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Abstract: Multiple linear uncertainty models mainly appear at linear time invariant system modelling of 
cascaded process and this uncertainty structure complicates parametric robust stability analyses of real 
control systems. To address this problem, this study presents a robust stability analysis scheme for 
fractional order control system models including multiple linear uncertainty structures. A numerical 
method, which is based Edge Theorem, has been utilized for the robust stability analysis of fractional 
order multiple linear uncertain control systems. For this purpose, exposed edge scan sampling approach 
is used to obtain a image of root region boundaries of fractional order multiple linear uncertain control 
systems in complex s-domain, and an extension of exposed edge scan sampling is proposed for root locus 
analyses of fractional order closed loop control systems involving multiple linear uncertainty structures. 
In the paper, types of linear uncertainties are discussed briefly and multiple versions of these 
uncertainties are studied for fractional order closed loop control in detail. An application of proposed 
method for closed loop control systems is numerically demonstrated via illustrative examples. It is 
observed in this study that exposed edge sampling approach can be an effective method for robust 
stability analysis of complicated uncertainty structures and it presents potential of decreasing 
computational complexity in robust stabilization problems of uncertain fractional order control systems.  
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1. INTRODUCTION 

Nowadays, fractional order calculus (FOC) drew great 
interest since its superior consistency to represent real world 
processes comparing to classical mathematics. (Podlubny, 
1999a; Podlubny, 1999b; Petras, 2009). Increasing number of 
studies related to FOC have been come up since the first idea 
about the topic in late 17th century. Since then, particularly in 
the last decades, FOC has found applications in numerous 
fields such as physics (Parada et al., 2007; Hilfer, 2000), 
mathematics (Miller and Ross, 1993; Gutierraz et al., 2010), 
chemistry (Oldham and Spanier, 1974), electrics (Arena et 
al., 2000), bioengineering (Magin, 2012), signal processing 
(Vinagre et al., 2003) etc. Last decades also brought so many 
applications of FOC on control theory (Caponetto et al., 
2010; Petras et al., 2002; Chen et al., 2009; Caponetto and 
Dongola, 2013). 

One of the challenging issues in control practice is the 
uncertainties in control systems. Uncertainties in parameters 
or models mostly yield to unpredictable results in that, 
responses of simulations and real processes may differ from 
each other casually (Senol et al., 2014). In order to prevent 
the system from this undesired behavior, one has to assure the 
system’s response robustly within possible ranges of system 
parameters. Robust control of classical systems has been 
widely studied in the literature (Bhattacharyya et al., 1995; 
Matusu and Prokop, 2011; Bhattacharyya et al, 2010) as well 
as systems of fractional orders (Tan et al., 2009; Yeroglu et 
al., 2010; Senol and Yeroglu, 2013; Senol and Yeroglu, 

2012a; Senol and Yeroglu, 2012b). Various types of 
uncertainties have been taken into account in many works. A 
study related to the stability of fractional order polynomials 
(FOPs) with different types of uncertainties using the value 
set concept was presented in (Senol and Yeroglu, 2012b). A 
simplification method related to frequency response 
computation with uncertain parameters was presented in 
(Senol and Yeroglu, 2012a; Senol and Yeroglu, 2012b; Shaw 
and Jayasuriya, 1996; Tan and Atherton, 2000) and another 
frequency response study of uncertain systems with interval 
plants was given in (Yeroglu et al., 2010). Robust stability 
analysis of linear fractional order systems (FOS) with interval 
uncertainties can be found in (Senol et al., 2014). Magnitude 
and phase envelopes of control systems with affine linear 
uncertainty were shown in (Tan and Atherton, 1998). There 
are also some studies on robust stability and stabilization of 
uncertain FOS (Lu and Chen, 2010a; Lu and Chen, 2010b; 
Lu and Chen, 2009). Convex polytopic uncertainties were 
dealt with in (Lu and Chen, 2010a). FOS of the order 
0 1   with interval uncertainties was studied in (Lu and 
Chen, 2010b) and a Linear Matrix Inequalities (LMI) 
approach on robust stability and stabilization of fractional 
order interval systems was presented in (Lu and Chen, 2009). 
A frequency response study on the stability of FOS with 
nonlinear uncertainties can also be found (Senol and Yeroglu, 
2013). Stability analysis of FOS with interval coefficients 
and interval orders was given in (Senol et al. 2014). 

This paper deals with the roots region based stability analysis 
of FOS with multiple linear uncertainty structures which is 
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composed of the multiplication of two or more FOS with 
linear uncertainties. There can be found some papers in the 
literature which studied different types of uncertainties (Tan, 
2002; Hamelin and Boukhobza, 2005; Tan and Atherton, 
2002; Yeroglu and Senol, 2013). Previously, robust stability 
of multilinear affine polynomials was addressed in (Tan and 
Atherton, 2002) and computation of the frequency response 
of multilinear affine systems was investigated in (Tan, 2002; 
Yeroglu and Senol, 2013). A fault detection approach for 
multilinear affine systems was presented in (Hamelin and 
Boukhobza, 2005). A simplified robust stability analysis for 
FOS with multilinear affine uncertainties can be found in 
(Yeroglu and Senol, 2013). 

Stability analysis in this paper is based on the root locus 
analysis of the characteristic equation of the multiple linear 
uncertain FOS. Fractional orders of the characteristic 
equation are extended to minimal integer orders with a Least 
Common Multiplier (LCM). Then, roots of this new 
polynomial are computed and their absolute phase values are 
found. Stability is decided considering the locations of these 
roots. There can be found some studies based on the related 
method in the literature (Caponetto et al., 2010; Senol et al., 
2014; Radwan et al., 2009). Roots region based stability 
analysis of FOS with interval coefficients and interval orders 
is presented in (Senol et al., 2014).  

Computational complexity of a multiple linear system 
exponentially grows as the number of uncertain parameters 
increase; therefore, this is one of the most challenging 
problems of control systems with uncertainties. As a FOS 
with multiple linear uncertainties is built up of two or more 
uncertain FOS, it is possible to find great number of roots 
form the roots region of such systems. This study utilizes the 
Edge theorem to decrease this complexity. Using the Edge 
Theorem, only the roots which are on the exposed edges of 
the roots region are computed, thus, the computational 
complexity is reduced substantially. There can be found wide 
application areas of the Edge Theorem in the literature (Senol 
et al., 2014; Bhattacharyya et al., 1995; Matusu and Prokop, 
2011; Bhattacharyya et al., 2010; Senol and Yeroglu, 2012a; 
Senol and Yeroglu, 2012b). Usage of the Edge Theorem in 
roots region computation (Senol et al., 2014), value set 
computation (Bhattacharyya et al., 1995), Kharitonov’s 
Theorem (Matusu and Prokop, 2011), etc. are some of the 
instances. 

Multiple linear uncertainty structures are one of the 
complicated parametric uncertainty structures, which mainly 
appear at model of cascaded process or system blocks. This 
type of uncertainty structures frequently emerge in modelling 
of uncertain Linear Time Invariant (LTI) system models 
because coefficients of such models can be formed by linear 
combinations of interval uncertain model parameters of real 
systems. Cascading of such models complicates uncertainty 
structures of models and other methods such as Kharitonov’s 
Theorem may not be effective to have a definite result about 
the robust stability of such complex structures. In the current 
study, we demonstrated that application of Edge Theorem via 
exposed edge polinomial sampling method allows more 
accurate results for parametric robust stability analyses of 
such complex system models. Illustrative examples were 

given to validate the proposed method for analysis of 
fractional order closed loop control systems.  

Paper organized as follow: Section 2 summarizes fractional 
order uncertain systems, linear uncertainty types, multiple 
linear uncertainty structure and roots region based stability 
analysis for fractional order interval polynomials. Stability 
investigation of fractional order multiple linear uncertain 
polynomials is studied in Section 3 and roots region of the 
characteristic equation of fractional order multiple linear 
uncertain systems is given in Section 4. Section 5 has 
illustrative examples and Section 6 has the concluding 
remarks. 

2. PROBLEM STATEMENT AND PRELIMINARIES 

2.1. Fractional-order uncertain systems with multiple linear 
uncertainty structures 

This section gives brief information about fractional-order 
uncertain systems and multiple linear uncertainty structure. 
Consider the fractional-order polytopic polynomial family of 
the following form (Yeroglu and Senol, 2013). 

                        (1) 

where, the coefficients  linearly depend on 

 and the uncertainty box is 

.                                   (2) 

and  specify the lower and upper bounds of the i-th 

perturbation  respectively.  are non-

integer orders of the polynomial. Let  has linear 

uncertainty of general form. Then, uncertain parameters of 
Eq. 1 can be written as, 

                               (3) 

where,  are constants and   are uncertain parameters 

(  and ). Referring to Eq. 3, 

different types of  form different types of linear 

uncertainties. Three types of linear uncertainties have been 
represented in this paper. For instance, following form of 

 builds the single parameter uncertainty. 

                       (4)  

where, , ,  are constants and  is the 

uncertain parameter. Similarly, interval uncertainty can be 
defined as follows. 

                                       (5) 

where, ,  are uncertain parameters that lay in 
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the upper limits of the uncertain parameters respectively. 
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Similarly, following form of  can be named as affine 

linear uncertainty structure. 

               (6) 

where,  are constants,  are arbitrary real orders and  

are uncertain parameters, , . As a 

fractional order uncertain plant can have fractional order 
uncertain polynomials in its numerator and denominator, one 
can say that a fractional order plant with any linear 
uncertainty structure can be written as follows. 

                             (7) 

where,  and  are fractional order uncertain 

polynomials of the numerator and the denominator 
respectively (  and ).  

Now, consider a fractional order polytopic family of 
polynomials with the multiple linear uncertainty structure, 
which is multiplication of two or more linear uncertain family 
of polynomials as follows. 

                          (8) 

where, ,  is a fixed polynomial and 

 are polynomials with any linear 

uncertainty structure. Thus, considering Eq. 7 and Eq. 8, a 
fractional order system with multiple linear uncertainty 
structure can be given in the following form. 

                              (9) 

where,  and  are numerator and denominator 

polynomials of the controller,  and , 

 are numerator and denominator polynomials of 
the plant with any linear uncertainty and 

.  

Closed loop characteristic equation of the system in Eq. 9 can 
be given in the following form.  

             (10) 

Fig. 1 shows the typical block diagram of a fractional order 
system with multiple linear uncertainty. This study addresses 
problem of robust stability analyses of this kind of complex 
fractional order control system models. Real systems 
established by the cascaded process or blocks mainly yield 
this kind of system models and robust stability analysis of 
such system is beneficial for control engineering problems. 

2.2 Exposed Edge Based Stability Analysis for Fractional 
Order Interval Polynomials 

This section introduces the exposed edge stability analysis to 
fractional order interval systems (Senol et al., 2014). 
Consider the fractional order interval polynomial in Eq. 5. In 

order to obtain the roots region, one can apply  
mapping to the fractional order polynomial. This converts the 
fractional orders to expanded integer orders, thus, the 
fractional order stability problem turns into an integer order 
stability problem within the Riemann sheets. Assuming 

, m  sheets of Riemann surfaces are defined in the 
complex root space (Chen et al., 2006; Ahn et al., 2007; 
Monje et al., 2010). Then, the stability analysis can be 
performed by root locus analysis of the expanded integer 

order polynomials in their root spaces. For  
transformation, the expanded integer order form of Eq. 5 can 
be written as follows. 

                                   (11) 

where,  is the expanded order polynomial and 

 are expanded integer orders of the polynomial, 

.  is the set of uncertain 

parameters. Then, lower and upper limits of the uncertain 
parameter vector  define a hypercube  in the coefficient 

space as follows. 

                                     (12) 

Let  be the set of uncertain parameters of the polynomial in 

Eq. 1 and consider the hypercube given in Eq. 12. Hypercube 
 represents a polynomial family defined by perturbations 

of the uncertain parameter  in lower and upper bounds of 

elements. Let us denote this polynomial family set by 
.Then, the following theorem holds. 

 
Fig. 1. Closed loop fractional order system with multiple linear uncertainty. 
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Theorem 1: The complex roots of the polynomial family  
forms a set of root points which compose a roots region as, 

            (13) 

where,  is defined as the root region of the fractional 

order polynomial in Eq. 1 (Senol et al., 2014). This root 
region determines the stability of fractional order uncertain 
polynomial. 

Proof: This proof is summarized from (Senol et al., 2014). 
Expansion coefficient is the least common multiplier (LCM) 
which expands the fractional orders to minimal integer 
orders. Degree of the new polynomial family in this case can 
be written as max{ }i   thus, every member of the 

polynomial family has  roots on the Riemann surface (Monje 
et al., 2010). Let us denote as this roots as 1 2, , ,v v v . Roots 

located in the first Riemann sheet, which coincides with the 
phase range ( / , / )m m     are physically meaningful 

and this region is used for the stability analysis of fractional 
order uncertain polynomial (Senol et al., 2014; Radwan et al., 
2009; Monje et al., 2010). Thus, the roots region of the 
expanded integer order polynomial is obtained. 

Based on the stability analysis given in Appendix 1, 
followings are integrated in proof. Corner points of the 
hypercube  are formed by considering all lower and upper 

limits of the uncertain coefficients,  thus, the 

hypercube has  corners and  exposed edges.  is the 
number of uncertain coefficients. Exposed edges are the outer 
line segments connecting the corner points. Fig. 2 shows an 
instance hypercube of a fractional order interval polynomial 
with 3 uncertain coefficients. 

 

Fig. 2. Corner points and exposed edges of hypercube Q  for 

a fractional order interval polynomial with 3 uncertain 
coefficients. 

Set of corner points and exposed edges are denoted by 

 and  respectively. 

The edge between two corners can be obtained using the 
following equation. 

                                        (14) 

where, ic  and jc  are the corner polynomials and i je   is the 

edge between these corners. Thus, the roots region which is 
constituted by exposed edges, compose the exact roots region 

of fractional order interval polynomials. Then, the stability of 
the interval polynomial can be investigated with the aid of 
Appendix 1. This completes the proof.  

3. STABILITY ANALYSIS FOR FRACTIONAL ORDER 
MULTIPLE LINEAR UNCERTAIN POLYNOMIALS 

This section applies exposed edge stability analysis for 
fractional order polynomials of multiple linear uncertainties. 
Let us consider the fractional order multiple linear uncertain 
polynomial given in Eq. 8. Extended integer order form of 
the multiple linear uncertain polynomial family can be 
written as follows. 

             (15) 

where,  are extended integer order polynomials of 

any linear uncertainty. Considering the lower and upper 
limits of the uncertain parameters vector , the hypercube 

 is defined in the following form. 

           (16) 

Hypercube  stands for a polynomial family defined by 

perturbations of lower and upper limits of uncertain 
parameters . Let us denote this polynomial family by 

. Then, the following corollary is valid. 

Corollary 1: The complex roots of the multiple linear 
polynomial family  forms a set of root points defined as, 

        (17) 

where,  is defined as the roots region of the fractional 

order polynomial in Eq. 8, which is used to investigate the 
stability of fractional order multiple linear polynomial. 

Proof:  is a subset of interval polynomial family . In 

this case, the root region of , denoted by , is also 

subset of . So, if all elements of  are stable roots, 

all elements of  are also stable roots. ¤ 

Then, stability investigation of fractional order polynomials 
with multiple linear uncertainties can be done as given in 
Appendix 1. Similar to fractional order polynomials with 
interval uncertainty, corner points of the hypercube  are 

formed by considering all lower and upper limits of the 

uncertain coefficients,  thus, the hypercube has 

 corners and  exposed edges.  is the number of 
uncertain coefficients. 

4. STABILITY ANALYSIS FOR FRACTIONAL ORDER 
MULTIPLE LINEAR UNCERTAIN SYSTEMS 

This section presents exposed edge stability analysis for 
fractional order systems of multiple linear uncertainties. Let 
us consider the fractional order multiple linear uncertain plant 
given in Eq. 9. Extended integer order form of the multiple 
linear uncertain plant family can be written as follows. 
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where,  and  are extended integer order 

polynomials of any linear uncertainty.  and  

are extended integer order multiple linear polynomial 
families. Closed loop characteristic equation of this system 
can be written as, 
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Considering the lower and upper limits of the uncertain 
parameters vector , the hypercube  is defined in the 

following form. 

                        (20) 

Hypercube  stands for a polynomial family defined by 

perturbations of lower and upper limits of uncertain 
parameters  and . Let us denote this polynomial family 

by . Then, the following corollary holds. 

Corollary 2: The complex roots of the multiple linear 
characteristic equation  forms a set of root points defined 

as, 

          (21) 

where,  is defined as the roots region of the fractional 

order polynomial in Eq. 8. 

Proof:  is a subset of interval polynomial family . So, 

 becomes a subset of . Therefore, if all elements 

of  are stable roots, all elements of  are also 

stable roots.  

Then, stability investigation of fractional order systems with 
multiple linear uncertainties can be done as given in 
Appendix 1. Stability investigation processes can be better 
understood with the illustrative examples given in the next 
section. 

5.  ILLUSTRATIVE EXAMPLES 

This section includes illustrative examples to verify the 
results given in the previous sections. The first example has 
two fractional order systems with interval uncertainty. 
Second example has two fractional order systems with affine 
linear uncertainty. 

Example 1: Consider the fractional order systems with 
interval uncertainty and PI controller. 
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where, , and the uncertain parameters are 

considered as , ,  and 

. Connecting these systems in series will give the 

following transfer function. 

                               (23) 

Thus, the characteristic equation of the system found in Eq. 
23 can be written as, 

                                               (24) 

Applying  mapping for , one can rewrite the 
characteristic equation of the system as, 
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For this example, members of the characteristic equation 
which compose the corners of the hypercube can be found 
with the following limits of the uncertain parameters. 
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                                     (27) 

Fig. 3(a) shows the roots region  of the system in Eq. 

23. Roots in the region  ensures the condition 

 and therefore the system is 

robustly stable for the given uncertain parameters. Fig. 3(b) 
shows the roots of corner and edge polynomials in the root 
spaces and indicates the robust stability of the polynomial 
family given by Eq. 23. Fig. 3(c) demonstrates the step-
responses of corner polynomials and confirms robust stability 
of the system. Root region in Fig. 3(a) is built by using 
65.536 roots and exposed edge based root region in Fig. 3(b) 
is built by using 1600 roots. Thus, the proposed method 
dramatically decreases the number of roots which are used to 
represent the exact root region. So, the computational cost for 
stability investigation is considerably reduced as a result of 
considering only exposed edge polinomials of interval 
systems. 

Example 2: Consider the fractional order systems with affine 
linear uncertainty. 

                           (28) 

where, the uncertain parameters are , 

,  and . 

Multiplication of these systems gives the following fractional 
order system with multiple affine linear uncertainty. 

           (29) 

Applying  mapping for , one can rewrite the 
characteristic equation of the system as, 
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        (30) 

Fig. 4(a) shows the roots region of the system in Eq. 29. 
Roots in the region  do not ensure the condition 

 and therefore the system is 

unstable for the given uncertain parameters. Fig. 4(b) shows 
the roots of corner and edge polynomials in the root spaces 
and Fig. 4(c) demonstrates the step-responses of corner 
polynomials. It is clear in Fig. 4 that the system in Eq. 29 is 
unstable. 

 

 

 
Fig. 3. Stability test results for the uncertain fractional order 
control system given by Eq. 23. 

(a) Root space obtained for region- sampled robust stability 
analysis, (b) Root space obtained for edge-sampled robust 
stability analysis, (c) Step responses of corner polynomials. 

Root region given in Fig. 4(a) is built by 1.048.576 roots and 
exposed edge based root region given in Fig. 4(b) is built by 
3.200 roots. Like the previous example, the propsed method 
reduces computation cost for root region investigation. 
Reduction of computaional complexity is an important 
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criteria for development of computer-aided system 
stabilization tools for complex real systems. 

 

 

 
Fig. 4. Stability test results for the uncertain fractional order 
control system given by Eq. 29. 

(a) Root space obtained for region- sampled robust stability 
analysis, (b) Root space obtained for edge-sampled robust 
stability analysis, (c) Step responses of corner polynomials. 

6.  CONCLUSION 

This study extents exposed edge based robust stability 
analysis method for fractional order closed loop control 
systems with multiple linear uncertainties, which may contain 
two or more fractional order systems with any linear 
uncertainty structures. We observed that proposed Edge 
Theorem based scheme provides straightforward solution for 
numerical  stability analysis of uncertain systems with 
multiple linear uncertainty structures, which, in fact, is not an 
so easy problem to solve by other methods. Cascaded real 
systems commonly lead to multiple linear uncertainty 
structures in practice, and stability analyses of these 
uncertainity models are very useful for robust control of 
complex real systems that are composed of cascaded, 
multiple subsystem components or processes.  

As summary, paper demonstrates an extension of exposed 
edge based numerical stability analysis method for fractional 
order polynomials involving multiple linear uncertainty 

structures. Main advantage of the proposed method lay in 
reduction of stability analysis of very complicated roots 
region of fractional order multiple linear uncertain 
characteristic polynomial to the analysis of exposed edge 
boundaries. This simplification makes robust stability 
analysis of fractional order system structures almost 
independent of complexity of their uncertainity structures, 
therefore the paper can contribute to the robust stabilization 
problem of complex fractional order control systems in 
practical term. 
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APPENDIX 1 

This appendix is summarized from (Senol et al., 2014; 
Radwan et al., 2009) to present roots location based stability 
analysis for fractional order interval polynomials. Studies 
related to the stability analysis of expanded degree integer 
order polynomial in the root space can be found in the 
literature (Caponetto et al., 2010; Senol et al., 2014; Radwan 
et al., 2009). Radwan et al. put this analysis method in a 
systematic form (Radwan et al., 2009) and the Radwan 
procedure for the stability analysis was summarized as 
follows.  

 Expand the orders of the fractional order polynomial 
with  expansion coefficient and calculate the root phases 
of the polynomial in the first Riemann sheet, 

. 

 If the root phases are in the range of 
, the system is stable. 

 If the root phases are equal to , the system 
oscillates.  
 Otherwise, the system is unstable. 

For , the Riemann surface refers to the open left half of 
the complex plane and this region is known as the stability 
region for integer order polynomials. Thus, the stability 
condition for integer order systems can be written as 

. Stability regions for integer and fractional 

order systems are given in Fig. 5. 

 

Fig. 5. Stability region for an expanded integer order 

polynomial in the first Riemann surface after  
mapping for . 
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