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Abstract: In this paper a neural network based Switched Mode Power Supply (SMPS) of 175W rating is 
designed with ±5V and ±12V employing various converter topologies and simulated in MATLAB to  
demonstrate improved power quality in terms of low total harmonic distortion of supply current, high 
power factor, distortion factor and displacement factor. The performance of SMPS is analyzed based on 
input power quality, output voltage regulation and transient response under varying source and load 
conditions. Comparison of performances with neural network and conventional controllers highlight the 
neural network control. The converter with superior performance is adopted for developing hardware. 
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1. INTRODUCTION 

Switched Mode Power Supplies (SMPS), Uninterruptible 
Power Supplies (UPS), battery chargers, electronic ballasts, 
Adjustable Speed Drives (ASDs) etc., extensively utilize the 
solid state AC-DC converters with High Frequency 
Transformer (HFT) isolation (Moore and Portugues, 2003). 
In conventional topology, the AC-DC converters are 
designed with two stages.  The first stage of the topology 
incorporates Diode Bridge Rectifier (DBR) which rectifies 
input AC voltage into an uncontrolled DC voltage. The 
second stage of the circuit constitutes, a high frequency 
isolation transformer and a DC-DC converter which is 
cascaded with first stage.  The two stage AC-DC converters 
introduce Power Quality (PQ) problems and increase the size 
of the DC capacitor in the first stage (Carlos et al., 2010). The 
major power quality issues are harmonic current injection 
into the AC mains, distortion of source voltage and decrease 
in power factor (PF) (Jingquan et al., 2006). Due to increased 
application of AC-DC converters, the researchers focused on 
the development of single stage converters which mitigate the 
PQ problems, improve the efficiency and reduce the overall 
cost of the system by employing less number of components 
(Shika Singh et al., 2015; Singh et al., 2003; Singh et al., 
2011; Woo and Joo, 2011). The proposed single stage 
topology of AC-DC converter with HFT isolation overcomes 
all the drawbacks of two-stage converters and improves the 
PQ. This paper deals with the performance analysis of 
Artificial Neural Network (ANN) based Multiple Output 
Switched Mode Power Supply (MOSMPS) involving various 
converter topologies with HFT isolation. Various converter 
topologies like forward, sepic, cuk and flyback  are designed 
and implemented with multiple outputs of ± 12 V and ± 5 V 
for a load rating of  175W mainly used in the  PC power 
supply application. The HFT has a single primary winding 
and multiple number of secondary windings to accomplish 
four different outputs.  The closed loop control employs a NN

 based weighted error approach for power quality 
improvement at the source side to meet the IEEE 519 and 
IEC 61000-3-2 standards and for output voltage regulation. 
The modeling and performance analysis of various converter 
topologies under varying source and load conditions are 
performed in MATLAB Simulink environment. The 
performance of various converter topologies are evaluated 
based on the PQ indices such as Total Harmonic Distortion 
(THD), Power factor, Displacement Power Factor (DPF) and 
Distortion Factor (DF) and output voltage regulation in terms 
of voltage ripple. The performance of the MOSMPS with 
neural network controller is compared with that of MOSMPS 
with conventional controller. The converter topology which 
performs better in all aspects of power quality indices and 
output voltage regulation is chosen and the prototype model 
is developed. The proposed NN based control strategy is 
implemented in hardware using FPGA processor. The results 
of the developed prototype model are compared with 
simulation results confirming the validity of the design. 

2. SYSTEM CONFIGURATION 

The system configuration of SMPS with multiple isolated 
outputs is shown in Fig. 1. A DBR is employed at the input 
side of MOSMPS which rectifies the sinusoidal voltage Vin  
of the ac mains.  

 

Fig. 1. System Configuration of MOSMPS. 
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The unregulated output of the DBR is fed to a DC-DC 
converter in order to regulate the DC voltage. The regulated 
DC voltage is applied to a HFT, which helps in the isolation 
of various multiple DC outputs and voltage scaling. The four 
multiple output voltages V01, V02, V03 and V04 of MOSMPS 
are derived from the secondary windings of HFT. The 
performance of converter in terms of output voltage 
regulation and power quality improvement at the input side 
depends on the choice of the control strategy. 

2.1 Forward Converter 

Fig. 2 depicts the forward converter configuration of 
MOSMPS with NN based weighted error control approach. 
In this topology the primary side of the HFT is connected to, 
the components of DBR, Li, Ci and diodes (Di1 and Di2).  The 
secondary windings of the HFT are connected to inductors 
Lo1 thru Lo4, diodes Do1 thru Do8, and capacitors Co1 thru C04. 
The value of capacitor Ci is chosen as large as possible in 
order to maintain the ripple content of voltage as small as 
possible (Chow et al., 1998). 

 

Fig. 2. Forward Converter based MOSMPS. 

The second order harmonic voltage at the output side is 
filtered out using the capacitors C01 to C04. The diode Di2 
becomes forward biased and Di1 becomes reverse biased 
when the switch S is turned ON.  Under OFF condition of the 
switch, the energy is transferred to the loads through Diode 
Di1. The converter employs Metal Oxide Semiconductor 
Field Effect Transistor (MOSFET) as switching device. This 
topology results in reduction in the, number of components, 
cost, losses and size of the inductors.  

2.2 Sepic  Converter 

Fig. 3 depicts the SEPIC converter configuration of 
MOSMPS with NN based weighted error control. The input 
inductor Li acts as energy storage element, which stores 
energy when the switch S is turned ON through the AC 
source mains (Buso et al., 2000). When the switch is turned 
OFF the load receives energy from the inductor and it also 
charges the capacitor C1. DC capacitors Co1 thru Co4 act as 
filter capacitors for filtering out the ripples present in DC 
output voltages. The SEPIC converter has improved PQ 
performance in the input side. 

 

Fig. 3. Sepic Converter based MOSMPS. 

2.3 Cuk Converter 

Fig. 4 depicts the cuk converter configuration of MOSMPS 
with NN based weighted error control. Capacitor C10 acts as 
energy transfer capacitor on the primary side and capacitors 
C11 thru C14 act as energy transfer capacitors on the 
secondary side of the HFT for multiple output voltages (Buso 
et al., 2000). The inductors with appropriate value also aid 
the energy transfer both in primary and secondary sides. The 
primary side capacitor C10 gets charged when the switch S is 
turned OFF which in turn makes the diodes (D1, D2, D3, and 
D4) present on the secondary side to be forward biased. 
Under ON condition of the switch, the diodes on the 
secondary side become reverse biased due to the voltage 
across the capacitor. Thus the energy stored in the capacitor 
is discharged to the load via the switch S. 

  

Fig. 4. Cuk Converter based MOSMPS. 

2.4 Flyback  Converter 

Fig. 5 depicts the fly back converter configuration of 
MOSMPS with NN based weighted error control. The 
inductor stores energy when the switch S is in ON condition 
and discharges the energy when it is in OFF condition. Under 
charging condition, the diodes at the secondary windings of 
HFT are under reverse biased condition  and during 
discharging condition the diodes become forward biased, thus 
transferring the energy stored in the inductors to pass on to 
the load. Duty ratio plays an important role, as the energy 
drawn by the load should be equal to the energy stored in the 
inductor Lm (Zhao et al., 2002).  
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Fig. 5. Flyback Converter based MOSMPS. 

3. CONTROL STRATEGY 

The power quality improvement at the input side during 
steady state and transient conditions depend upon the choice 
of control strategy used to regulate the output DC voltages in 
a MOSMPS. In this paper, neural network based weighted 
error control approach is proposed for PQ improvement in 
input side and output voltage regulation. In the proposed 
control approach depicted in Fig. 6, the sensed individual 
output voltage errors are summed up using a summer with a 
suitable weighting factor multiplied for each output voltage 
error. The output of the summer is fed as an input to the 
neural network block. The neural network controller which 
replaces the PI controller of conventional control strategy 
computes the magnitude of the reference current Imag. The 
weighting factors are responsible for computing the variation 
in the duty ratio based on the change in individual output. It 
also represents the impact of load variations in output 
terminals on the present load condition. The weighting factor 
for output voltages Vo1 to Vo4 are 0.528, 0.42, 0.009 and 0.06 
respectively. In order to attain improved PQ at the AC mains 
in terms of power factor and % THD of source current, the 
source voltage is sensed from the input side and converted 
into a sine wave of unit amplitude. The reference current for 
the DC-DC converter is calculated by multiplying the 
magnitude of the input AC mains supply current Imag and unit 
amplitude of sine wave. The triggering pulse for the 
MOSFET switch in DC-DC converter is generated by 
comparing the reference current calculated and the actual 
sensed current from the ac mains.  

4. DESIGN AND ARCHITECTURE OF ANN  

The main component of ANN is neuron which is formed by 
the interconnection of non-linear information processing 
devices. At present in many power electronic applications, 
ANN is preferred because of its efficient computational tool. 
The performance of the AC-DC converter mainly depends 
upon the choice of the controller. The primary requirements 
of the controller are i) high dynamic response ii) less 
computation time for the calculation of reference current and 
iii) high accuracy in sensing the signals and calculation 
(Sabha Raj et al., 2014; Jayachandran and Murali, 2016).  
The performance of conventional controller is not satisfactory 
when compared to ANN technique under varying source and 
load conditions. Issues of PI controller reported in the 
literature include: i)Tuning the PI controller and its gains is 
hard at large sampling time ii) Instability in low voltage 

applications and iii)Fluctuating dc link voltage(Jayachandran 
and Murali, 2015 b; Shuhui Li et al., 2014). The propounded 
ANN controller is robust and does not require a precise 
mathematical model. It expedites classification of real time 
data and processing and accommodates unpredictability due 
to implied non-linear modelling and built in function.  Due to 
its adaptability and improved efficiency, ANN controllers are 
the choice of most of the researchers (Jayachandran and 
Murali, 2015 a,b). ANN controllers analyse the DC output 
voltages and source current continuously, adapt to the 
continuous observation and adjust controller parameters 
accordingly, for DC output voltage regulation and input 
power factor improvement. The ANN controller is trained to 
obtain lower values of settling time, steady state error and 
peak overshoot. In this paper, Back Propagation Neural 
Network (BPNN) is the proposed NN architecture. Input 
layer, hidden layer and output layer constitute the architecture 
of NN. The weighting factor of each of the output is 
multiplied with the respective output error, and their sum is 
considered as input vector which is fed to the input layer. The 
output of the input layer is transmitted to the consecutive 
hidden layer and then to the output layer through weighted 
connections. Each neuron in the output and hidden layers 
transfers the result through a non-linear activation function.  

Table 1. Training Performance of NN Architecture. 

Architecture MSE R2 
1-10-1 0.03152 0.9907 
1-12-1 0.01451 0.9908 
1-14-1 0.01143 0.9939 
1-16-1 0.00859 0.9931 
1-18-1 0.00792 0.9940 
1-20-1 0.00109 0.9991 
1-22-1 0.00227 0.9979 
1-24-1 0.00393 0.9971 
1-26-1 0.00571 0.9958 

 

The number of input vectors fed to the input layer is defined 
by the problem and the number of neurons in the output layer 
is based on the output of the problem. The number and size of 
the hidden layers mainly depend upon the problem defined. 
The performance error and training period decide the 
optimum choice of number of neurons in the hidden layer. 
Fig. 7 depicts the flow chart of ANN modeling and Fig. 8 
represents the BPNN architecture. The parameter variation in 
the proposed control strategy is mainly non-linear in nature. 
To solve this the activation function selected are  ‘tansig’ 
(tangent sigmoid function)  for neurons in the input and 
hidden layers and Purelin (Linear activation function) for 
neurons in the output layers. ‘Dotprod’ and ‘Adaptwb’ are 
the functions adopted to adjust and tune respectively network 
weights and biases. Levenberg-Marquardt (LM) BP training 
algorithm ‘trainlm’  is found to be suitable for the specified 
problem considering the Mean Squared Error (MSE) for the 
L index values under varying source and load conditions, 
training time and overall accuracy. Table 1 depicts the 
training performance of NN architecture of forward converter 
based MOSMPS. It is inferred from Table 1 that, the number
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Fig. 6. Schematic Diagram of Neural Network based Weighted Error Approach.

of neurons in the hidden layer and MSE are not directly 
related in the training process. The highest value of R2 and 
minimum value of MSE are achieved when the number of 
neurons is 20 in the hidden layer. The details of ANN 
parameters of various converter topologies for training in 
MATLAB are listed in Table 2. The four axes shown in Fig. 
9 represent training, validation, testing and total response of 
the data for NN control strategy in forward converter. The 
dotted line in each axis represents the perfect results where 
outputs = targets. The solid line represents the best fit linear 
regression line between outputs and targets. The R value is an 
indication of the relationship between the outputs and targets. 
It is the correlation coefficient between the outputs and 
targets and is calculated using Eq. 1. If R=1, it indicates that 
there is an exact linear relationship between outputs and 
targets. If R is zero, then there is no linear relationship 
between outputs and targets. The output tracks the target very 
well for training, testing and validation and the R-value is 
over 0.96 for the total response. Fig. 10 depicts the 
performance curve of NN control for forward converter and it 
is inferred that error decreases as the number of epochs 
increases and converges to a value of 0.00109 after 1000 
epochs to reach the goal. 
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iO  and iT  is the output and targeted value of the ANN for

n -th data set and N denotes number of data set. 

 

Fig. 7. Flow chart of ANN modelling. 

 

Fig. 8. Proposed BPNN architecture. 

                 

 

Fig. 9. (a)  Training (b) Validation (c) Testing (d) Total 
response. 

From the performance curve it can be inferred that, the results 
are reasonable because of the following considerations: i) 
The final mean square error is small, ii) The test set error and 
validation set error has similar characteristics and iii) No 
significant over fitting has occurred. The procedure followed 
in neural network formulation for all other converters 
remains the same. 
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Fig. 10. The performance curve of NN Control for Forward 
Converter. 

Table 2. ANN parameters of various converter topologies. 

Parameter 
Values 

1* 2* 3* 4* 

No of Training samples 1000 1000 1000 1000 

No of Testing samples 200 200 200 200 

Input layer neurons 1 1 1 1 

Hidden layer neurons 20 24 26 30 

Output layer neurons 1 1 1 1 

Training function LM Algorithm (trainlm) 

Performance function Mean squared error (MSE) 
( input /hidden/output)  

Activation  function 
tansig/ tansig/ purelin 

Maximum  no. of epochs 1000 920 210 920 

Rate of Learning  0.05 0.05 0.05 0.05 

Performance goal 1e-3 

Normalized range -1 to 1 

Accuracy of testing in % 99.1 99.23 99.21 99.23 

1*- Forward converter, 2*-Sepic converter, 3*-Cuk converter 
& 4*-Flyback converter.  

5. SIMULATION RESULTS AND DISCUSSIONS  

To compare the performance of the multiple output SMPS of 
175 W rating with different converter configurations, they are 
modeled as per the parameters specified in Table 3 and 
simulated using MATLAB /Simulink software. Power quality 
improvement at the input ac mains and output voltage 
regulations are achieved using the neural network controller.  
The simulation of the neural network based multi output 
SMPS with different converter configurations are carried out 
for validating their performance under i)steady state 
condition, ii) variable supply voltage and iii) varying loads.  
To validate the performance of the multiple output SMPS 
under varying source condition the source voltage is varied 
between 170V and 250V RMS and to highlight the 
performance under varying load condition the load at output 
terminal 2(Vo2) is increased from 50% to 100% at 0.5s of the 
simulation period.  

Tables 4 and 5 illustrate, the power quality indices of 
MOSMPS in terms of %THD of the supply current, DF, 
DPF, PF at the supply side and output voltage ripple for all 
the four terminals with NN and conventional controller, at 
full load and 50% load condition respectively. Table 6 reports 

the comparison of performance of SMPS at full load with 
neural network and conventional controllers in terms of 
settling time, overshoot and undershoot of the output voltage 
at terminal 1. 

Table 3. Parameters of MOSMPS. 

Sl.No. Parameters Values 
1. Supply  voltage Vin 170-250 V RMS 
2. Switching frequency fs 50 kHz 
3. Output voltage V01/Io1 12 V/6 A 
4. Output voltage V02/Io2 5 V/18 A 
5. Output voltage V03/Io3 -5 V/0.3 A 
6. Output voltage V04/Io4 -12 V/0.8 A 
7. Output power  P0 175 W 

5.1 Performance of forward converter based MOSMPS with 
NN controller  

V01= +12 V

V02= +5 V

V03= -5 V

V04= -12 V

Output Voltage Waveforms

 

100% load condition

50% load condition Load change from
50% to 100%

Io1=6A

Io2=18A

Io4=0.8A
Io3=0.3A

Output Current Wave forms

 

 
THD= 3.5%

 
Fig. 11. Waveforms of forward converter based MOSMPS 
with Vin = 220V.Traces (a) Output voltages (V) (b) Output 
currents (A), (c) Vin/100 (V) and Iin (A), (d) %THD of Iin. 

Fig.11,12 and 13 depict the traces of regulated multiple 
output voltages, output currents,  supply voltage and current  
with load variation and %THD of Iin for supply voltages 
220V, 250V and 170V respectively. The output voltages are 
well regulated by the neural network controller even under 
load variation at terminal 2 from 50% to 100% at 0.5s. From 
the source voltage and current waveforms for Vin= 220V, it is 
evident that supply current drawn from the mains is 
sinusoidal and in phase with the supply voltage thereby 
maintaining the power factor nearly unity. The values of DF, 
DPF and PF are 0.996, 1.00 and 0.996 respectively. The THD 
of the supply current is maintained at 3.5%. From the 
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simulation results tabulated in Table 4 it is explicit that PF 
and THD achieved using conventional controller are 0.86 and 
4.96% and this verifies the superior performance of the NN 
controller. Simulation results tabulated in Table 5 for light 
load condition also proves the efficacy of the proposed 
controller. From the traces for Vin= 250V,  it is evident that, 
for increased supply voltage and load variation in terminal 2 
at 0.5s, the neural network controller is able to, regulate the 
output voltages and maintain the supply current sinusoidal 
and in phase with the supply voltage. The values of DF, DPF 
and PF are 0.994, 1.00 and 0.994 respectively. The THD of 
the supply current is 4.33%. For decreased supply voltage of 
Vin= 170V and load variation in terminal 2 at 0.5s, the neural 
network controller is able to, regulate the output voltages and 
maintain the supply current sinusoidal and in phase with the 
supply voltage. The values of DF, DPF and PF are 0.998, 
1.00 and 0.998 respectively. The THD of the supply current 
is 2.15%. Forward converter based SMPS with NN controller 
takes 0.19s to attain steady state and the overshoot of Vo1 is 
1.85% during transient response. Table 6 justifies that 
transient response of the MOSMPS with NN controller is 
better than that of MOSMPS with conventional controller.   
For all cases of Vin the supply current THD is maintained 
below the limits of PQ standards. 

V01= +12 V

V02= +5 V

V03= -5 V

V04= -12 V

Output Voltage Waveforms

 

100% load condition

50% load condition Load change from
50% to 100%

Io1=6A

Io2=18A

Io4=0.8A
Io3=0.3A

Output Current Wave forms

 

 

THD=4.33%

 

Fig. 12. Waveforms of forward converter based MOSMPS 
with Vin = 250V. Traces (a) Output voltages (V) (b) Output 
currents (A), (c) Vin/100 (V) and  Iin (A),  (d) %THD of Iin. 

 

V01= +12 V

V02= +5 V

V03= -5 V

V04= -12 V

Output Voltage Waveforms

 

100% load condition

50% load condition Load change from
50% to 100%

Io1=6A

Io2=18A

Io4=0.8A
Io3=0.3A

Output Current Wave forms

 

 

THD=2.15%

 

Fig. 13. Waveforms of forward converter  based MOSMPS 
with Vin = 170V. Traces (a) Output voltages (V) (b) Output 
currents (A), (c) Vin/100 (V) and  Iin(A), (d) %THD of Iin. 

5.2 Performance of sepic converter based MOSMPS with NN 
controller  

Fig. 14 (a)-(c) depict the traces of regulated multiple output 
voltages for supply voltages 220V, 250V and 170V 
respectively. The output voltages are well regulated by the 
neural network controller. Supply currents drawn from the 
mains are sinusoidal and in phase with the supply voltage 
thereby maintaining the power factor nearly unity even under 
supply voltage variation from 170V to 250V. THD of the 
supply currents are 6.3%, 7.45% and 5.3 % and PF at the 
supply side are 0.976, 0.973 and 0.977 when the supply 
voltage is 220V, 250V and 170V respectively. Simulation 
results tabulated in Table 4 depicts that PF and THD 
achieved using conventional controller at Vin=220V are 0.81 
and 7.2% and this verifies the superior performance of the 
NN controller. Simulation results tabulated in Table 5 for 
light load condition also proves the efficacy of the proposed 
controller. Sepic converter based SMPS takes 0.09s to attain 
steady state. When compared to forward converter based 
SMPS, this SMPS takes lesser time to attain steady state. 
Sepic converter based SMPS has higher THD of source 
current for all the three cases of supply voltage when 
compared to forward converter based SMPS. For all the three 
cases of supply voltage THD of source currents do not satisfy 
the limit set by the standards IEC 61000-3-2. The overshoot 
of Vo1 is 2.2% during transient response. Table 6 proves that 
transient response of the MOSMPS with NN controller is 
better than that of MOSMPS with conventional controller. 
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Fig. 14. Output voltages (V) of sepic converter based 
MOSMPS at  (a) Vin = 220V (b) Vin = 250V (c) Vin = 170V 

5.3 Performance of cuk converter based MOSMPS with NN 
controller  

Fig. 15 (a)-(c) depict the traces of regulated multiple output 
voltages for supply voltages 220V, 250V and 170V 
respectively. The output voltages are well regulated by the 
neural network controller. THD of the supply currents are 
4.6%, 4.9% and 3.9 % and PF at the supply side are 0.976, 
0.975 and 0.978 when the supply voltages are 220V, 250V 
and 170V respectively. Supply currents drawn from the 
mains are sinusoidal and in phase with the supply voltage 
thereby maintaining the power factor nearly unity when the 
supply voltage is varied from 170V to 250V.  

V01= +12 V
V02= +5 V

V03= -5 V

V04= -12 V

 

V01= +12 V
V02= +5 V

V03= -5 V

V04= -12 V

V01= +12 V
V02= +5 V

V03= -5 V

V04= -12 V

 

Fig. 15 Output voltages (V) of  cuk converter based 
MOSMPS at  (a) Vin = 220V (b) Vin = 250V (c) Vin = 170V 

From the simulation results mentioned in Table 4 it is 
obvious that PF and THD achieved using conventional 

controller are 0.81 and 6.4% at Vin=220V and this verifies the 
superior performance of the NN controller. Simulation results 
tabulated in Table 5 for light load condition also proves the 
efficacy of the proposed controller.  Cuk converter based 
SMPS takes 0.23s to attain steady state. When compared to 
forward and sepic converter based SMPS, this SMPS takes 
more time to attain steady state. Cuk converter based SMPS 
has lower THD of source current for all the three cases of 
supply voltage when compared to sepic converter based 
SMPS. For all the three cases of supply voltage THD of 
source currents satisfy the limit set by the standards 
IEC61000-3-2. The overshoot of Vo1 is 2.2% during transient 
response. Performance comparisons listed in Table 6 
demonstrate that transient response of the MOSMPS with NN 
controller is better than that of MOSMPS with conventional 
controller. 

5.4 Performance of flyback converter based MOSMPS with 
NN controller  

V01= +12 V

V02= +5 V

V03= -5 V
V04= -12 V

Output Voltage Waveforms

V01= +12 V

V02= +5 V

V03= -5 V
V04= -12 V

Output Voltage Waveforms

V01= +12 V

V02= +5 V

V03= -5 V
V04= -12 V

Output Voltage Waveforms

 

Fig. 16 Output voltages (V) of flyback converter based 
MOSMPS at  (a) Vin = 220V (b) Vin = 250V (c) Vin = 170V 

Fig. 16 (a)-(c) depict the traces of regulated multiple output 
voltages for supply voltages 220V, 250V and 170V 
respectively. The output voltages are well regulated by the 
neural network controller. Supply currents drawn from the 
mains are sinusoidal and in phase with the supply voltage 
thereby maintaining the power factor nearly unity when the 
supply voltage is varied from 170V to 250V. THD of the 
supply currents are 5.2%, 6.3% and 4.96 % and PF at the 
supply side are 0.956, 0.953 and 0.9576 when the supply 
voltages are 220V, 250V and 170V respectively. From the 
simulation results tabulated in Table 4 it is explicit that PF 
and THD achieved using conventional controller are 0.79 and 
7.8% at Vin=220V and this verifies the superior performance 
of the NN controller. Simulation results tabulated in Table 5 
for light load condition also proves the efficacy of the 
proposed controller. Flyback converter based SMPS takes 
0.24s to attain steady state. Flyback converter based SMPS 
takes more time to attain steady state when compared to other 
converter based SMPS. Flyback converter based SMPS has 
lower THD of source current for all the three cases of supply 
voltage when compared to sepic converter based SMPS but 
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Table 4.  Parameter values under different supply voltages and 100% load condition at load terminals. 

Converter 
topology 

Supply 
Voltage 

(V) 

DF DPF PF 
 

% THD 
of Iin 

Output voltage ripple 

1* 2* 1* 2* V01 

(%) 
V02 

(%) 
V03 

(%) 
V04 

(%) 
Forward 170 0.998 1.00 0.998 0.84 2.15 3.87 1.6 1.9 1.3 1.0 

220 0.996 1.00 0.996 0.86 3.5 4.96 
250 0.994 1.00 0.994 0.82 4.33 5.66 

Sepic 170 0.987 0.99 0.977 0.8 5.3 6.5 1.9 2.1 1.8 1.2 
220 0.986 0.99 0.976 0.81 6.3 7.2 
250 0.983 0.99 0.973 0.84 7.45 8.9 

Cuk 170 0.988 0.99 0.978 0.77 3.9 5.5 1.8 2.3 1.6 1.6 
220 0.986 0.99 0.976 0.81 4.6 6.4 
250 0.985 0.99 0.975 0.82 4.9 8.97 

Flyback 170 0.987 0.97 0.957 0.7 4.96 6.30 2.2 2.0 1.6 1.3 
220 0.986 0.97 0.956 0.79 5.2 7.8 
250 0.983 0.97 0.953 0.84 6.3 10.56 

Table 5.  Parameter values under different supply voltages and 50% load condition at load terminal 2. 

Converter 
topology 

Supply 
Voltage 

(V) 

DF DPF PF 
 

% THD 
of Iin 

Output voltage ripple 

1* 2* 1* 2* V01 

(%) 
V02 

(%) 
V03 

(%) 
V04 

(%) 
Forward 170 0.998 0.99 0.988 0.75 4.36 5.86 1.3 1.5 1.2 1.0 

220 0.996 0.99 0.986 0.78 5.00 7.07 
250 0.994 0.99 0.984 0.80 6.23 9.54 

Sepic 170 0.985 0.99 0.975 0.81 5.1 6.9 2.3 2.1 1.6 1 
220 0.984 0.99 0.974 0.79 6.85 7.3 
250 0.983 0.99 0.973 0.76 7.63 9.2

Cuk 170 0.987 0.99 0.977 0.76 4.1 6.2 0.9 1.3 1.2 1.2 
220 0.983 0.99 0.973 0.83 5.3 7.8 
250 0.981 0.99 0.971 0.80 6.8 9.3 

Flyback 170 0.988 0.97 0.958 0.72 5.2 7.5 2.0 1.8 1.4 1.2 
220 0.986 0.97 0.956 0.73 6.4 7.9 
250 0.984 0.97 0.954 0.82 7.1 9.32 

Table 6.  Comparison of performance of SMPS at rated voltage with neural network and conventional controllers. 

Converter 
topology 

Power 
Density 

Cost Settling  
Time (s) 

Transient Response of 
Vo1with NN Control 

Transient Response of 
Vo1with  Conventional 

Control 
1* 2* Overshoot 

(%) 
Undershoot 

(%) 
Overshoot 

(%) 
Undershoot 

(%) 
Forward low medium 0.19 0.23 1.85 2.00 2.25 2.32 

Sepic medium medium 0.09 0.14 2.2 2.34 2.9 2.83 
Cuk medium Medium 0.23 0.25 2.2 2.3 2.9 2.67 

Flyback low Low 0.24 0.26 2.3 2.52 2.85 2.86 

1*-NN Controller, 2*-Conventional Controller 

THD values of supply current do not satisfy the limit set by 
the standard IEC 61000-3-2. The overshoot of Vo1 is 2.3% 
during transient response. Performance comparisons listed in 
Table 6 demonstrate that transient response of the MOSMPS 
with NN controller is better than that of MOSMPS with 
conventional controller.  

Inference: When the converter topologies for MOSMPS are 
compared based on their performances tabulated in Tables 
4,5 and 6, it can be concluded that forward converter based 
MOSMPS with neural network controller performs better 

compared to other converter topologies in the following 
aspects: i)The output voltages are well regulated with lower 
values of output voltage ripple for all the output voltages 
under varying load conditions. ii) The supply current drawn 
is sinusoidal and in phase with the supply voltage with PF 
value nearly unity. When the supply voltage is 220V, the 
values of DF, DPF and PF are 0.996, 1.00 and 0.996 
respectively. NN based forward converter has higher values 
of DF, DPF and PF when compared to other converter 
topologies under varying source and load conditions. iii) 
THD of the source current is lesser when compared to other 
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converter topologies under varying source and load 
conditions. The THD of the source currents satisfy the limit 
set by the IEEE 519 and IEC 61000-3-2 standards even under 
varying source and load conditions. iv) The % overshoot and 
undershoot of output voltage at terminal 1(Vo1) are lesser for 
forward converter based MOSMPS when compared to other 
converter topologies. v) The settling time of forward 
converter based MOSMPS is lesser when compared to other 
converter topologies like cuk and flyback. The superior 
performance of the forward converter based MOSMPS with 
neural network controller can also be inferred from Fig. 17, 
18 and 19. Fig. 17 shows the comparison of % THD of Iin for 
various converter topologies and supply voltage conditions 
with 100% and 50% loads at terminal 2. The %THD of Iin is 
lesser in all the converter topologies with NN controller when 
compared to conventional controller. Fig. 18 shows the 
comparison of input PF for various converter topologies at 
Vin=220 V with 100% and 50% load at terminal 2 and Fig. 19 
shows comparison of settling time, % overshoot and % 
undershoot of Vo1 at Vin=220 V. In terms of PF, settling time, 
% overshoot and %undershoot the performance of MOSMPS 
with NN controller is superior when compared to 
conventional controller.  

 

 

Fig. 17. Comparison of %THD of source current Iin. (a) 
100% load condition (b) 50% load condition. 

 

 

Fig. 18. Comparison of PF at Vin=220 V (a) 100% load 
condition (b) 50% load condition.  

 

 
 

 

Fig. 19. Comparison of transient response of Vo1 at Vin = 
220 V. (a) settling time (s) (b) % overshoot (c) %undershoot. 

6. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Based on the simulation results, it is inferred that forward 
converter proves to be superior to other converter topologies 
of MOSMPS. Thus for hardware set up forward converter 
configuration is chosen. The design and simulated 
performance of the proposed NN controlled forward 
converter based MOSMPS are validated with the help of 
developed hardware. The results obtained from the developed 
hardware are compared with the simulation results to verify 
its performance in terms of power quality improvement and 
output voltage regulation. The proposed control strategy is 
implemented using FPGA processor (Spartan-6). A 50 kHz 
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switching frequency is adopted to reduce the size of the 
components and to have effective control of the switch. The 
isolation between the control circuit and power circuit is 
provided by means of IC TLP250. Output voltages are sensed 
using HCPL 7840. Fig. 20 shows the photograph of the 
developed hardware. The test results are recorded with the 
help of power analyser Yokogawa WT 1800 and Digital 
Storage Oscilloscope (DSO).    

Power Quality
Analyzer DSO

1 Variac

FPGA
Processor

MOSMPS

 

Fig. 20. Experimental set up. 

6.1 Performance at rated load and supply voltage condition.  

The performance of the proposed NN controlled forward 
converter based MOSMPS at full load condition with a 
supply voltage of Vin= 220V is depicted in Fig. 21. Fig. 21 a 
depicts the source voltage and current waveforms at Vin= 
220V with rated load which infers that the MOSMPS draws 
sinusoidal current from the AC mains. The supply current is 
maintained in phase with the supply voltage thereby 
maintaining the PF at 0.9998.From the results it is evident 
that THD of the supply current Iin is 2.944% which complies 
with the limits set by the International PQ standards. Fig. 21 
b & c represent output voltages +12V, +5V, -12V and -5V 
and their corresponding output currents respectively. The 
constant output voltage waveforms clearly exhibit the output 
voltage regulation.   

Vin

Iin

Vin: 300 V/div
Iin: 5 A/div

 

 

 

Fig. 21. (a) Traces of Vin, Iin with input power, PF and % 
THD of Iin at full load, (b) Traces of Vin, Iin, Vo1, Io1,Vo2 
and Io2, (c) Traces of Vin, Iin, Vo3, Io3,Vo4 and Io4.   

6.2 Performance under supply voltage variation with rated 
load.   

When the proposed MOSMPS is supplied from the utility 
supply, it has to perform efficiently under supply voltage 
variations. To demonstrate its performance under varying 
source voltage conditions, the supply voltage is varied from 
170V to 250V. When the supply voltage is reduced to 170V 
the PF and THD of the supply current are shown in Fig. 22 a.  
The THD of the supply current is maintained at 
2.522%.When the supply voltage is increased to 250V the PF 
and THD of the supply current are represented in Fig. 22 b. 
Even when the supply voltage is increased to 250V, the THD 
is maintained 2.924% which is less than the limits suggested 
by PQ standards. During over voltage and under voltage 
conditions of the supply, PF is maintained close to unity. The 
performance of the MOSMPS is appreciable under varying 
supply voltage conditions. 

Vin

Iin

Vin: 300 V/div
Iin: 5 A/div

 
Vin

Iin

Vin: 300 V/div
Iin: 5 A/div

 
Fig. 22. (a) Traces of Vin, Iin with input power,PF and % 
THD of Iin at Vin=170V, (b) Traces of Vin, Iin with input 
power,PF and % THD of Iin at Vin= 250 V. 
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6.3 Performance under load variation with rated supply 
voltage.   

To demonstrate the dynamic response of the proposed 
MOSMPS the load at Vo2 is varied. The change in load is 
represented in the Fig.23a with output current decreasing 
from 16 A to 8 A. There is a corresponding reduction in the 
supply current and the supply current is maintained 
sinusoidal even after load reduction as shown in Fig. 23 b. 
The PF and THD are maintained at 0.99 and 2.767% as 
shown in Fig. 23e for light load condition. Fig. 23c shows the 
increase in load at terminal Vo2 with an increase in load 
current from 8 A to 16 A. The traces of Fig. 23 d ensures that 
load current remains sinusoidal and in phase with the supply 
voltage thereby ensuring unity PF.     

 

Vin

Iin

Vin: 300 V/div
Iin: 5 A/div

 

Vin

Iin

Vin: 300 V/div
Iin: 5 A/div

 

Vin

Iin

Vin: 300 V/div
Iin: 5 A/div

 

Fig. 23. (a) Load reduction in +5V (b) Traces of Vin & 
Iin(load reduction), (c) Load increment in +5V, (d) Traces of 
Vin & Iin (load increment), (e) Traces of Vin, Iin with input 
power,PF and % THD of Iin at light load condition.  

Table 7 clearly highlights the superior performance of the 
experimental setup of the neural network based forward 
converter MOSMPS when compared to the conventional 
controller based forward converter MOSMPS. 

Table 7. Performance analysis of the experimental setup. 

Supply 
Voltage 

(V) 

PF 
 

% THD 
of Iin 

1* 2* 1* 2* 
170 0.9996 0.8682 2.522 7.73 
220 0.9998 0.7981 2.944 8.085 
250 0.9997 0.8954 2.924 7.22 

1*-NN Controller, 2*-Conventional Controller 

The performance of the developed hardware validates the 
simulation results and its efficacy is proved in terms of input 
PQ improvement and output voltage regulation under varying 
source and load conditions.   

7. CONCLUSIONS 

 Design, modeling, simulation and performance analysis of 
175 W rated multi output SMPS with converter topologies 
like forward, sepic, cuk and flyback have been made to 
facilitate selection of suitable topology for the SMPS 
application. The performance of these topologies with 
conventional PI controller and proposed neural network 
controller has been analyzed, in terms of input power quality, 
output voltage regulation and transient response under 
variation in source and load conditions. The proposed neural 
network based weighted error approach calculates the impact 
of load variations in output terminals on the present load 
condition and thereby computes the variation in the duty 
ratio. Under varying source and load conditions, the proposed 
NN controller is very fast in determining the output as it can 
perform more number of iterations over derived period of 
time and thereby leading to fast settling time and low values 
of overshoot and undershoot. Simulation results and tabulated 
parameters, reveal that neural network controller performs 
better when compared to PI controller for all the converter 
topologies. Among the converter topologies Forward 
converter based MOSMPS with NN controller  has been 
found to be the optimal choice for SMPS with THD of supply 
current 3.5%, distortion factor 0.996, displacement factor 
1.00, power factor 0.996, output voltage ripple, overshoot and 
undershoot less than 2%. The proposed NN control strategy 
has been implemented in the prototype model using FPGA 
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processor to obtain the experimental results. Simulation 
results and the experimental results illustrate the efficacy of 
the neural network controlled forward converter based multi 
output SMPS. 
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