets were processed from
LiDAR scans: one scan fragment of the Great Smoky
Mountains (available through the http://opentopo.sdsc.
edu/ portal), and another custom scanned fragment of
the Romanian Carpathian Mountains. The first LiDAR
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Fig. 3. Dragon mesh. The top row depicts the original set, while the bottom row shows the mesh after 8 simplification
passes.

Fig. 4. Noise affected Dragon set. The top row depicts the unsimplified set, while the bottom row shows the mesh after
8 approximation passes.

Fig. 5. Ramesses set. The top row depicts the original set, while the bottom row shows the mesh after 8 simplification
passes.

set, representing a scan fragment of the Great Smoky
Mountains, contains 270,000 points at a density of 2.2
points per square meter. In case of the Carpathian Moun-
tains fragment, the point count is approximately 9 million
points and the average density is of 20 points per square
meter. To assess the robustness against noise, the points of
the datasets were perturbed by adding artificial Gaussian
noise of variance magnitude equal to one third of the
average edge length.

All models were subjected to a sequence of 8 applications
of algorithm 1. For these simplification experiments, the
window parameters were initialized as follows: a limit of
n = 4 topological rings and the window radius r being

set to 3 times the average edge length. After each full
iteration of algorithm 1, the output set of even vertices,
VE , becomes the input for the next stage. Afterwards, the
VO odd subset is extracted, the value of r is increased by
50% to compensate for the decrease in the point density
caused by the change of scale. The average vertex count
of the window has been experimentally determined to
be 40 vertices for the highest resolution model. For the
coarser resolutions, the average vertex count increases
significantly, but does not exceed 70. For a completely
regular mesh (i.e. each vertex having degree 6) with no
radius constraints, the size of the window for n = 4
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Fig. 6. Noise affected Ramesses set. The top row depicts the unsimplified set, while the bottom row shows the mesh
after 8 approximation passes.

Fig. 7. Smoky data set. The top row depicts the original set, while the bottom row shows the mesh after 8 approximation
passes.

Fig. 8. Noise affected Smoky set. The top row depicts the original set, while the bottom row shows the mesh after 8
approximation passes.

is 60, thus the observed window sizes are acceptable in
comparison to the ideal reglar mesh case.

For brevity, we have denoted the descriptors as follows:
the PCA separability index (PCA), the Casorati curvature
(CASORATI), the shape index (SHAPE IDX), the normal
field variation (NFV), the Harris 3D corner detection
response (HARRIS3D), the smoothed quadric error metric
(S-QEM) and the PCA-based quadric error metric (PCA-
QEM).

For visualization purposes, the models were rendered using
a heat colormap obtained by normalizing the descriptor
function values to the [0, 1] interval. Besides the original

sets, their noise-perturbed counterparts were also ren-
dered. The results are presented in figures 3-10. These
renderings allow for a preliminary interpretation that is
data independent. The CASORATI and HARRIS3D de-
scriptors achieve poor visual feature separation, at least
for the highest resolution sets, where several isolated local
maxima dominate the profile. The other descriptors, on
the other hand, present higher levels of contrast and the
distribution of the descriptor values better highlights the
presence of scale features. In terms of feature highlighting
abilities, the SHAPE IDX and PCA-QEM descriptors ex-
hibit an exaggerated feature differentiation, at least for the
Dragon (figure 3) and Ramesses (figure 5) closed surfaces.
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Fig. 9. Carpathian data set. The top row depicts the original set, while the bottom row shows the mesh after 8
approximation passes.

Fig. 10. Noise affected Carpathian set. The top row depicts the original set, while the bottom row shows the mesh after
8 approximation passes.

The PCA, NFV and S-QEM descriptors produce very
similar colormap profiles for both the highest and lowest
resolution models. Due to its construction, the PCA-QEM
descriptor assigns a higher cost to the vertices closer to
ridge or valley features, but does not accurately associate
local extrema in the colormap profile with their geometric
counterparts. When the data is perturbed artificially, the
colormap contrast decreases for most descriptors, as can
be observed in figures 4, 6, 8 and 10. In this sense, the PCA
and S-QEM exhibit a dramatic decrease in contrast, espe-
cially where the higher frequency features are measured,
i.e. at the highest level of resolution.

Besides a visual performance assessment, an objective
approximation quality measure is required. Since the goal
of our method is to be coupled with a lifting scheme, one
option is to track the average local error that occurs after
the even-odd partitioning. To define this error measure, we
use the distance to the local one-ring best fit plane, first
proposed by Schroeder et al. (1992) in the context of mesh
decimation, and formulate the following distance operator:

apd(VO, VE) =
1

l̄|VO|
∑

v∈VO

d(v, π(N 1
v (v))), (34)

where l̄ is the average edge length of the initial mesh,
π(N 1

v (v)) is the best fit plane ofN 1
v (v), and d(v, π(N 1

v (v)))
is the distance from v to this plane. Although this dis-
tance formulation does not directly depend on how the
mesh is triangulated locally, it offers a good indication of
the redundancy present in the neighborhood of a vertex,

this being of immediate relevance for the application of
wavelet analysis. Since the triangulation process can be
performed locally inside the one-rings of the removed ver-
tices, any valid triangulation algorithm can be employed.
In our experiments we have opted for a modified version
of the split plane strategy proposed by Schroeder et al.
(1992). Instead of recursively splitting the one-ring hole
that results after a vertex is removed, we collapse the edge
emanating from v whose length is minimum and whose
collapse does not create non-manifold artifacts. To prevent
illegal topological changes or any non-manifold artifacts,
the same mechanisms proposed by Schroeder et al. (1992)
were adopted.

The evolution of the average distance in formula (34) was
tracked at each level for each individual set. The results
are charted in figures 11-18. The PCA descriptor achieved
mediocre approximation quality regardless of the data set.
The descriptors based on paraboloid fitting, SHAPE IDX,
CASORATI, HARRIS 3D, outperformed, on average, all
other proposed alternatives. However, the SHAPE IDX
delivered better approximations for the Ramesses (figure
13) and Smoky (figure 15) sets, while the CASORATI
descriptor seemed a better choice for the Dragon (figure
11) and Carpathians (figure 17) sets. The HARRIS 3D
descriptor exhibited a much more consistent behavior,
achieving, on average, the best results, regardless of the in-
put set. Contrary to the intuition offered by the colormap
profiles, the proposed NFV and S-QEM descriptors did not
help achieve good quality approximations, yielding errors
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Fig. 11. Average plane distance evolution for the Dragon
data set. The horizontal axis corresponds to the used
descriptor, while the vertical axis corresponds to the
averaged local distance. All intermediate errors are
plotted, yielding evolution curves for a better method
comparison.
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Fig. 12. Average plane distance evolution for the noise
affected Dragon data set. The horizontal and vertical
axes have the same meaning as in figure 11.

almost 10% higher than those offered by the paraboloid fit-
ting descriptors. The PCA-QEM did outperform the pure
PCA descriptor and, for the terrain data sets (figures 15
and 17), even surpassed the paraboloid fitting alternatives.
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Fig. 13. Average plane distance evolution for the Ramesses
data set. The meaning of each axis is the same as in
figure 11.

The addition of artificial noise did not seem to affect
the approximation quality. The plots shown in figures
12, 14, 16 and 18 were obtained using formula (34)
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Fig. 14. Average local distance evolution for the noise af-
fected Ramesses data set. The horizontal and vertical
axes have the same meaning as in figure 11.
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Fig. 15. Average local distance evolution for the Smoky
data set. The horizontal and vertical axes have the
same meaning as in figure 11.
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Fig. 16. Average local distance evolution for the noise
affected Smoky data set. The horizontal and vertical
axes have the same meaning as in figure 11.

where the initial vertex coordinates were used, the noise
affected ones being considered only when computing the
descriptor values. The simplification experiments reveal
a mild increase in the approximation error for the fine
resolution levels. For the coarser approximations, the error
actually decreases on average, but the relative behavior
of a descriptor with respect to its competitors does not
change from the one observed when using the unperturbed
sets. In conclusion, these charts indicate that, for the
chosen noise intensity, the influence of noise on the error is
not considerable, all descriptors being reasonably robust.
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Fig. 17. Average local distance evolution for the Carpathi-
ans set. The horizontal and vertical axes have the
same meaning as in figure 11.
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Fig. 18. Average local distance evolution for the noise
affected Carpathians set. The horizontal and vertical
axes have the same meaning as in figure 11.

7. CONCLUSION

In this work, we have experimentally analyzed the discrim-
inative properties of three different families of 3D feature
descriptors: PCA-based (PCA, NFV), paraboloid fitting
methods (CASORATI, SHAPE IDX, HARRIS3D), and
quadric error metric-based (S-QEM, PCA-QEM). A lazy
wavelet partitioning mechanism, coupled with a fast local
triangulation strategy was employed to simplify closed
meshes and terrain meshes with a boundary. To assess
the quality of the resulting approximations, a local re-
dundancy measure based on the distance from a vertex
to its average one-ring plane was used. The PCA-QEM
was found to produce better approximations than the
S-QEM and NFV descriptors. Since PCA-QEM has the
same algebraic properties as the S-QEM, it is suitable
for scenarios where both geometry and attribute data are
present. The modified Harris 3D descriptor delivered the
best approximations, but this descriptor is amenable to
geometric analysis only and has the highest computational
overhead. If such an overhead is relevant, the results shown
in our work advocate for the use of either the PCA de-
scriptor (for 3D data only) or the PCA-QEM one, since
these deliver intermediate quality results. Although the
other descriptors we have proposed, the NFV and S-QEM,
managed to visually highlight features, their measured
accuracy did not recommend them as suitable alternatives.

The methodology employed in our analysis followed the
requirements of a lazy wavelet partitioning setup where
the odd data samples are removed in order to produce
the coarser approximation. The limitation imposed by
this partitioning strategy is inherent to the methodology,
and its influence on the experiments could be explored
in a future work. In this respect, the NFV and S-QEM
descriptors could be re-examined to better understand
why their discriminative properties did not aid in lowering
the approximation error. Principal component analysis,
required for computing the PCA, NFV, HARRIS 3D and
QEM-PCA descriptor values, is not fully impervious to
noise. While robustness could be increased by expanding
the local window parameters (radius and number of rings),
the ability of identifying fine scale features would decrease.
Another factor that could affect the reliability of feature
discrimination is a highly irregular sampling density. An
interesting question is hence how to improve the descriptor
computation in order to adjust to irregularly sampled sets.
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