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Abstract: In this paper, the nonlinear disturbance observer (NDO) is presented for serial flexible joint 
robot manipulators (FJM). To this end, a planar robot manipulator with n flexible joints is considered. 
After deriving the general form of dynamic equations for serial n-link FJM, a nonlinear disturbance 
observer is proposed on the basis of the system dynamic equations. The main challenge here is to obtain 
the acceptable range of the observer gain which guarantees the stability condition. So by choosing the 
proper Lyapunov candidate, stability analysis of the proposed observer is performed by using the 
Lyapunov’s direct method. Since the proposed NDO makes the system robust against internal and 
external disturbances, no accurate dynamic model is required to achieve the high precision motion 
control. The effectiveness of the proposed observer in the regulation problem is investigated by 
numerical simulations for a two-link robot manipulator. To this end, an optimal LQR controller is 
designed to stabilize the system besides the optimal state observer in order to estimate the angular 
velocity of the links and motors. Simulation results show the ability of the proposed method to properly 
estimate and compensate different disturbances.  

Keywords: Nonlinear disturbance observer, Lyapunov’s direct method, flexible joint manipulators, 
disturbances, LQR controller, state observer. 


1. INTRODUCTION 

Joint flexibility in many robot manipulator systems, 
introduced by the elements of the drive systems, such as 
shafts, belts, gears, and chains, cannot be neglected. The 
effect of flexibility on robot performance will be 
considerable, particularly, when the manipulator is used to 
perform a high-speed motion and carry a heavy load. 
However, the flexibility of the joint in manipulators causes 
difficulty in modelling the manipulator’s dynamics and 
becomes a potential source of uncertainty that can degrade 
the performance of the manipulator and in some cases can 
even destabilize the system (Talebi et al., 2002). Therefore, 
the joint flexibility must be considered in control design in 
order to achieve the desired performance. On the other hand, 
flexible joint manipulators (FJMs) are subject to different 
types of disturbances that adversely affect their performance 
such as repeatability and positioning accuracy. There are 
many sources that exert disturbances to the system. 
Unmodeled dynamics due to the joints flexibility and 
uncertainties due to unknown parameters or parameter 
variations are known as internal disturbance sources. In 
contrast, external forces on the end-effector, friction in joints, 
and torque ripple of the actuators are known as external 
disturbance sources. In fact, disturbances affect the 
performance of the system significantly. So, in order to 
reduce or estimate the disturbance effects, a large number of 
methods have been designed during the last three decades. 

The sliding mode control (Shendge et al., 2011; Moldoveanu 
et al., 2005), Kalman filter (Park et al., 2013), adaptive 

control (Chien et al., 2007), H-infinity controller (Taghirad et 
al., 2001), nonlinear optimal control approach (Korayem et 
al., 2015), active disturbance rejection (Kordaz et al., 2012), 
robust input shaping technique (Alici et al., 2006), adaptive 
sliding control (Huang et al., 2004), linear feed-forward 
torque using the principle of work and energy (Salmasi et al., 
2009), Fuzzy logic control (Zirkohi et al., 2013), neural 
network (Talebi et al., 2002), adaptive neural network sliding 
mode controller (Sefriti et al., 2012) and decentralized direct 
adaptive fuzzy control (Fateh et al., 2013) are among the 
disturbance rejection techniques proposed in the literature for 
flexible joint manipulators and robot manipulators. An 
alternative to these methods that has received much attention 
in recent years is the use of disturbance observers proposed 
first time by Ohnishi et al., 1996. The idea behind the 
disturbance observer is to lump all the external and internal 
unknown torques/forces acting on the manipulator into a 
single disturbance term, then estimate this unknown term 
using the disturbance observer. The output of the disturbance 
observer can be used as a command to compensate the 
disturbances.  

The disturbance observers have many applications in robotics 
such as, decoupling dynamics of the joints in order to design 
a simple controller for each DOF (Zhongyi et al., 2008), 
estimating and compensating the friction in order to improve 
the manipulator tracking performance (Bona et al., 2005), 
using in time-delayed bilateral teleportations in order to 
improve the transparency of telerobotic systems 
(Mohammadi et al., 2011), employing in sensorless force 
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control systems in order to estimate the contact forces 
(Shimada et al., 2010), using in shadow robot systems 
(Katsura at al., 2010) and fault detection systems (Sneider et 
al., 1996; Mohammadi et al., 2013).  

The methods used to design the disturbance observers for 
robot manipulators are classified to linear and nonlinear 
methods. But most of the existing literature uses the 
linearized models or linear system techniques (Kim et al., 
2003; Yun et al., 2014). In order to overcome the limitations 
of linear disturbance observer (Nikoobin et al., 2009; Yang at 
al., 2006) for the highly nonlinear and coupled dynamics of 
robotic manipulators, some nonlinear disturbance observers 
(NDO) have been developed for the flexible joint 
manipulator. Many works done in this area are based on the 
state observer design for the augmented system in which 
disturbances are taken as states (Qin et al., 2012). Variable 
structure disturbance observers (Lee et al., 2007) and high 
gain observers (Morales et al., 2001) are designed based on 
this method. 

Another approach for designing the NDO for robotic 
manipulators is proposed by (Chen et al., 2000), in which the 
stability of the proposed observer is verified by using 
Lyapunov’s theorem for a two links robot manipulator. Later, 
Nikoobin et al. generalized Chen’s solution to n-link planar 
manipulators (Nikoobin et al., 2009). After that, Mohammadi 
et al. (2013), extended NDO proposed by (Nikoobin et al., 
2009) for a general robot manipulator without restrictions on 
the types of the joints and the manipulators configuration. In 
all the previous works dealing with NDO for robot 
manipulators (Mohammadi et al., 2013; Nikoobin et al., 
2009; Chen et al., 2000), the flexibility in the joints have not 
been considered yet. The FJM is an underactuated system in 
which the number of actuators is lower than the degrees of 
freedom. So deriving the NDO formulation and verifying the 
stability for the FJM is different with the rigid manipulator. 
The proposed NDO in comparison with the NDO methods 
based on the state observer such as variable structure and 
high gain observer methods which estimate the whole applied 
disturbances as a single signal, can estimate the applied 
disturbance on each link and motor separately. So the 
presented method can be employed in sensorless force 
control systems in order to estimate the contact forces, or in 
the fault detection system.    

The other challenge in the flexible joint manipulator is the 
measurement reduction. Reduction in the number of feedback 
quantities has been always a goal in control design, especially 
for industrial robots. The works done in this field can be 
classified into two methods, avoiding the rate measurement 
by changing the control strategy and using the state observer 
in order to reduce the number of measurements reviewed 
completely in (Ozgoli et al., 2006). As a common method the 
velocity of motors and links are estimated using the different 
type of observers such as LQG/LTR techniques (Lahdhiri at 
al., 1999), robust dynamic feedback tracking controller 
(Chang at al., 2011) and neural network observer (Abdollahi 
at al., 2006). 

In this paper, a nonlinear disturbance observer is proposed for 
a general n-link planar robot manipulator with flexible joints. 

Here, on the base of the Spong model of FJM which has no 
zero dynamics (Luca, 2000), a proper Lyapunov function is 
chosen and the sufficient condition for stabilizing the system 
is proved. The paper is organized as follow: A Dynamic 
model of an n-link planar flexible joint manipulator is 
presented in Section 2. The proposed NDO is introduced in 
section 3 and the stability analysis of the proposed observer 
based on the Lyapunov’s direct method is presented in 
Section 4. By designing the LQR state feedback controller 
besides the optimal state observer to estimate the velocities, 
the effectiveness of the proposed method to eliminate the 
different disturbances on the system is shown in Section 5. 
Lastly, Section 6 includes the concluding remarks. 

2. DYNAMIC MODEL OF FJM 

In this paper, a nonlinear disturbance observer is presented 
for a general n-link planar robot manipulator with flexible 
joints. Here, on the base of the Spong model of FJM which 
has no zero dynamics (Luca, 2000), a proper Lyapunov 
function is chosen and the sufficient condition for stabilizing 
the system is proved. The paper is organized as follow: A 
Dynamic model of an n-link planar flexible joint manipulator 
is presented in Section 2. The proposed NDO is introduced in 
section 3 and the stability analysis of the proposed observer 
based on the Lyapunov’s direct method is presented in 
Section 4. By designing the LQR state feedback controller 
besides the optimal state observer to estimate the velocities, 
the effectiveness of the proposed method to eliminate the 
different disturbances on the system is shown in Section 5. 
Lastly, Section 6 includes the concluding remarks. 

The structure of a multiple flexible joints manipulator 
consisting of n flexible revolute joints and n rigid links is 
shown in Fig. 1. The links are cascaded in serial fashion and 
are actuated by individual motors and gearboxes. A payload 
of mass mp is connected to the distal link. Let 

, 1,2, , ,Liq i n  denote the generalized coordinate of the ith 

link, , 1, 2, , ,aiq i n   denote the generalized coordinate of 

the ith actuator and i , 1,2, , ,u i n  denote the applied torque 

of the ith actuator of the robot.  

 

Fig. 1. Serial n-link planar flexible joint manipulator. 

The flexible joint is simplified as a linear torsional spring 
with the spring constant i , 1, 2, , .k i n   Due to the elastic 
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coupling between actuators and links, the n-link flexible joint 
robot has 2n degrees of freedom.  

Let  
T 1

1 2 Rn
L L L Lnq q q q      and 

T 1
1 2 Rn

a a a anq q q q      be a set of generalized 

coordinates.  

Based on the dynamic model of the flexible joint robot 
developed by (Spong, 1987), the dynamic equation of the 
FJM can be described as  

     
 

 

act L L act L L act L

act L a dis.1

act a act a L dis.2

M q q +b q ,q +h q

+K q - q = f

J q + K q - q = u+ f

 


 

(1) 

in which 

2
act act mact

act

J = N J

u = N τ
 

(2) 

where ( ) R n n
act LM q   is positive definite symmetric inertia 

matrix,   1Rn
L Lb q ,q   is the vector of Coriolis and 

centrifugal forces, 1( ) Rn
act Lh q   is the vector of 

gravitational forces, 1 2diag( , , , ) R n n
act nK k k k  

 
is the 

joint torsional stiffness matrix, 

1 2diag( , , , ) R n n
mact m m mnJ J J J    is the motor inertia 

matrix, 1 2diag( , , , ) R n n
act nN N N N    is the gear ratio 

matrix,
 

T 1
1 2 Rn

n         is the vector of motor 

torque, and 1R n
disf   is the disturbance vector which 

contains the torque due to the unknown load, friction force, 
external force, torque ripple and unmodeled dynamics. The 
subscript “1” denotes the disturbance on the links, subscript 
“2” denotes the disturbance on the actuators and the subscript 
“act” denotes the actual value of parameters. 

Property 1:  LM q   is symmetric positive definite, and 

bounded below and above, i.e., 0    , such that 

  , Rn
n L n LI M q I q     , where nI  is the n×n identity 

matrix.   

Property 2: The dynamic model of the flexible joint 
manipulator given in (1) is input-state linearizable and has no 
zero dynamics, so the closed loop system is internally stable 
(Luca, 2000).  

Assumption 1: By defining the 
TT T

L aq = q q   , the angular 

velocity vector q  lies in the known bounded set q  , it 

means  maxΩ q : q qqq


      .  

Assumption 2: Joint deflections are small, so that flexibility 
effects are limited to the domain of linear elasticity. The

actuators’ rotors are modelled as uniform bodies having their 
own center of mass on the rotation axis. Each motor is 
located on the robot arm in a position preceding the driven 
link (Siciliano at al., 2008).  

In order to simplifying the computation in the next sections, 
inertia matrix  LM q  can be written as follow 

   L LM q = BM q A  (3) 
 

in which 

1
1
1 2 2

1 2
2 2,3 1 3 3
1 2 3
3 2,4 2 3,4 1 4
1 2 3
4 2,5 3 3,5 2 4,5

1 2 3
1 2, 2 3, 3 4,

sym.

1
,

2

n n n n n n n n n

M

X C M

X C X C M

X C X C X CM

X C X C X C

X C X C X C M   

 
 
 
 
 

  
 
 
 
 
 


  



 (4) 
 

and 

1 0 0 1 1 1

1 1 0 1
, ,

0 1

1 1 1 0 0 1
n n n n

A B

 

   
   
    
   
   
   

 
   

     
 

 
(5) 

 

where    , 1cos , cosi Li i j Li Li LjC q C q q q     and 

i ,, , , 1 nj
i j iM Y X i    are constant parameters, which depend 

on the masses of the links, payload and the lengths of the 

links.  LM q  is also a symmetric matrix,  

3. NONLINEAR DISTURBANCE OBSERVER 

Assuming all states are available in output, the structure of a 
control system with disturbance observer is shown in Fig. 2, 
which indicates the principle of disturbance observer design.  

 
Fig. 2. The structure of disturbance observer. 

By defining the nominal value of parameters, one can write 
(1) as 
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       
 

L L L L L L a dis1

a a L dis2

M q q +b q ,q +h q + K q - q = f

Jq + K q - q = u+ f

 

  (6) 

where M, b, h, K  and J  are the nominal values of 

act act act actM , b , h , K and actJ  respectively.  

Consequently, using (1) and (6), the disturbance vector can 
be written as  

 
 

dis.1 L L a

dis.2 a a L

f q K q - qM 0 b h 0
= + + + -

f q K q - q0 J 0 0 u

           
           
             


 . (7) 

So, by defining the  

dis.1 L
dis

dis.2 a

f q
f = , q =

f q

   
   
   

, (8) 

disturbance observer can be proposed as  

 

 
 ˆ ˆ

L L a

a a L

dis dis

q K q - qM 0
+ +

q K q - q0 J
f = L q,q - f

b+h 0
-

0 u

                  
  
     
          


  , (9) 

where   2 2R n nL q,q  , and ˆ
disf  is the estimated of real 

disturbance disf .  Since, there is no prior information about 

the derivative of the disturbance, it is reasonable to suppose 
that the disturbance in (7) varies slowly (Mohammadi et al., 
2013; Chen et al., 2000), 

disf = 0 . (10) 

which implies that the disturbance varies slowly compared 
with the observer dynamics. But in Section 5, it will be 
shown that the proposed observer estimates also fast time 
varying disturbances. The observer error is defined as a 
difference between actual disturbance and estimated 
disturbance 

ˆ
dis dise = f - f .  (11) 

By differentiation from observer error, dynamic of error can 
be written as  

 ˆ ˆ
dis dis dis dise = f - f = L f - f

 , (12) 

which it can be expressed as below 

e+ Le = 0 . (13) 

L  must be chosen in such a way that the dynamic of error be 
asymptotically stable.  

As it can be seen from (9), acceleration signals Lq  and aq  

are required to realize the disturbance observer. Since 
acceleration measurement is a hard task in many robotic 
applications, the problem is circumvented by defining an 

auxiliary variable  ˆ
disy = f - p q . Differentiating the 

auxiliary variable with respect to time gives     

pˆ ψdisf = q
q





  


. (14) 

So, substituting for ˆ
disf


 from  (14) into (9) gives 

      

 
 

ψ ψ

.L L a

a a L

p
q -L q,q + p q + L q,q ×

q

q K q - qM 0 b+h 0
+ + -

q K q - q0 J 0 u


 


        
                   

    





 (15) 

By defining 

  M 0p
L q,q

0 Jq

 
    


 . (16)  

Equation (14) can be reduced to 

 
   ψ ψ L a

a L

K q - q b+ h 0
= -L L + - - p q ,

K q - q 0 u

      
              

+   (17)  

in which there is no acceleration signal, and estimated 
disturbance can be obtained by 

 disf̂ = ψ + p q .  (18) 

Finally, as it can be shown in Fig. 2, one can write the control 
law as follow 

 ˆ ˆ
c dis1 dis2u = u - f - f ,  (19) 

in which u  is the final control signal, cu  is the controller 

signal, ˆ
dis1f  and ˆ

dis2f  are the estimated disturbance signals.  

4. STABILITY ANALYSIS 

The proposed NDO in (17) has two design parameters L and 
P. However, they are not independent and related to each 
other by (16), so one of them must be chosen in order to 
guarantee the asymptotical stability of the proposed NDO. In 
the following theorem a value for  p q  is proposed to 

guarantee the stability of disturbance observer. 

Theorem 1: If   2 1np q R   be defined as below  

 

1

1 2

1 2

1

2

...
,

L

L L

L L Ln

a

a

an

q

q q

q q q
p q c

q

q

q

 
  
 
 

     
 
 
 
 
  


 


  







 
 

(20) 
 

then asymptotical stability of NDO given by (17) is 
guaranteed by proper choice of parameter c.  



26                                                                                                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 

Proof:  Since derivative of  p q  with respect to q  can be 

expressed as below 

  n×n n×n

n×n n×n

p q A 0
= c ,

0 Iq

  
   




 
 

(21) 
 

in which n nA  is defined in (5).  So by substituting (20) into 

(16) one can write 

 
-1

-1

A 0 M 0
L q,q = c .

0 I 0 J

  
  

   
  

 
(22) 

 

Using (3), the inertia matrix can be written as follow 

   L LB 0 A 0M q 0 M q 0
=

0 I 0 I0 J 0 J

      
      

      
, 

 
(23) 

 

so substituting (23) into (22) yields 

 
-1 -1

-1

M 0 B 0
L q,q = c

0 J 0 I

   
   
   

 . 
 

(24) 
 

Since LM(q )  and J  is positive definite for all q , a 

Lyapunov candidate can be proposed as  

  T M 0
V e,q = e e

0 J

 
 
 

. (25) 

The time derivative of the Lyapunov function is  

     d

d

V e,q V e,q V e,q
e q

t e q

 
 

 
  . (26) 

By using (13) and (24), the first term can be determined as  

-1 -1
T

-1

-1 -1
T T

M 0 M 0 B 0V
e = 2e -c e

e 0 J 0 J 0 I

2cB 0 2cB 0
= -e e = -e e,

0 2cI 0 2cI

     
              

   
   
   



 
 

(27) 
 

in which 

1

2 0 0

2

2 ,0

0 2

0 0 2

c c

c c c

cB

c c c

c c



 
   
 
 

  
  


 

   



 
 

(28) 
 

The second term in right-hand side of (26) can be written as  

  n×n n×nT

n×n n×n

V e,q D 01
q = - e e

0 0q 2

  
   

  
 

(29) 
 

in which 

1
1 2 2

1 2
2 2,3 2,3 1 3 3

1 2 -1
-1 2, 2, -2 3, 3, 1

0 sym.

0

0

0

L

L L

n
n L n n n L n n Ln n

X q S

X q S X q SD =

X q S X q S X q S

 
 
 
 
 
 
 
 


  
 
  

 

where , 1Li j Li Li Ljq q q q       ,  sini LiS q  and 

 , 1sini j Li Li LjS q q q    . By substituting (27) and (29) 

into (26), the time derivative of the Lyapunov candidate 
becomes 

 d

d

-1
T T

-1
T T

V e,q 4cB 01 1
= - e Pe = - e e -

t 2 2 0 4cI

D 0 4cB + D 01 1
e e = - e e

0 02 2 0 4cI

 
 
 

  
  

   

 
 

(30) 
 

in which 

1
1 2 2

1 2
2 2,3 2,3 1 3 3

1 2 -1
-1 2, 2, -2 3, 3, 1

4 sym.

-2 4

-2

4

-2 4

-1

L

L L

n
n L n n n L n n Ln n

4cB + D =

c

c X q S c

X q S c X q S

c

X q S X q S c X q S c

 
  
 
 
 
  


  
 
  

 

Now, it must be proved that P  in  (30) is positive definite 
matrix. P  will be the positive definite matrix, if 
determinants of all principal minors of -14cB + D  and 4cI  
be positive. It is clear that, 0, 4c cI   is a positive definite 

matrix. The minors of -14cB + D  can be derived as follow 

1

1 1
2 1 2 2 1 2 2

4

(6 )(2 )L L

Minor c

Minor c X q S c X q S



   
                       (31) 

 3 2 1 1 2
3 1 2 2 2 2,3 2,3 1 3 3

1 2 1 1 1 2
1 2 2 1 2 2 2 2,3 2,3 2 2,3 2,3

1 2 2 2
2 2,3 2,3 1 3 3 1 3 3

1 1 2
1 2 2 2 2,3 2,3 1 3 3

3

32 16 8 16

4( ) 4 ( )

4 4( )

2

(3 1)(2 )

L L L

L L L L

L L L

L L L

Minor c c X q S X q S X q S

X q S X q S X q S X q S
c

X q S X q S X q S

X q S X q S X q S

c

   

    
 
  

 

 

  

   

  

  

lower order of c

 

  
( 1)(2 ) lower order of i

iMinor i c c    

It can be seen that the determinant of each minor is the 
polynomial of degree i, and its greatest element is ( 1)(2 )ii c . 

If c is chosen big enough, the determinant of all minors will 
be positive and the stability of disturbance observer is 
guarantied. The first and second minors must be positive, so 
the following condition must be satisfied 

1
1 2 max0.5 Lc X q  , (32) 
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where 2maxq  denotes the maximum velocity of the second 

link. Now, in (31) by taking 1
1 1 2 2a X q S  ,  2

2 1 3 3a X q S   and 
1

3 2 2,3 2,3a X q S  , the third minor becomes  

 3 2
3 1 2 3

2 2 2
1 2 1 3 3 2 3 1 2 3

32 16 16 8

( 4 4 4 4 ) 2

Minor c c a a a

c a a a a a a a a a a

    

     
. (33) 

The worst condition that causes the determinant to be 
negative is occurred when 1 2 3 0a a a   . So, replacing a2 

and a3 in (33) with a1 yields 

 3 2 2 3
3 1 1 132 40 ( 17 ) 2Minor c c a c a a     . (34) 

If 1 13 3c a a    then 3
3 1451 0Minor a   . In the other 

word, the following condition for c must be satisfied 

 1 1 2
1 max 2 2 max 2,3 1 max 33 max , ,L L Lc X q X q X q     . (35) 

By repeating the above procedure, it can be shown that for n-
link robot manipulator by taking the parameter c as  

1 1
1 max 2 1 max 2,

2 2
1 max 3 2 max 3,

1
( 1) max

, , ,
( 1)

max , , ,
2

,

L n L n

L n L n

n
n n L n

X q X q
n n

c X q X q

X q






 

 
         

   
  

 

 



 (36) 

matrix P is positive definite, and the observer (17) and (18) is 
globally asymptotically stable. According to Property 2, the 
dynamic model of the FJM has no zero dynamics and it is 
internally stable, so the proposed NDO by compensating the 
estimated disturbances can improve the control response 
performance.  

5. SIMULATION STUDY  

In this section, the proposed NDO is tested for the two-link 
flexible joint robot manipulator. Here, the effectiveness of the 
presented observer is verified by numerical simulations. In 
the performed simulations external disturbances on the links 
and motors are taken into account. The state feedback 
controller on the base of the linear quadratic regulator (LQR) 
is designed to stabilize the system and an optimal state 
observer is designed to estimate the angular velocities. The 
controllers are designed for the nominal model of 
manipulators without considering the disturbances. 

5.1. Deriving the Dynamic equations 

According to the general form of the dynamic equation (1), 
the dynamic equation of two-link planar flexible joint robot 
manipulator can be written as follow (Korayem et al., 2008). 

 
 

 
 

11 12 1 1 1

12 22 2 2 2

.111 1 1

.122 2 2

1 .211 1 1 1 1

2 .222 2 2 2 2

0
,

0

L

L

disL a

disL a

a disa L

a disa L

M M q b h

M M q b h

fk q q

fk q q

q fJ k q q u

q fJ k q q u

       
         

       
   

       
       

                 







 (37) 

in which   

2 2 2 2 2
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2
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2
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c L p L

c p
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m L L q q S m L L q S
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h m L gC m L gC m L gC

m L gC m L gC h m L gC m L gC

   



 

   

  

  

  

   

2 2
1 1 1 2 2 2,m mJ N J J N J   

(38) 

where , ,i ci iL L I  and im  denote the length, mass center, 

moment of inertia and mass of link i, i=1,2 respectively. The 
parameters used in the simulation study are given in Table 1.  

Table 1. Parameters of the two-link FJM. 

Parameters Values Unit 

Payload mass mp=0 Kg  

Mass of links  m1=m2=2 Kg  

Length of links L1=L2=2 m 

Center of mass Lc1 =Lc2=1 m 

Inertai of links I1=I2=0.6667 Kg.m2 

Inertia of motors Jm1=Jm2=0.1 Kg.m2 

Spring constants k1=k2=5000 N.m/rad 

Gear ratio N1=N2=3  

Gravity acceleration g=0 m/s2 

5.2. Disturbance observer design  

From (20) and (22), P  and L  become  

 
1

1 2

1

2

1 0 0 0

1 1 0 0
,

0 0 1 0

0 0 0 1

L

-1
L L

-1
a

a

q

q q M 0
p q = c L c

q 0 J

q

   
                  

  


 





. (39) 
 

Consequently, the nonlinear disturbance observer can be 
obtained by substituting P  and L  into (17) and (18). The 
parameter c can be chosen based on (36) and by assuming 
that the maximum joint velocity of each link does not exceed 
1 rad/s, so one can write  

1
1 2 max0.5c X q   (40) 

According to (40), the observer would be globally 
asymptotically stable, if parameter c is bigger than 4. Since 
the bigger values of c accelerate the convergence of the 
observer error, so the parameter c is chosen as 10 to have a 
reasonable convergence rate. In the following, the details of 
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designing the state feedback controller on the base of the 
linear quadratic regulator (LQR) are presented.   

5.3. State feedback controller and state observer 

The state feedback controller is a more common approach in 
the control of manipulator systems. In order to design this 
controller, a linear state-space model of the manipulator is 
obtained by linearizing the equations of motion of the system 
about the operating point. The dynamic equations (37) can be 
put in the nonlinear state space form as follow  

x = f(x)+ g(x)u,  (41) 

where the state vector x  is defined as 
T TT T T T

L a L a 1 8x = q q q q = x L x       , the control input 

vector as
 

 T1 2u = u u , and the functions  .f  and  .g  are 

given by 

 
 

 
 
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6 12 2 22

1 2 5 6 1 1 2 1 3 1

2 2 5 2 1 2 2 4 2

-1
7 1 1 1 3

-1
8 2 2 2 4

1 2 3

, , , ,

( ) ( )

( )

( , , ) ( , )

( , ) ( , )

f x f x f x f x

f M x M x

f M x M

b x x x h x x k x x

b x x h x x k x x

f J k x x

f J k x x

g g g



   

   
   
  

     
              

  
        

  4 5 6

-1 -1
7 1 1 8 2 2

0,

,

g g g

g J u g J u

   

 

 (42) 

This obtained nonlinear model, can be used for developing 
the linear model. The linearized model about the operating 
point ( )0 0x ,u  is obtained by applying the Taylor series 

expansion to the set of equations (41) and (42) for a two-link 
FJM which yields the following system 

,x Ax+Bu  (43) 

where matrices A and B are given by 

, .
0 0 0 0(x ,u ) (x ,u )

f g
A B

x u

 
 
 

 (44) 

So one can obtain the matrices A and B as follow 

51 52 53 54 55 56

61 62 63 64 65 66
-1 -1
1 1 1 1

-1 -1
2 2 2 2

-1
1

-1
2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
,

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

T

A
S S S S S S

S S S S S S

J k J k

J k J k

J
B

J
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 
 
   
 
 
  

  

 
  
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       (45) 

where 
( )

i
ij

j

f
S

x





0 0x ,u

 for i=5,6 and j=1,…6. An appropriate 

way for designing the state feedback controller is linear 
quadratic regulator (LQR) technique. According to LQR 
method, for the LTI system in (43), the following feedback 
control law 

c =- ,u Κx  (45) 

minimize the quadratic cost function 

T T

0

( )c cJ x Qx u Ru dt


   (46) 

where Q  is the symmetric positive semi definite matrix and 

R  is the symmetric positive definite matrix. The matrices Q 
and R  are called the state and control penalty matrices, 
respectively. Here the lqr command in MATLAB software is 
used to calculate the controller gain matrix K. In order to 
evaluate the matrices A and B, the manipulator parameters are 
substituted from Table 1 into Eq. (45). So by choosing the 
matrices R  and Q as follow     

1 0
, 20 diag(1,1,1,1,1,1,1,1).

0 5
R Q

 
   
 

 (47) 

The controller gain matrix K is obtained as 

-16.7 45.6  22.8  -47.2  5.4  2.2  5.6   -2.5
 =

5.8   -6.9   -5.1    9.6    2.6  0.7  -0.5   2.9
K

 
 
 

 (48) 

The matrices R and Q are adjusted in such a way that the rise 
time of the system response is about 6 seconds. From the 
practical point of view, often all the states are not measured, 
so it is required to estimate the necessary unmeasured states. 
Here, it is assumed that only the position variables are 
available. So using the optimal state observer as follow 

Tˆ ˆ=( ) ,Tx A - BK - G C x G y  (49) 

the velocity of links and motors can be estimated. In (49), 
TT Tˆˆ ˆ[ ]x = q q  is the vector of estimated states, K is the 

controller gain matrix, y  is the measured variables defined as 
T TT T

L a 1 4y q q x x         and G is the observer gain. 

In the presence of state observer, the control law (46) is 
rewritten as follow  

=- ,cu Κx  (50) 

where 
TT Tˆ[ ]q q x . By choosing the C and weighting 

matrices W and V as follow     

 4 4 4 4

2

,

(0.0001) (1,1,1,1), 50diag(0,0,0,0,1,1,1,1)

C I 0

V diag W

 

 
 (51) 

The observer gain matrix G using the lqr(AT, CT,W,V) in 
MATLAB can be obtained. The values of weighting matrices 
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W and V, depends on the amount of disturbance and sensor 
noise exerted to the system. By increasing the W, the 
disturbance are estimated more accurately, but the system 
sensitivity to the sensor noise is increased. In the performed 
simulations, noise on the measured signal is not considered 
and the W is adjusted in such a way that the disturbance 
signals are estimated with reasonable accuracy.  

 The control structure, including the state feedback controller, 
state observer and the nonlinear disturbance observer, is 
shown in Fig. 3, where the effect of disturbances is 
compensated for by the outputs of the NDO.  

 
Fig. 3. State feedback controller with the NDO and state 
observer. 

This control structure is implemented for the two-link FJM 
using the simulation toolbox of MATLAB. In this simulation, 
the external disturbances are applied to the links and motors 
as the different functions and the internal disturbances are not 
considered. The initial value of the state vector and estimated 
state vector are chosen to be  

ˆ(0) (0) [1.5 1.5 1.5 1.5 0 0 0 0] x x . 

The other robot parameters used in these simulations are 
listed in the Table 1. All simulations are performed for two 
cases, controller without disturbance observer and controller 
with disturbance observer. The applied disturbance functions 
to the links and motors, and their estimated functions are 
shown in Fig. 4 to Fig. 7. As it can be seen, the NDO can 
estimate the applied disturbance acceptably, even for rapid 
time-varying signals. The angular positions of the links with 
NDO (solid line) and without NDO (dotted line) are 
demonstrated in Fig. 8 and Fig. 9. The steady state errors of 
the links with NDO and without NDO are less than 0.02 and 
0.27 Rad, respectively. The angular positions of motors are 
very similar to the angular position of links, so they are not 
shown here. The angular velocities of the links and motors 
and their estimated values are shown in Fig. 10 to Fig. 13. As 
it can be seen, in the presence of NDO, the regulating 
performance is improved and the effect of disturbance on the 
system outputs is reduced significantly, also the state 
observer estimates the velocities accurately. In Fig. 14 and 
Fig. 15, the applied control torque in motors with and without 
NDO is shown. It can be seen that adding the NDO to the 
system does not exert the large control effort to the system 
and there is no big difference in two cases. Consequently, it 

can be seen from the simulation results, adding the NDO to 
the control loop improve the regulating performance and 
increase the stability of the system against the applied 
disturbance.  
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Fig. 4. Applied and estimated disturbance on the first link. 
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Fig. 5. Applied and estimated disturbance on the second link. 
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Fig. 6. Applied and estimated disturbance on the first motor. 
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Fig. 7. Applied and estimated disturbance on the second 
motor. 
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Fig. 8. Angular position of the first link. 
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Fig. 9. Angular position of the second link. 
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Fig. 10. Angular velocity of the first link. 
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Fig. 11. Angular velocity of the second link. 

0 5 10 15
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Time (s)

A
ng

ul
ar

 V
el

oc
ity

 o
f 

1s
t 

 M
ot

or
 (

R
ad

/s
)

 

 

7 8 9
-0.02

0

0.02

0.04

 

 

 

Fig. 12. Angular velocity of the first motor. 
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Fig. 13. Angular velocity of the second motor. 
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Fig. 14. Control input of the first motor. 
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Fig. 15. Control input of the second motor. 

6. CONCLUSION 

In this paper, a nonlinear disturbance observer for the serial 
n-link planar FJM is presented. The FJM is an underactuated 
system; that is, the number of actuators is lower than the 

degrees of freedom. But according to the Spong model of the 
FJM, it is proved that its dynamic model has no zero 
dynamics and the closed loop system is internally stable. On 
the base of this property, the NDO law is proposed for FJM 
and by choosing the proper Lyapunov candidate, the stability 
analysis is performed by using the Lyapunov’s direct method. 
Designing the proposed disturbance observer is so simple so 
that it is not required to have the disturbance model, and only 
one design parameter must be tuned to attain the desirable 
performance. By compensating the estimated disturbance via 
the NDO, the control response performance is considerably 
improved in the regulation control. Applicability of the 
observer is tested for a two-link FJM. To this end beside the 
proposed NDO, the LQR state feedback controller and 
optimal state observer are also designed to stabilize the 
system. Simulation results show the effectiveness of the 
method to estimate and compensate the applied disturbances 
accurately.   
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