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Abstract: In this paper, a backstepping sliding mode control (BSMC) system based on the Lyapunov 
stability criterion is put forward to control the angular velocity of an electromechanical system to closely 
track the desired trajectory in spite of parameter uncertainties, nonlinear dynamics, and disturbances. In 
addition, for comparison purposes a conventional sliding mode controller and a backstepping controller 
are designed. Experimental results of the proposed BSMC are compared with those of the other two 
controllers. The proposed BSMC accomplishes satisfactory trajectory tracking performance, and it is 
more robust pertaining to parametric uncertainties and disturbances than the others. 
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

1. INTRODUCTION 

In recent years, there has been a growing interest and 
research in design of robust controllers for the nonlinear 
dynamic systems with matched and unmatched parameter 
uncertainties and disturbances (Davila, 2013). The design of 
robust controllers for such nonlinear systems is one of the 
most challenging tasks for control engineers, practitioners, 
and scientists. They have recommended some design 
solutions by using different approaches such as sliding mode 
control (SMC), adaptive control (AC), and backstepping 
control (BSC). One of the most flourishing control 
approaches to overcome the negative effects of uncertainties 
on the nonlinear systems is sliding mode control. Sensitivity 
of the nonlinear plant under sliding mode control with respect 
to uncertainties and disturbances is reduced in return for 
chattering in many practical situations (Rubagotti et al., 
2011). Sliding mode control can tackle uncertainties and 
disturbances by the knowledge about their lower and upper 
bounds to need no parameter adaptation. The other approach 
to dealing with uncertainty is adaptive control. The 
fundamental goal of adaptive control is to retain reliable 
performance of a dynamic system in the presence of 
parameter uncertainties by using on-line parameter adaptation 
without prior knowledge about the unknown parameters. Due 
to its on-line adaptation ability, adaptive control for a plant 
with uncertainties in constant or slowly-varying parameters is 
superior to sliding mode control. Nonetheless, sliding mode 
control outperforms adaptive control under disturbances, 
uncertainties in quickly varying parameters, and unstructured 
uncertainties (Slotine et al., 1991).  

Stability of the overall system and convergence of the 
parameters to be adapted to ideal ones using parameter 
update law may be easily achieved by Lyapunov-based 
adaptive control design. However, it can be only applied to 
linear systems with relative degree one or two and to 

nonlinear systems with the number of integrators between the 
control input and the parameter to be adapted less than two. 
This drawback can be eliminated by the recursive design 
referred to as backstepping control (Krstic et al., 1995). The 
rationale behind backstepping is to design the control input to 
stabilize the overall system by cancellation of all 
destabilizing terms in each first-order subsystem obtained 
from the nth order system in a lower triangular form 
constructing a backstepping change of variables in a 
recursive fashion. Backstepping control design takes 
advantage of a step by step procedure and Lyapunov direct 
method since it views some of the system states as virtual 
controls until the actual control is reached (Krstic et al., 1995; 
Krstic et al., 2008). However, it is not robust against 
uncertainties. So as to exploit the advantages of robustness 
presented by the sliding mode control and Lyapunov based 
recursive design by the backstepping control, these two 
methods can be associated. The association of the 
backstepping design and the sliding mode control referred to 
as backstepping sliding mode control (BSMC) is an effective 
method alternative to the adaptive control for nonlinear 
systems with both matched and unmatched uncertainties and 
disturbances (Davila, 2013; Madani et al., 2006; Adhikary et 
al., 2013; Lu et al., 2011; Zinober et al., 1996). 

Generally, electromechanical systems appear in industrial 
applications requiring adjustable speed regulation and 
frequent starting, braking and reversing, such as robotics, 
numeric control machines, and industrial tools (Sahab et al., 
2012; Damiano et al., 2004; Payam, 2006). The main part of 
an electromechanical system is the dc motor as an actuator. It 
is important to control its position or velocity under load 
variations and disturbances. The well-known linear control 
necessitates fairly accurate information about 
electromechanical system parameters to accomplish the 
desired compromise between performance and disturbance 
rejection. Because of unknown parameters or uncertainties in 
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parameters due to different load conditions, performance of 
an electromechanical system degrades (Damiano et al., 2004; 
Chaouch et al., 2006). In this paper, in order to overcome this 
deficiency, robust control methods are used. A nonlinear 
backstepping sliding mode controller based on the Lyapunov 
stability theorem is designed in order for output of an 
electromechanical system to track the desired trajectory in 
spite of parametric uncertainties, nonlinear dynamics, and 
disturbances. The proposed BSMC is designed so that the 
stability of the whole closed-loop system during the reaching 
phase and sliding phase is ensured. The proposed control 
method has been experimentally applied to control an 
electromechanical system. Experimental results of the 
proposed design demonstrate that the trajectory tracking 
performance is increased in existence of uncertainties and 
disturbances and at the same time the stability is maintained. 
Furthermore, for comparison purposes a conventional sliding 
mode controller and a backstepping controller are designed 
since there does not exist a comprehensive comparison study 
among these three designs in literature. Experimental results 
of the proposed backstepping sliding mode controller are 
compared with those of the both controllers. The paper is 
organized as follows. The experimental set-up and 
mathematical model of the electromechanical system are 
given in Section 2. Design methods which are backstepping, 
conventional sliding mode, and backstepping sliding mode 
controllers are introduced in section 3. In section 4, 
experimental applications and results of the proposed 
backstepping sliding mode controller as well as conventional 
sliding mode and backstepping controllers, and also 
comparison results are provided. Finally, the conclusions are 
given in section 5. 

2. MATHEMATICAL MODEL OF THE 
ELECTROMECHANICAL SYSTEM AND THE 

EXPERIMENTAL SET-UP 

In this paper, the Precision Modular Servo (PMS) setup 
developed by Feedback Instruments is considered as a test 
bed. The PMS consists of a brushed dc motor, digital 
encoder, power supply, pre-amplifier, servo-amplifier, 
attenuator, output potentiometer, gearbox/tachometer, and 
analogue control interface units as shown in Fig. 1. The set-
up allows designers to test their controllers in real time 
(Kesarkar et al., 2013). The electromechanical system PMS 
consists of essentially electrical and mechanical units as seen 
in the figure. The input-output signals in the system are 
transmitted to the computer via a data acquisition card. The 
output speed is measured by a tachometer that provides an 
output voltage proportional to the speed. Digital encoder 
measures precisely the motor angular position. The digital 
data from the encoder are conducted to the I/O board. Pre-
amplifier supplies the correct signal range to the servo 
amplifier which provides the controlled power to the DC 
motor. Interface unit is employed to scale the analogue input 
and output to the I/O board in the computer to the true 
operating range. Attenuator is used to set the input to the 
motor control circuit to the true operating level. Output 
potentiometer is used as a visual display of motor (gearbox 
shaft) position. The electromechanical system under 
consideration operates at control (input) voltage in the range -

2.5 V and +2.5 V with a maximum no-load speed of 4050 
rpm (Feedback Instruments). 

 

Fig. 1. A photograph of the Precision Modular Servo (PMS) 
setup. 

The mechanical and electrical components consisting of 
tachometer/gearbox, digital encoder, output potentiometer, a 
brake disc, transmission belt, and some couplings which are 
directly connected to the shaft place some additional load 
effects on the ideal dc brushed motor. These mechanical and 
electrical parts influence basically moment of inertia and 
viscous friction of the dc motor. As a result of the load effects 
on the real experimental system, moment of inertia lJ  and 

viscous friction ld  are included in the motor model 

equations. A complete mathematical model of the 
electromechanical system can be derived using mechanical 
and electrical equations. By Kirchhoff’s voltage and 
Newton’s rotational motion laws, one can get the following 
total torque and voltage equations  

( ) ( ) ( ) ( ) ( ) ( )m l i m l tJ J t t d d t K i t                  (1) 

( )
( ) ( ) ( )b

di t
v t L Ri t K t

dt
               (2) 

where mJ  and lJ  are the moment of inertia constants; md  

and ld  are the viscous friction constants; tK  is the torque 

constant; ( )t is angular shaft velocity; bK  is an 

electromotive force constant; v  is the armature voltage; R  is 
resistance; L  is inductance; t  is the time. One can rewrite 
(1) and (2) in the following form: 

( )( )
( ) ( ),

( ) ( )

( ) 1
( ) ( ) ( )

m l t

m l m l

b

d d Kd t
t i t

dt J J J J

Kdi t R
i t t v t

dt L L L

 




  

 

   

 


          (3) 

Let us use ( )t  instead of ( )t  in (3) and then take its 

Laplace transform: 

( )
( ) ( ) ( ),

( ) ( )

1
( ) ( ) ( )

m l t

m l m l

b

d d K
S S S i S

J J J J

K
i S S v S

SL R SL R

 




  

 

  
 

             (4)

Substituting the second equation into the first one in (4), the 
following equation is obtained: 
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( ) [ ] ( )

( )

( )
             ( ) ( )

( ) ( )

m l

m l

m l t b t

m l m l

d dR
S S S S

L J J

d d R K K K
S v S

L J J L J J

 




  


 

 
 

         (5) 

Taking the inverse Laplace transform of (5) and then 
including the additional gain ampK  introduced by the 

amplifiers, and converting the motor angular velocity from 
rad/s to rpm, the following equation is obtained: 

( ) ( )
( ) [ ] ( ) ( )

( ) ( )

         ( )
( )

m l m l t b

m l m l

amp t rpm

m l

d d d d R K KR
t t t

L J J L J J

K K T
v t

L J J

  
  

   
 




 

      (6) 

where 60 / (2 )rpmT   and 9.6ampK  . The servo motor 

model parameters are taken from the datasheet of Feedback 
Instruments and presented in Table 1 (Feedback Instruments) 
but moment of inertia lJ  and viscous friction ld  due to the 

load effects of some electrical and mechanical parts on the 
real electromechanical system are determined by trial and 
error using a measured input-output data set and simulating 
the system model. They are given in Table 2. With help of 
these parameters response of the basic motor model gets 
closer to that of the real electromechanical system. Despite 
there still exists a difference between responses of the real 
system and model, it is rejected by a robust controller to be 
designed in the succeeding subsections.  

Table 1. Values of the electromechanical system 
parameters. 

Parameter Value 
Moment of inertia of the motor mJ  0.0000140 kgm2 

Torque constant tK  0.052 Nm/A 

Electromotive force constant bK  0.057 Vs/rad 

Viscous friction of the motor md  0.000001 Nms/rad 

Resistance R  2.5 Ω 
Inductance L  0.0025 mH 

Table 2. Values of the parameters for load effects and 
dead-zone nonlinearity. 

Parameter Value 
Moment of inertia of load lJ  0.0001 kgm2 

Viscous friction of load ld  0.0005 Nms/rad 

Constant slope for dead-zone dm  1 

Constant for dead-zone poff  0.1 V 

Constant for dead-zone noff  0.15 V 

Although the mathematical model of the electromechanical 
system in (6) is linear, the real one is nonlinear due to dead-
zone (static friction), backlash, and other nonlinear elements. 
Static friction is influenced by the mechanical setup of the 
electromechanical system. Dead-zone nonlinearity with

 negligible fast dynamics can be modeled by (Tao et al., 
1994) 

( ( ) ) ( )

( ) ( ( )) 0                    ( )

( ( ) ) ( )

d p p

n p

d n n

m u t off if u t off

v t u t if off u t off

m u t off if u t off

 
   
  

     (7) 

where dm  is the constant slope, noff and poff are constant 

parameters depending on the mechanical properties of the 
electromechanical system. Values of these constants are 
given in Table 2, as well. It is assumed here that the dead-
zone parameters are within known limits. One can rewrite the 
dead-zone model in (7) as (Guo et al., 2012) 

( ) ( ( )) ( ) ( ( ))d dv t u t m u t n u t               (8) 

where ( ( ))dn u t  is dead-zone modelling error and it satisfies 

dn    where max minmax{( ) ,  [( ) ]}d p d nm off m off   

(Zhonghua et al., 2006). Including this dead-zone 
nonlinearity model into (6) one can get 

( ) ( )
( ) [ ] ( ) ( )

( ) ( )

        [ ( ) ( )]
( )

m l m l t b

m l m l

amp t rpm
d d

m l

d d d d R K KR
t t t

L J J L J J

K K T
m u t n t

L J J

  
  

   
 

 


 


       (9) 

Composing of the model with dead-zone nonlinearity, 
unmatched uncertainties, and disturbances, the 
electromechanical system can be modeled as a class of 
nonlinear dynamical system by 

( ) ( )
( ) [ ] ( ) ( )

( ) ( )

        [ ( ) ( )] ( , )
( )

m l m l t b

m l m l

amp t rpm
d d

m l

d d d d R K KR
t t t

L J J L J J

K K T
m u t n t d x t

L J J

  
  

   
 

  


 


    (10) 

where ( , )d x t  is the sum of unmatched uncertainties and 

external disturbances. Taking 1 2[ , ] [ , ]T Tx x   x  as state 

vector, the following general nonlinear dynamical equation is 
obtained: 

1 2

2

( ) ( )

( ) ( , ) ( , ) ( ) ( , )

x t x t

x t f t g t u t d t


  


 x x x

        (11) 

where 0 0( , ) ( , ) ( , )f t f t f t x x x , 0 ( , )f x t is matched 

(parametric) uncertainties with constant parameter  , 

0 2 1

( ) ( )
( , ) [ ] ( ) ( )

( ) ( )
m l m l t b

m l m l

d d d d R K KR
f t x t x t

L J J L J J

  
   

 
x , 

( , )
( )

amp t rpm d

m l

K K T m
g t

L J J



x  is constant and has positive sign, 

( , ) ( ) ( , )
( )
amp t rpm

d
m l

K K T
d t n t d t

L J J
 


x x , and ( , )d t  x ,   is a 

positive constant. 
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3. DESIGN METHODS 

In the following subsections, backstepping control, 
conventional sliding mode control, and backstepping sliding 
mode control proposed for the electromechanical system are 
briefly presented. 

3.1  Backstepping Control Design 

For the backstepping control design, neglecting the sum of 
unmatched uncertainties, external disturbances, and dead-
zone nonlinearity ( ( , )d tx ) let us rewrite the system in (11) 

as follows: 

1 2

2

1

( ) ( )

( ) ( , ) ( , ) ( )

( ) ( )

x t x t

x t f t g t u t

y t x t


 



 x x          (12) 

where 1 2[ , ]Tx xx  is the state; y is output; and u  is the 

control input. The functions f  and g  are smooth in a 

domain of interest and known. It is intended to design a 
tracking control law for the electromechanical system. Let us 
define tracking error 1 1( ) ( ) ( )e t x t r t   where ( )r t  is 

reference trajectory. Derivative of the tracking error with 
respect to time is 1 1 2( ) ( ) ( ) ( ) ( )e t x t r t x t r t       . Starting 

with the first component in (11) one can view 2 ( )x t  as virtual 

input to design the feedback control 2 1 1( ) ( , )x t e r   to 

asymptotically track the reference trajectory. Therefore 
with 2 1 1 1 1( ) ( , ) ( ) ( )x t e r k e t r t      one can get  

1 1 1( ) ( )e t k e t             (13) 

Selecting a smooth and positive definite Lyapunov function 

candidate 2
1 1 1

1
( ) ( )

2
V e e t , one obtains 

1 1 1 1 1 1 1

2
1 1 1

( ) ( ) ( ) ( )( ( ))

        ( ) 0,  ( 0)

V e e t e t e t k e t

k e t e

  

     

 


        (14) 

where 1 0k   

Hence, the origin of 1 1 1( ) ( )e t k e t   is globally asymptotical 

stable. Moreover, it is globally exponentially stable. In order 
to backstep let us use the change of variables 

2 2 1 1 2 1 1( ) ( ) ( , ) ( ) ( ) ( )e t x t e r x t k e t r t       to transform the 

system into the following form (Khalil, 2015) 

1 1 1 2

2
2 1 1 1 2

( ) ( ) ( )

( ) ( ) ( ) ( , ) ( , ) ( ) ( )

e t k e t e t

e t k e t k e t f t g t u t r t

  

     


 x x

         (15) 

Consider a composite Lyapunov function candidate 

2
2 1 1 2

1
( ) ( ) ( )

2
V V e e t e . The derivative of 2V  along the 

trajectories of the system in (15) is 

2 1 1 2 2

2
1 1 1 2 2 1 1

1 2

2 2
1 1 2 1 1 1

1 2

( ) ( ) ( ) ( ) ( )

      ( )[ ( ) ( )] ( )[ ( )

        ( ) ( , ) ( , ) ( ) ( )]

       ( ) ( )[ ( ) ( )

        ( ) ( , ) ( , ) ( ) ( )]

V e t e t e t e t

e t k e t e t e t k e t

k e t f t g t u t r t

k e t e t e t k e t

k e t f t g t u t r t

 

    
   

   
   

  





e

x x

x x

           (15) 

To make 2 ( )V e  negative definite, the bracketed term 

multiplying 2 ( )e t  is set to 2 2 ( )k e t  for 2 0k  . Hence, the 

time derivative of Lyapunov function becomes negative 
definite 2 2

2 1 1 2 2( ) ( ) ( ) 0,  ( 0)V k e t k e t e       e  . For 

stability of the whole system, the state feedback control law 
is selected as follow: 

2
2 2 1 1 1 1 2

1 2 1 1 2 1

1 2 1 1 2 2

1
( ) [ ( ) ( ) ( ) ( )

( , )

         ( , ) ( )]

1
     [ (1 ) ( ) ( ) ( ) ( , )

( , )

        ( )]

1
     { (1 )[ ( ) ( )] ( )[ ( )

( , )

       ( )]

u t k e t e t k e t k e t
g t

f t r t

k k e t k k e t f t
g t

r t

k k x t r t k k x t
g t

r t f

    

 

     



     

 









x

x

x
x

x

( , ) ( )}       t r t x

.(16) 

Thus, the origin of the whole system in (15) is globally 
asymptotical stable. Furthermore, the control law given in 
(17) makes output ( )y t of the system in (12) globally 

asymptotically track the reference trajectory. 

3.2  Sliding Mode Control Design 

Sliding mode control based on discontinuous control laws 
(relays) is an efficient tool to control nonlinear dynamical 
systems with uncertainties (Utkin et al., 2009). In design, 
first, switching surface (sliding manifold) equations are 
chosen according to some performance specifications. 
Afterwards, a discontinuous feedback control law ( )swu t  is 

determined so that the system trajectory would reach this 
surface and remain in its vicinity (Bisztyga et al., 2012). 
Because of motion on the switching surface ( ) 0s t   for 

0t   one can consider additional control law instead of the 
discontinuous one. During sliding mode, setting the 
derivative of ( )s t  with respect to time to zero ( ( ) 0s t  ) the 

so-called equivalent control ( )equ t  is calculated (Utkin et al., 

2009). Consequently, the control law in the sliding mode 
controller design contains both the equivalent control ( )equ t  

and the switching (discontinuous) control ( )swu t  and then 

one has 

( ) ( ) ( )sw equ t u t u t  .          (17) 

In order to design a sliding mode tracking control for the 
electromechanical system in (11) let us first select a sliding 
surface using the tracking error 1( ) ( ) ( ) ( ) ( )e t y t r t x t r t      
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with the output 1( ) ( ) ( )y t t x t   as follows: 

1( ) ( ) ( )s t c e t e t             (18) 

For the switching control ( )swu t  design satisfying reaching 

conditions let us select 21
( ) ( ) 0

2
V s s t   as a Lyapunov 

function candidate. The derivative of V  along the 
trajectories of the system in (11) and (19) is 

1

1

( ( )) ( )
( ( )) ( ) ( )

( )

            ( )[ ( ) ( )]

            ( )[ ( ) ( , ) ( , ) ( ) ( , )

              ( )] ( )sign( ( )) ( ) 0
sw

V s t s t
V s t s t s t

s t t

s t c e t e t

s t c e t f t g t u t d t

r t s t s t s t

 
 

 
 
   

     

 

 



x x x

Z Z

      (19) 

with the switching control law 

( ) sign( ( ))swu t s t Z           (20) 

where 1 2[ ( ) ( )] ( , ) ( , ) ( )

( , )

c x t r t f t d t r t

g t

   


 x x

x
Z , and 

  1,       ( ) 0

sign( )   0,      ( ) 0

1,      ( ) 0

s t

s s t

s t


 
 

. 

Therefore, the system trajectory reaches the sliding surface in 
finite time and remains therein due to the fact that 

( ( )) ( ) 0V s t s t   Z . 

For the equivalent control ( )equ t  design, if external 

disturbances and uncertainties are ignored and the derivative 
of ( )s t  with respect to time is set to zero, one obtains 

1

1
( ) [ ( ) ( , ) ( )]

( , )equ t c e t f t r t
g t

    x
x

        (21) 

Let us consider both the equivalent control ( )equ t  and the 

switching control ( )swu t  to prove stability of the controlled 

system. To this end, let us employ the control law in (18) 
together with the equivalent control ( )equ t  in (22), and 

choose 21
( ) ( ) 0

2
V s s t   as a Lyapunov function candidate. 

Its time derivative is  

1

1 1

( ( )) ( )[ ( ) ( , ) ( , )( ( ) ( ))

             ( , ) ( )]

1
            ( ){ ( ) ( , ) ( , ) [ ( )

( , )

             ( , ) ( )] ( , ) ( ) ( , ) ( )}

          

eq sw

sw

V s t s t c e t f t g t u t u t
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with the switching control law 

1
( ) sign( ( ))

( , )swu t s t
g t

 
x sΚ          (23) 

where ( , )d t   xsΚ . The stability proof of the system is 

ended up with the negative definiteness of Lyapunov function 
V  everywhere except on the manifold ( ) 0s t  . Then, the 

controlled system is asymptotically stable according to 
LaSalle’s invariance principle. 

Sliding mode control suffers the so-called chattering due to 
imperfections in switching devices. One of the various 
methods to reduce chattering is to use a saturation function 
instead of the signum function. In this case, the switching 
control is given by 

1
( ) ( / )

( , )sw s su t sat s
g x t

            (24) 

where 
,            1

( )
( ),   1

sat
sign

  


h h
h

h h
 

3.3  Backstepping Sliding Mode Tracking Control Design 

In this subsection, the above mentioned backstepping control 
and sliding mode control are associated to design a 
backstepping sliding mode control which realizes the robust 
control for the electromechanical system with uncertainties 
and disturbances. Main goal of the controller is to make the 
output (angular velocity) of the system asymptotically track a 
given trajectory despite of uncertainties and disturbances. 
Fig. 2 portraits the proposed backstepping sliding mode 
control system.  

 

Fig. 2. Block diagram of the proposed backstepping sliding 
mode control system. 

Considering again the electromechanical system given in (11) 
with the output 1( ) ( ) ( )y t t x t  , one can write the tracking 

error and its time derivative , respectively, in the first step 
(Liu et al., 2012; Espinoza et al., 2014; Rajendran et al., 
2015) 

1

1

( ) ( ) ( )

( ) ( ) ( )

e t x t r t

e t x t r t

 
   

                        (25) 
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Let us select 2
1

1
( ) ( ) 0,  0

2
V e e t e     as a Lyapunov 

function candidate. The derivative of V  with respect to time 
is 

2

( ( )) ( )
( ( )) ( ) ( ) ( )[ ( ) ( )]

( )

V e t e t
V e t e t e t e t x t r t

e t t

 
   

 
         (26) 

One can view 2 ( )x t  as virtual input to design the feedback 

control 2 ( ) ( , )x t e r   to asymptotically track the reference 

trajectory. With choosing 2 1( ) ( , ) ( ) ( )x t e r e t r t      the 

origin of 1( ) ( )e t e t    is globally exponentially stable since 
2

1 1( ) ( ) 0,  ( 0)V e e t e         where 1 0 . In order to 

backstep let us use the change of variables 

2 2 1( ) ( ) ( , ) ( ) ( ) ( )s t x t e r x t e t r t       to transform the 

system into the following form 

1
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1 1
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Suppose a composite Lyapunov function candidate 

2
2 1

1
( , ) ( )

2
V e s V e s  . The derivative of 2V  along the 

trajectories of the system in (28) is 

2
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where 2 0 and with the state feedback control law 
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where ( , )d t   xbsΚ . Thus, the origin of the whole 

system in (28) is globally asymptotical stable. In addition, the 
control law given in (30) makes output ( )y t of the system in 

(11) globally asymptotically track the reference trajectory. It 
means that 0e   and 0s  as t  . 

4. EXPERIMENTAL APPLICATIONS AND RESULTS 

In order to validate the effectiveness of the proposed 
backstepping sliding mode controller, it is implemented to 
the real electromechanical system described previously in 
section 2. For comparison purposes, the sliding mode 
controller and the backstepping controller designed in the 
foregoing section are also implemented to the real system. In 

the real system, the output angular velocity ( )t  is measured 

by a tachometer. Due to the lack of a sensor to measure the 
acceleration ( )t , the other state variable, it is simply 

obtained by numerical derivative of the velocity instead of 
designing an observer for it. In order to escape high 
measurement noise, a low-pass filter with the transfer 

function of 
100

( )
100fG s

s



 is used. The saturation function 

in (25) rather than the signum function is utilized for the 
switching control ( )swu t  due to its chattering reduction 

property. In view of consistency among the results, the 
controller parameters are selected to be equal 1 1 1c k    and 

2 2k    since they have similar characteristics if one takes a 

closer look at the control laws in (17), (22) together with 
(25), and (30). The parameters bsΚ  and bs  of the BSMC are 

chosen same as those of the SMC ( bs sΚ Κ  and bs s  ), 

respectively. The controllers are tested for different matched 
uncertainty values of 0  , 0.05   , and 0.1    to 
show their behaviors against uncertainties. For all 
experiments, the values of the controller parameters 

1 1 1 600c k   , 2 2 10k   , 63 10 bs sΚ Κ = , and the 

initial conditions 1 2(0) [ , ] [ , ] [0,0]T T Tx x    x  of the 

electromechanical system are used. A step reference 
trajectory of 1250 rpm in magnitude is applied to the control 
systems for all experiments.  

The responses of the controllers to a step reference of 1250 
rpm are shown in Fig. 3a and 3b for the controller parameters  

 

(a) 

 

(b) 

Fig. 3. Experimental results for nominal model with the 
matched uncertainty 0  and 52 10bs s    : (a) Angular 

velocity, (b) Control input. 
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52 10bs s    . In this experiment, the nominal model with 

the matched uncertainty 0   for the electromechanical 
system is assumed. The performance of the BSMC according 
to rise time and settling time is much better than those of the 
BSC and SMC. The BSMC and SMC exhibit almost same 
steady-state error about 10 rpm while BSC does much larger 
about 17 rpm. As can be seen in Fig. 3a, the BSMC is the 
fastest in response. The settling time for the BSMC is 
approximately 0.2 s but those for BSC and SMC are about 
0.4 s. Almost no overshoot is observed for three controllers. 
Input signals of the three controllers converge with different 
speeds as shown in Fig. 3b. The BSMC has a faster control 
signal than the others. Moreover, the BSMC input increases 
higher level than the others in transient regime, staying 
within its bound of 2.5  V. This behavior contributes a faster 

response to the control system.  

Let us now discuss behaviors of the controllers under the 
matched uncertainty 0.05    for the electromechanical 
system. The aim of the experiments is to compare 
performances of the three controllers, the BSC, SMC, and 
BSMC for robustness against model parameter uncertainty. 
Experimental results for the control system with the matched 
uncertainty 0.05    are depicted in Fig. 4 for the 

controller parameters 52 10bs s    . The shorter rise and  

 

(a) 

 

(b) 

Fig. 4. Experimental results for uncertainty 0.05    and 
52 10bs s    : (a) Angular velocity, (b) Control input. 

settling times and smaller steady-state error are obtained from 
the proposed BSMC as compared with the BSC and SMC as 
seen in Fig. 4(a). All controllers do not show overshoot. 
Settling times and steady-state errors are about 0.2 s and 60 
rpm, respectively, for the proposed BSMC, 0.35 s and 110 
rpm, respectively, for the BSC, and 0.4 s and 85 rpm, 
respectively, for the SMC. It is obvious that the BSMC has 

less output variation from trajectory in steady-state compared 
to the BSC and SMC. This ensures that under parametric 
uncertainties the BSMC is more robust than the BSC and 
SMC. It can be observed from Fig. 4(b) that the BSMC 
control law strives to track the reference trajectory more 
closely than those of the BSC and SMC when a parametric 
uncertainty exists. As can be seen from the figure, it is easy 
to understand that the unwanted high frequency chattering 
existing in the control input is considerably less in the cases 
of the BSMC and SMC, and almost same as in the case of the 
BSC because of chattering reduction attribute of the 
saturation function used in switching control laws of the 
BSMC and SMC. From the point of view of the chattering 
free control, the BSMC and SMC compete against the BSC 
when the saturation function is used. 

The last experiment is done to be able to make a more precise 
remark on robustness of the proposed control system. In 
order to check robustness and transient speed of the control 
system, the parametric uncertainty constant  is set to 0.1  
for more uncertainties. Thus, nominal model uncertainty is 
increased by 10 percent. In this case, behaviors of the 
controllers become more pronounced as is shown in Fig. 5 
for the controller parameters 52 10bs s    . The steady-

state errors are approximately 100 rpm, 150 rpm, and 225 
rpm for the BSMC, SMC, and BSC, respectively, as seen in 
Fig. 5(a). The settling times are about 0.2 s, 0.4 s, and 0.5 s 
for the BSMC, BSC, and SMC, respectively. The 
experimental results demonstrate no overshoot phenomenon  

 

(a) 

 

(b) 

Fig. 5. Experimental results for uncertainty 0.1    and 
52 10bs s    : (a) Angular velocity, (b) Control input. 

for the three controllers. From Fig. 5(b), it is not surprising 
that the control signals exhibit similar behaviors to those in 
the previously mentioned experiments. It is clear that the 
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control signals of the three controllers are almost smooth 
without chattering. Nevertheless, the BSMC control law 
provides faster and larger control signal than the other two 
controllers in transient and steady-state conditions. 

As seen in Figs. 4 and 5, there exists almost no chattering, yet 
the control systems cannot track exactly the reference 
trajectory because of parametric uncertainty although they are 
stable. Nevertheless, precise tracking can be accomplished by 
adjusting the switching action of the BSMC and SMC. But it 
is not possible to do so for the BSC since it has no switching 
control part. Let us improve tracking error of the BSMC and 
SMC setting the controller parameters 42 10bs s     for 

uncertainty 0.05   and 32 10bs s     for uncertainty 

0.1   . The results are shown in Figs. 6 and 7. From the 
figures one can observe that the less tracking error for the 
control system with more uncertainty the more chattering. 
These tests demonstrate that robustness of the nonlinear plant 
under sliding mode control with respect to uncertainties and 
disturbances is improved at the cost of chattering in these 
practical situations. As seen Figs. 6(a) and 7(a) the BSMC 
and SMC closely track the reference trajectory but the BSC 
does not. From Figs. 6(b) and 7(b) one can see that the 
BSMC and SMC produce similar chattering effect to make 
the electromechanical system output track the reference 
trajectory. This indicates the robustness of the BSMC in the 
existence of uncertainty and disturbance. The BSMC is not 
only faster in response than the BSC and SMC but also more 
robust than the BSC. This is evidenced by the fact that it 
takes the robustness and disturbance rejection properties of  

 

(a) 

 

(b) 

Fig. 6. Experimental results for uncertainty 0.05    and 
42 10bs s    : (a) Angular velocity, (b) Control input. 

 

(a) 

 

(b) 

Fig. 7. Experimental results for uncertainty 0.1    and 
32 10bs s    : (a) Angular velocity, (b) Control input. 

the SMC and fast response property of the BSC at the same 
time. It is clear that the main difference between the BSMC 
and the SMC is that the BSMC has tracking error term in its 
control law but the SMC does not. In other words, their 
equivalent control parts are different while their switching 
control parts are the same. It is easy to say that the BSMC 
differs from the BSC as to switching control part.  

5. CONCLUSION 

In this paper, backstepping sliding mode controller (BSMC) 
for an electromechanical system is proposed in order to 
resolve the difficulties in nonlinearity, uncertainty and 
external disturbance affecting it. Comparisons with different 
controllers which are conventional sliding mode controller 
(SMC) and backstepping controller (BSC) for angular 
velocity control are presented. Furthermore, stability of the 
control system is verified by Lyapunov direct (second) 
method.  

In order to show effectiveness of the three controllers, they 
are implemented on the real electromechanical system. Some 
experiments are carried out to test robustness of the 
controllers for different uncertainty parameter values. 
According to the experimental results the proposed BSMC 
offers an improvement in steady-state error compared to the 
BSC and SMC. The BSMC gives satisfactory transient 
performance in terms of rise time and settling time, 
eliminates overshoot, and keeps steady-state error as 
minimum as possible. Both a faster transient response and a 
smaller steady state error for trajectory tracking are obtained 
by the BSMC. Furthermore, the BSMC rejects disturbance 
and improves robustness against parametric uncertainty. 
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The obtained experimental results demonstrate that the 
BSMC is simply implemented, and its performance and 
robustness are better than the conventional SMC and BSC. 
From the experimental results, it is concluded that the control 
performance and robustness of the electromechanical system 
is considerably enhanced with the BSMC. 
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