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Abstract: Fault diagnosis (FD) and fault-tolerant control (FTC) of automotive diesel engines are 
important for efficient repair and maintenance. The construction of an accurate model for a diesel engine 
intake system is difficult due to its strong nonlinearity, and bias fault and precision degradation fault of 
Manifold Absolute Pressure Sensor (MAP) of diesel engine can’t be diagnosed easily using model-based 
methods. In this paper, a FD-FTC system is developed for the diesel engine intake system. The system is 
based on Elman neural network observer, and active fault-tolerant control strategies are constructed. A 
short analysis reveals Elman neural network observer is suitable to prediction of the intake pressure of 
diesel engine, which is more accurate than Back Propagation (BP) network. In this FD-FTC system, four 
types of MAP failures are considered, complete failure fault, bias fault, precision degradation fault and 
drift fault. The results of simulations of the proposed FD-FTC system show that MAP failures can be 
diagnosed and the engine can be effectively protected with fault-tolerant control system. 
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

1. INTRODUCTION 

The functions of an automotive engine are entirely dependent 
on the performances of the installed sensors. The faults of 
any sensors can lead to the degradation of engine efficiency. 
Therefore, fault diagnosis (FD) and fault-tolerant control 
(FTC) techniques can pave a new way for increasing the 
reliability of the complex processes. Besides, due to the strict 
legislative regulations defined in OBD (on-board diagnosis), 
and a growing end-user demand of fuel economy during 
automotive operations, fault-free, fuel-efficient and 
environmental-friendly vehicles are always preferred. 
Currently, the focus has shifted to the vehicles driven by 
diesel engines. OBD system is necessary for all diesel-driven 
cars in Europe and will soon be required also for heavy 
vehicles in USA and EU (Mattias Nyberg, 2002). In China, a 
set of relatively complete vehicle emission standards named 
GB18352.3-2005 is issued by Ministry of environmental 
protection. According to GB18352.3-2005, not only fault 
associated with emissions but also fault of sensors, actuators 
and circuit should be diagnosed in OBD system (Huang, G. L 
et al., 2009). All vehicles on sale in Beijing must be equipped 
with OBD system from 2006 and it began to implement in 
whole china from 2008 (Wu et al., 2008).  

According to the requirements in OBD, one important part of 
a diesel engine is air intake system. The sensors in the air 
system play vital roles in monitoring the health of the system. 
The manifold absolute pressure sensor (MAP) is installed for 
measuring engine working load, whose signals are generally 
used for the calculation of engine’s air intake flow and thus 
the fuel injection quantity. The sensor faults would lead to the 
degradation of process performances, or even worse, a 
catastrophic failure.  

Many researchers have been working in the diagnosis field. A 
diagnosis system based on the model of an automotive air-
intake system was constructed (Mattias Nyberg et al., 2004), 
in which the model-based approach and the framework of 
structured hypothesis tests were used. A model-based fault 
diagnosis method of the diesel engine’s intake system was 
presented, and the fault diagnosis strategy based on detection 
observer was formulated (Sun, Y. L et al., 2013). A signal-
and process model-based diagnosis method for the combined 
intake system was developed (Kimmich, F et al., 2005), in 
which the wavelet signals of the injection system and the 
combustion process were used. A fault diagnosis based on 
hybrid observer was proposed to apply on Spark Ignition (SI) 
engine for misfire fault detection and built a hybrid model 
(Akram, M. A et al., 2014). The similarities among these 
methods include the calculation of residuals and the 
application of residuals for fault detection and isolation. For 
each study, a detailed dynamic model was identified so that 
the residual could be generate. So, researchers pointed out 
that only the failures under steady-state conditions were 
considered in these literatures (Franchek Matthew et al., 
2007). Some researchers reckoned that the model-based 
diagnosis method is only applicable to specific faults under 
some working conditions, and the accuracy of model depends 
on the calibration of data because the parameters are fixed 
through data fitting. When conditions or fault locations are 
changed, it is hard to achieve a high diagnostic accuracy; 
moreover, and the stability of the fault system is not good 
(Duyar, A, V et al., 1994). 

In recent years, the development of neural network has 
provided a new research direction for fault diagnosis in 
various fields (Samadani, M et al., 2014; Madaeni, S. S et al., 
2015; Jia, H et al., 2015). Some  supervision systems based 
on artificial neural networks approach were developed to 
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generate defects indicators for our examined industrial 
control valve (Hassani, V  et al., 2014; Xue, SF et al., 2014; 
Hafaifa, A. et al., 2013). Several researchers gained a lot of 
achievements in fault diagnosis of engine. A neural-network-
based model was built for the detection of misfires in a diesel 
engine (Liu B.  et al., 2013). An explicit back propagation 
neural network model was developed to identify diesel 
combustion misfire according to the general operating 
parameters. A fault diagnosis model for internal combustion 
engines based on extension neural network (ENN) was 
presented, in which ENN is used as a feature classification 
tool for the extraction of features (Shatnawi, Y. et al., 2014).  
In these literatures, ANNs were used to solve model-free 
nonlinear problems.  

The intake-manifold system of diesel engine is a nonlinear 
system, with a quite complex relation between input and 
output. In addition, the external and internal parameters have 
great certainties, and thus the construction of appropriate 
models for the system is difficult. In this paper, neural 
network observer was selected to predict the intake pressure 
of diesel engine.  

Elman neural network (ENN) is a partial recurrent network 
model first proposed by Elman in 1990 (Elman, J. L.1990). 
Owing to its distinguished dynamical characteristics, it has 
widely applied for identification (Liu, H. et al., 2015) and 
control of dynamical (Lin, C. H. 2013). Generally, it lies 
somewhere between a classic feedforward perception and a 
pure recurrent network. The feedforward loop consists of the 
input layer, hidden layer, and output layer, in which the 
weights connecting two neighboring layers are variables. In 
contrast to the classical feedforward loop, the backforward 
loop employs context layer that is sensitive to the history of 
input data, therefore, the connections between the context 
layer and hidden layer are fixed. Owing to the context 
neurons and local recurrent connections between the context 
layer and the hidden layer, it has certain dynamical 
advantages over static feedforward network and it is widely 
used in dynamic system identification. (Lin, W. M. and 
Hong, C. M., 2011). 

Fault-tolerant control can be classified into passive FTC and 
active FTC (Zhou Donghua et al., 2000). The passive control 
deals with the robustness problem of faults using the similar 
tools as those used for the robustness of uncertainties and 
disturbances. On the other hand, when active approaches are 
employed, faults should be detected and diagnosed (in terms 
of location and identification) by FD systems as quickly as 
possible. The choice of the best FTC strategy mainly depend 
on the capabilities of diagnosis procedure. The latter must 
detect and isolate the faults when different uncertainties 
originated from the inputs, the measurements, and the system 
model. 

Among the recent studies regarding FTC methods on 
vehicles, a robust and adaptive fault-tolerant tracking control 
strategy was proposed (Chen H. et al., 2011), in which the 
actuator failures were taken into account. A passive fault 
tolerant control strategy for the diesel engine air path is 
proposed ( Mohamed G. et al., 2014). The strategy is carried 
out under the concept of Higher Order Sliding Mode Control 

(HOSMC), then additive and loss-of-effectiveness faults are 
considered. A passive fault tolerant control was performed 
when the sensor faults appeared (Oubellil, R. et al., 2014). An 
adaptive integral sliding mode control (AISMC) was 
proposed for the purpose of regulating the ICE air path (M 
Guermouche et al., 2014), and the simulation results show 
that it can satisfy fault tolerant performances against 
parametric uncertainties and actuator faults. The faults of 
actuator or sensor were considered in most of these studies. 

In this paper, a FD-FTC system for air-intake system of a 
diesel engine was constructed based Elman Neural network 
observer. Fig. 1 displays the overview of the proposed FD-
FTC system, in which two dotted boxes represent the FD 
system and FTC system, respectively. In FD system, an 
Elman Neural network observer was developed for air-intake   
system of diesel engine. Residuals are calculated in the 
module of Residual Generation by comparing the measured 
values of intake pressure with the output values of the Elman 
Neural network observer. According the results of Residual 
Evaluation module, diagnosis results can be received from 
Decision module. The fault-tolerance schemes of control 
system are classified into three categories in the paper, i.e., 
reconfiguration, alarm and stop. If fault is serious, FTC 
system will alarm and send out the stop signal; else, the 
system start to reconfiguration. The proposed diagnosis 
strategy is based on residuals and the active FTC system was 
selected. 

 

Fig. 1. Overview of the proposed FD–FTC system. 

In this paper, the proposed FD-FTC approach can provide an 
early detection of the faults and guarantee the safe 
reconfiguration of system control. The FD-FTC technique 
was developed based on the MATLAB simulation platform. 

2. FAULT DIAGNOSIS BASED OA ELMAN 
NEURALNETWORK OBSERVER 

2.1  Experimental setup 

In this study, experimental research was conducted on an 
eight-cylinder electronic control diesel engine, and the diesel 
engine with double turbocharger was installed in a heavy 
vehicle. Sensor information and some important parameters 
acquired by controller were transmitted between computer by 
CAN bus, and monitored by LABVIEW.  

The intake-manifold pressure is important in the electronic 
control system of diesel engine since it indicates whether the 
intake-manifold system operates in a normal condition or not. 
Therefore, many researchers have gained a deep insight into 
this parameter (Matthew A et al., 2007; Low, S. C et al., 1981; 
Benson, R. S, 1982; Chapman, M et al., 1982, Winterbone, 
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D. E et al., 2000; Lakshminarayanan, P.A et al., 1979; 
Takizawa, M et al., 1982; Meisner, S. et al., 1986). The 
intake-manifold pressure is affected not only by the 
characteristics of the engine itself such as rotating speed, the 
mass of fuel, the intake temperature and the exhaust 
temperature, but also by some external elements such as 
ambient pressure, the property of turbo, and etc. 

Through the analyses of the diesel engine air-intake system, 
the parameters which influence MAP were concluded and 
listed inTable.1 

Table 1.  Parameters of the training sample. 

Serial Number Parameter 
1 Engine speed Ne (r/min)
2 Exhaust temperature Texh (�)
3 Intake temperature Tinlet  ( ℃)
4 Cycle fuel injection quantity q 
5 Ambient pressure pam  ( MPa)
6 Intake pressure pinlet  ( ba)

2.2  Elman Neural Network 

The Artificial neural networks (ANNs) were proposed under 
the inspiration of biological neural networks. ANNs can learn 
the desired input-output mapping based on training examples, 
without looking for an exact mathematical model.  

Due to the feedback, time-delay structure and dynamic 
behavior characteristics, Elman neural network has a very 
strong computing ability, which can also be regarded as a 
kind of dynamic neural network. Unlike Radical Basis 
Function (RBF) network, Back Propagation (BP) network 
and other forward neural network include input layer, hidden 
layer and output layer, Elman network adds a context layer in 
the hidden layer. The structure of Elman neural network is 
shown in Fig. 2. The input layer only plays the role of linear 
weighted. The hidden layer plays the role of relationship 
mapping between the input layer and output layer. The 
undertake layer is used to remember the previous output of 
hidden layer. So Elman network has the ability to deal with 
dynamic information.  

 

Fig. 2. Structure of an Elman neural network. 

As shown in Fig. 2, We described time series outside the 
network as u(t), the feedback layer output as yc(t), the output 
of the network as y(t), and y1(t) and y2(t) are described as the

 transfer functions of hidden layer and output layer 

respectively, 1W，HW and 2W are connection weight matrixes 

of input layer to hidden layer, feedback layer to hidden layer 
and hidden layer to output layer respectively. Eq. (1) 
expresses the relation between input and output. 
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In the present study, linear transfer function was selected as 
the function of output layer neurons, and "S" type function 
was selected as the function of hidden layer neurons. This 
neural network can approximate any nonlinear arbitrary 
precision dynamic process by adjusting the number of 
network layers and the number of neurons in layers (Zhang, 
L. Y. et al., 2005). 

2.3 Fault diagnosis system 

Figure 3. presents the fault diagnosis system based on neural 
networks observer. There are two ways of applying neural 
network on fault diagnosis. One way is to use the ability of 
neural network that can approximate any continuous bounded 
nonlinear function and thus it can build a non-linear model 
for fault diagnosis; the other is to use the powerful 
classification capabilities of neural network and it can 
perform fault pattern classification and learning and then 
diagnose the failures. This article focuses on how to use 
neural networks as a nonlinear function estimator for fault 
diagnosis.  

( )u k ( )y k

( )r k

ˆ( )y k

1z

 

Fig. 3. Fault diction and isolation scheme based on neural 
network observer. 

2.4  Selection of training samples and test samples 

1 Acquisition of training samples 

2162 groups of data were selected as the training sample in 
the neural network, with the sampling time is 0.025 s. The 
acquired training samples are shown in Figure4. 
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Fig. 4. Data of training samples. 

2 Acquisition of test samples 

Considering the continuity of the feedback network, the 
amount of validation sample data should not be too small, so 
the number of sample data in this experiment should be more 
than 50 groups in each sample. In this paper, validation 
samples were acquired under five different operating 
conditions. To be specific: (1), the driver stepped on the 
accelerator slowly and gradually increased the engine speed, 
during which the engine load was always small and totally 
258 sets of data were obtained; (2)The driver quickly stepped 
on the accelerator pedal, during which the collected data were 
a set of throttle mutation data and totally 250 sets of data 
were collected; (3) the driver stepped on the accelerator to 
100% rapidly, during which the engine speed reached a 
maximum and totally 310 sets of data were collected; (4)the 
data were collected under the plateau environment(with the 
ambient pressure of 58 KP) and the driver depressed the 
accelerator quickly, during which the engine speed rapidly 
increased and totally 201 sets of data is gained; (5)the sample 
data were collected in dynamic response processes when the 
engine operated at a high speed, during which the 
accelerator-pedal position at most time was maintained above 
80% and totally 201 sets of data were collected. 

2.5 Selection of an Elman neural network observer 

1  Type of neural network 

Intake-manifold pressure of the engine has a time lag, i.e., the 
prediction of engine is influenced by the previous engine 
working conditions. Therefore, Elman network with feedback 
was selected, which includes 5 input nodes and 1 output 
node. Engine speed, exhaust temperature, intake temperature, 
cyclic oil volume and ambient pressure were adopted as the 
input vectors of neural network while intake pressure was the 
output vector of neural network. The intake pressure of 
engine had a time lag, that is to say that each engine 
prediction was influenced by previous engine working 
condition, so Elman network with feedback and BP network 
are considered to select. 

The main work is to decide the number of nodes in the 
hidden layer. In this paper, the number of nodes in the hidden 
layer follows the Kolmogorov’s theorem (KOLMOGOROV 
A N et al., 1957), namely that the number of nodes in the 

hidden layer is at least 2n + 1, where n is the number of 
nodes in the input layer.  

The setting parameters of the neural network are listed in 
Table 2.The MSE (Mean Square Error) function is used as 
error function. Eq. (2) gives the expression of the MSE 
function: 








n

i

m

j
ijyijt

mnmseE
1 1

2)(
1

                                         (2) 

where m is the number of input nodes; n is the number of 
training samples; tij is the expected output and yij is the actual 
output. 

Table 2.  Parameters of the neural network. 

Function types BP network Elman network
Hidden layer number single single

Transfer function tansig() tansig()
Training fuction traingdx traingdx
MSE function mes mes

In this paper, the hidden layer nodes are selected as 45, the 
accuracy of training goals is selected as 0.010.025. 
Compared Fig. 5 with Fig. 6, the sampling error of BP 
network is much bigger than that of Elman network, but 
worse in error fluctuation. The sampling error of BP network 
is smaller when the training accuracy is controlled within 
0.014 50.016 5, but it is above 0.2; the sampling error of 
Elman network is smaller when the training accuracy is 
controlled within 0.015 00.017 5, but it is less than 0.07. 

 
Fig. 5. Verification result of BP network with a single hidden 
layer.  
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Fig. 6. Verification result of Elman network with a single 
hidden layer. 
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2 Number of hidden layer and Number of hidden layer 

Based on a lot of training experimental results, Elman 
network with a single hidden layer or double hidden layers 
can also achieve the desired training results. 

In this paper, the number of hidden layers is discussed. 
Elman network with a single hidden layer and Elman network 
with double hidden layers are mainly studied. In the study, 
the node number in single hidden layer was between 20 and 
53 and that in double hidden layers was between 15 and 40. 

From the research results, Compared Fig. 7with Fig. 8,  it can 
be seen that Elman network with a single hidden layer with 
the nodes between 43 and 47 has a better training effect; 
Elman network with double hidden layers with the nodes 
between 23 and 27 has a better effect. 
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Fig. 7.  Result of Elman network with a single hidden layer. 
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Fig. 8.  Result of Elman network with double hidden layers. 

3 Stability of Elman network with hidden layer 

Based on a lot of training experimental results, Elman 
network with a single hidden layer or double hidden layers 
can also achieve the desired training results. Five groups of 
training samples were used to calculate the standard deviation 
for the judgment of stability. As shown in Fig. 9, the Elman 
network with single hidden layer and 44 nodes has higher 
stability than the Elman network with double hidden layers 
and 24 nodes. Therefore, the Elman network with a single 
hidden layer and 44 nodes was used in the present study. 
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Fig. 9. Stability of the results using the Elman network with a 
single hidden layer nodes and double hidden layers, 
respectively. 

2.6  Results of Elman neural network observer 

Five groups of test samples were selected for verifying the 
above-described Elman neural network. In this paper, test 
sample 4 is listed as example. The verification results are 
listed in Fig. 10, in which the red straight dash line represents 
the real inlet pressure value, the black straight solid line 
denotes the inlet pressure observation, and blue solid lines 
shade denotes the relative error of observation. 

As shown in Fig. 10, the observation results at idle are higher 
than those measured in the plateau, with the relative error 
below 10%. 
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Fig. 10. Predicted results of sample 4. 

As shown in Table 3, using the designed observer, the 
relative errors between inlet air pressure values and predict 
observations at the various conditions remain below 20%. 

Table 3.  Relative errors of five samples. 

Sample types Relative errors(maximum)
Sample 1 5% 
Sample 2 10% 
Sample 3 12% 
Sample 4 18% 
Sample 5 20% 

 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     95 

     

 

2.7 Fault diagnosis strategy and fault diagnosis results  

In this paper, fault diagnosis strategy was proposed based on 
the residuals. The simulated values of air intake pressure 
were calculated through Elman network observer under 
different conditions, and the difference between output value 
of intake air pressure sensor and the simulated intake pressure 
value was regarded as the residual value. Whether the fault 
occurs in intake pressure sensor and which fault occurs were 
determined based on the residuals characteristics. Confidence 
interval was achieved through the analysis of residuals using 
mathematical statistics, and, finally the sensor fault threshold 
was gained. 

Seven fault status of intake pressure sensor can be attributed 
to four forms--complete failure, bias fault, precision 
degradation fault and drift Fault. Specific fault diagnosis 
strategy was described in detail (Wang, Y., et al. 2016). 

When a certain sensor fault occurs, the fault diagnosis system 
should the output fault code which represents different fault 
using diagnosis strategy. Table 4 lists the fault codes 
corresponding to different sensor faults. The diagnoses were 
performed using stateflow, a finite state machine tool in 
MATLAB. 

Table 4.  Relationship between fault code and fault. 

Fault types Fault code
Short-circuit fault 1 
Open circuit fault 2 

Normal degradation fault 3 
Bias fault 4 

Precision degradation fault 5 
Virtual joint failure 6 

Drift fault 7 
 

1 Complete fault 

According to the sensor fault code, the input data of speed 
and load were randomly set in air intake system model by the 
simulation module failure.  Fault parameters are shown in 
Table 5. 

Table 5.  Fault type and fault parameters.  

Fault types Sensors voltage value us （V） 
Open circuit fault 5 
Short-circuit fault 0 
Normal precision 
degradation fault 

1.5 
3 

Four different faults were set. When 20 groups of abnormal 
data appear, it can be determined that fault occurs. The 
obtained curves of  intake pressure are displayed below. 

Four different faults were set. When 20 groups of abnormal 
data appear, it can be determined that fault occurs. The 
obtained curves of  intake pressure are displayed below. 

 
Fig. 11a. Curve of intake pressure of the sensor with normal 
fault. 

 
Fig. 11b. Curve of intake pressure of the sensor with open 
fault. 

As shown in Fig. 11a, when the sensor fails completely, the 
output of the inlet pressure remains at a constant value for 
different failure modes. The sensor fault information can be 
accurately output by diagnosis system. According to the 
experimental data, the inlet pressure is stable when the engine 
is idle running, which may be on account of the possibility of 
miscalculation. However, this point can be neglected in the 
present study. When the engine does not operate at an idle 
speed, if the actual inlet pressure values remain unchanged, 
the complete failure occurs in the sensor complete; when the 
inlet pressure value is 0 bar, sensor short-circuit fault occurs; 
in Fig. 11b, when the inlet pressure value is 5 bar, open 
circuit fault occurs. 

2 Bias fault 

According to the sensor fault code, sensor bias fault was set. 
When five groups of abnormal data appear, it can be 
considered that sensor bias fault occurs, and the set deviation 
voltage values were 0.2 V higher, 0.3 V higher and 0.5 higher 
than the normal value, respectively. The obtained fault curves 
by simulation are presented in Fig. 12a and Fig. 12b. 
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As shown in Fig.12, residual value is above deviation 
threshold in 1s to 1.5s and 2.3s to 2.8s period for each fault, 
and the sensor can be diagnosed as bias fault. 

 
Fig. 12a. Curve of intake pressure of the sensor with 0.2V 
bias fault.  

 
Fig. 12b. Curve of intake pressure of the sensor with 0.5V 
bias fault. 

3 Drift Fault 

Drift fault was set in intake pressure sensor model, and the 
simulations were conducted in a quick change trend. In 
simulations, the sample time interval was set as 0.02 s, the 
average value among 30 sampling points was calculated, and 
the judge proportion was set as 60%. Decision criteria can be 
expressed as: when six increasing average values appear in 6 
s, the drift fault can determined in the sensor. Fig.13 displays 
the simulations results. 

 
Fig. 13. Curve of intake pressure of the sensor with drift fault. 

As shown in Fig.13, drift fault can be accurately diagnosed in 
simulation experiment; however, in practical applications, the 
diagnosis strategy is affected by fault changing trend. 

According to diagnosis strategy and experimental results, 
when a certain sensor fault occurs, multiple sensor faults may 
be diagnosed since the data contained multiple sensor fault 
characteristics. Further analysis shows that when a variety of 
fault characteristic appear, the fault diagnoses can be judged 
in the following order: precision degradation fault  virtual 
joint failure  bias fault sensor complete failure, open 
circuit fault and short-circuit fault drift fault. The fault 
appears earliest should be regarded as the real fault of sensor. 

The experimental results show that the diagnosis strategy has 
accurate results for short-circuit fault, open circuit fault, bias 
fault and the decrease of precision. On the other hand, drift 
fault requires a large number of long-term targeted 
experiments to determine the diagnosis strategy. 

3. FTC SYSTEM AND RESULTS  OF FAULT TOLRANT 
CONTROL 

3.1 Fault-tolerant control strategy 

When the failure of intake pressure sensor occurs, faults 
should be diagnosed through control system, and moreover, 
reasonable fault-tolerant control operation should be given 
simultaneously. In this paper, the failures in MAP is under 
the assumption that the other sensors work normally.  

In Fig.14, the proposed fault-tolerant control strategy is 
shown. 

 

Fig. 14. Overview of proposed fault-tolerant control strategy  

As shown in Fig.14. The fault-tolerant control strategies is 
described below. 

When the failure of intake pressure sensor occurs, the control 
system sends alarm information and the following operations 
should be conducted: 
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1. If the engine runs under the operating condition with high 
speed and heavy load, it should decrease the power to protect 
the engine and inlet pressure value was replaced by the value 
predicted by the observer. 

2. For the high-power diesel engine, power reduction 
protection can be divided into two kinds--gradient power 
reduction strategy and emergency power reduction strategy. 

3. The inlet pressure values when the engine operates under 
the conditions without high speed and external characteristic 
were simulated and an alarm is given for the case when the 
power exhibits no reduction. 

4. Different fault-tolerant control strategies were applied 
according to different failures. When the short-circuit fault, 
open circuit fault, normal degradation fault or virtual joint 
failure occurs, it may be induced by some occasional factors 
such as the disconnection of connectors and external 
disturbance and the sensor after return to normal has a high 
reliability. In these cases, the failure recovery judgment 
should be conducted and the failures should be eliminated 
after the requirements are satisfied. When bias fault, 
precision degradation fault or drift fault occurs, it may be 
induced by some unrecoverable reasons such as the damages 
and aging of the sensor. In these cases, the sensor failures 
cannot be eliminated and the engine should be repaired or 
changed when it stops operating. 

FD—FTC simulation system  was constructed on an eight-
cylinder diesel engine based on MTALAB simulation 
experiment platform. 

As shown in Fig. 15. It consists of six modules--engine intake 
system, intake pressure sensor system, intake pressure 
observer, filtering module, FD module and FTC module. 
Engine intake system is modelled with mean value model; 
intake pressure sensor model in intake pressure sensor system 
is used for the simulation of sensor failures; intake pressure 
observer is based on Elman network; the filtering module is 
used for the filtering processing of the inlet pressure value 
measured by the observer so that the measured results can be 
more accurate; FD module and FTC module is built in above.  

 

Fig. 15. FD_FTC system of diesel engine based on neural 
network observer. 

3.2 Selection of the parameters of fault-tolerant strategies 

Using the above-described engine model, fault-tolerant 
strategies are verified through simulation. The selection of 
parameters of fault-tolerant strategies are described as 
follows: 

(1) When the engine operates at a speed of 2100 RPM and 
under a heavy load, the fuel-injection quantity remains at 200 
mg/(cyl*cyc), which is adopted as the critical value of high-
speed and heavy load. 

(2) Power reduction using gradient method is used as the 
power reduction of engine power control, and the power was 
reduced by lowering the fuel injection quantity in a gradient 
way. According to the high inlet pressure protection strategy 
using on the real vehicle, power reduction strategy is set 
below, the fuel-injection quantity  of external characteristic 
was reduced by 5% every 10 s, which can be expressed as: 
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                                           (3) 

(3)As shown in Eq. (3), fuel-injection quantity equals to 70% 
of the external characteristic fuel injection quantity after 1 
min, which can meet the general protection requirements. 
Therefore, 60 s is decision condition of emergency power 
reduction.  

 (4) Intake pressure is high when the engine operates under 
the conditions with high speed and heavy load, the high 
intake pressure will affect the combustion in cylinder, and 
may result in the inlet pipe leakage fault. Therefore, if engine 
still operates under the conditions with high speed and heavy 
load after the engine power is reduced after 1 min, the engine 
should be forced back into the idle speed. 
(5) The critical conditions for resuming data acquisition is 
that no fault signal appears and lasts more than 1 min. 

As shown in Fig. 16, fault-tolerant strategy is using Stateflow 
simulation tool. Different fault is set as fault code as shown 
in table 3.  

 
Fig. 16. Fault-tolerant control logic diagram. 
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3.3 Results of fault tolerant control 

Short circuit fault, open circuit fault and sensor bias fault 
were set to verify fault-tolerant control strategy. During the 
simulation process, the engine operates under a stable 
condition, and fault determining time can be extended 
appropriately so as the accuracy of diagnosis can be ensured. 
In the following simulations, fault determining time in bias 
fault was sets as 5 s, the values in short circuit fault and open 
circuit fault were set as 1 s, and the fault recovery time was 
set as 1 min.  

1 Results of short circuit fault and open circuit fault 

As shown in Fig.17, when the actual intake pressure is zero 
bar, short-circuit fault is detected and fault code 1is 
generated. At the same time, the simulated value of air intake 
pressure is used to replace the fault pressure value as the 
output. Then short-circuit fault code disappears  when the 
sensor returns back to normal more than 1 min, and  
simultaneously, the actual pressure value is output and sensor 
begins to collect data again. When open circuit fault occurs, 
sensor can be  shielded in time using fault-tolerant control 
strategy and the fault can be fault-tolerant. 
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Fig. 17. Fault tolerance simulation of short circuit fault and 
open circuit. 

2 Results of bias fault 

As shown in Fig.18, sensor is normal before 40 s and the bias 
fault occurs at 40 s. According to the residual value, when the 
intake pressure deviation exceeds 0.4 bar for 5 s, bias fault is 
detected and the fault code 4 is generated. Meanwhile, fault-
tolerant control begins, and the simulated pressure value is 
used to replace the actual pressure value. The engine operates 
at a high speed and with heavy load, and power reduction 
control is used during the output of fault code. Since the 
external fuel characteristics are restricted, fuel quantity is less 
than the limited value at that moment; in a period after fault 
is detected, engine power has no obvious drop. At 65 s, 
engine power begins to decline, and simultaneously, engine 
speed and inlet pressure decrease. 
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Fig. 18. Fault tolerance simulation of base fault 

4. CONCLUSIONS 

In this paper, a novel fault detection(FD)system and active 
fault-tolerant control (FTC) strategies of diesel engine MAP 
were constructed, based on Elman neural network observer. 
The structure of Elman neural network observer was 
established by simulation. The strategies were established on 
active fault-tolerant control and used for the protection of 
engine. The designed FD-FTC system was validated by 
simulation and experimental results. The following 
conclusions can be reached. 

(1) According to characteristics of diesel engine intake 
system, fault diagnosis method based on Elman neural 
network observer was proposed. Experimental results 
demonstrate that the proposed fault diagnosis method is 
suitable to fault diagnosis for intake system of diesel engine, 
which is independent with the mathematical model of intake 
system. 

(2) Comparing BP network with Elman neural network, 
Elman neural network observer is suitable to prediction of the 
intake pressure of diesel engine, which is more accurate than 
BP network. 

(3)   By analysing the characteristics of residuals in each fault 
mode and the relation between confidence interval and fault 
modes, the fault diagnosis strategies of complete failure, bias 
fault and drift fault were presented. Experimental results 
demonstrate that complete failure, bias fault and drift fault 
can be diagnosed using the proposed residual-based fault 
diagnosis strategies. 

(4)  Active fault-tolerant control (FTC) strategies in a closed-
loop were proposed based on neural network observer. 
Different strategies were designed for the engine’s different 
operating conditions, and power gradient reduction method 
was proposed. It can be concluded from the experimental 
results that short circuit fault, open circuit fault and sensor 
bias fault can be diagnosed and the engine can be effectively 
protected using the proposed fault-tolerant control strategies. 
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(5) The proposed FD and FTC methods is applied in 
simulation. It provides theoretical reference and simulation 
verification for practical applications in future. Future studies 
will consider optimization stability of the FTC system and 
application of the current design methods on-line in 
automotive diesel engine. 
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