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Abstract: In this paper a new technique is developed to estimate the states of either deterministic or 
stochastic discrete-time linear systems. The proposed approach is based on pole placement technique in 
which a set of inequality constraints is imposed on the output estimation error. For the stochastic case, the 
proposed approach can deal with either certain or uncertain systems, Gaussian or non-Gaussian input and 
output noise signals with known or unknown statistical data. The main feature of the proposed observer is 
that it leads to an estimation error which approaches the desired zero steady state value very shortly 
without showing the undesired large overshoots. The stability of the estimation error is rigorously 
analysed for both the deterministic and the stochastic cases.  Illustrative examples are presented to show 
the effectiveness of the developed technique in solving estimation problems for both deterministic and 
stochastic discrete-time linear systems. Moreover, comparative studies are performed with other 
techniques to show the superiority of the developed observer.  
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1. INTRODUCTION 

Most, if not all real systems are represented by incomplete 
state measurements because some of the states are either very 
expensive and/or impossible to measure. Examples of these 
systems are pollution in streams (Mahmoud et al., 1985), jet 
engines (Maggiore et al., 2003) … etc. Knowledge of the 
performance of the state variables is necessary in order to 
know the performance of the system and/or to generate state 
feedback control strategies. 

Luenberger observer is normally used to estimate the states of 
linear deterministic systems for which the systems dynamics 
and the measurement models are known. The estimated error 
resulting from this technique showed to be stable and goes to 
zero as the time goes to infinity (Phillips and Nagle, 2007). 
As an alternative approach, and due to the duality principle 
between estimation and control (Goodwin et al., 2001), linear 
quadratic regulator (LQR) technique can be applied to design 
the observer gain (Zhong, 2004). For these types of 
estimators, the poles of the observer are usually chosen to be 
near the origin of the z-plane in order to achieve fast response 
of the estimation error. However, this may lead to large 
overshoot of the estimator at the start of the estimation 
process. 

In real life, systems are corrupted with both input and output 
noise vectors. Moreover, they can be uncertain due to the 
impact of the environment, aging … etc. (Williams, 2010; 
Åström, 2012; Brittain et al., 2010). In such a situation, 
observer gains which are designed to allocate the closed loop 
poles far away from those of the original system lead to large 
overshoot at the start of the estimation process. In such a 
case, the system many be saturated or damaged if the 

estimated states are used to generate closed loop control 
strategies. On the other hand, for linear systems with certain 
parameters and uncorrelated input and output white Gaussian 
noise vectors with known statistics, Kalman filter (KF) is the 
optimal minimum variance state estimator (Kalman, 1960; 
Hongpeng et al., 2013; Welch, 2004). For uncertain linear 
stochastic systems, extended Kalman filter (EKF) is the most 
used approach to estimate the states as well as the parameters 
of the system (Marins et al., 2001; Wang and Papageorgiou, 
2005; Hovland and Antoine, 2006; Bolognani et al., 2003). 
However, such an approach is suboptimal and in many 
practical applications it leads to unobservable and/or 
undetectable system and hence unstable estimator, especially 
if the time horizon is long enough. On the other hand, the 
application of Kalman filter necessitates the knowledge of the 
covariance matrices of the input and output noise vectors. In 
most of the situations, the covariance matrices of the input 
and output noise vectors are either unknown or 
approximately known. Several techniques are implemented to 
handle this problem and showed to give good performance 
(Bos et al., 2005). The adaptive robust extended Kalman 
filter (AREKF), is widely used in the case of unknown noise 
covariances, and leads to stable state estimator. In this 
approach the design of the estimator is based on the stability 
analysis, and determines whether the error covariance matrix 
should be reset according to the magnitude of the innovation 
(Xiong et al., 2009).  Another problem may occur if the noise 
of the system is non-Gaussian (Saab,1995; Nsour et al., 
2013).  In this case Kalman filter can be applied to estimate 
the state, where the noise is considered to be white Gaussian 
noise and the first and the second moments are used to 
develop the algorithm of the Kalman filter, but the results are 
suboptimal rather than optimal (Gustafsson and Nordlund, 
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2005). Also, the particle filter (Hoteit et al., 2008; Chou and 
Nakajima, 2016; Won et al., 2010) can be used to deal with 
non-Gaussian problems. This filter is easy to implement and 
tune. However, its main drawback is that it is quite computer 
intensive since the computational complexity increases 
quickly with the increase of state vector dimensionality.  

In (Zhang et al., 2010) a new estimation algorithm, based on 
Bayes’s theorem, is developed where the filter is 
experimented by applying its observation data.  

In this paper, we present a new state estimator for linear 
discrete-time dynamical systems. The design of the proposed 
filter is based on pole placement in which bounds are 
imposed on the output estimation error of the system. With 
this approach it is not needed to allocate the poles of the 
estimator far from those of the system to achieve fast 
response of the estimated states. The poles of the new filter 
are allocated very near from the original system’s poles. 
Therefore, we avoid the existence of excessive overshoot 
during the transient period of the estimation process, 
especially if the output measurements are corrupted by noise 
signals. Such a technique can also be applied to stochastic 
systems as well.  In this case the main advantages of 
developed filter are: 

It does not depend on the knowledge of the covariance 
matrices of the corrupting noise signals.  

It can handle estimation problems with Gaussian or non-
Gaussian noise signals. 

It leads to stable results with uncertain system parameters. 

The only information needed is to have just a guess of the 
variances of the noise signals especially at the output. The 
convergence of the developed approach for both the 
deterministic and the stochastic cases are analyzed. 
Illustrative examples for both the deterministic and the 
stochastic cases are presented to show the effectiveness of the 
proposed filter. For the stochastic case, Monte Carlo 
simulation is used to compare the results with the well-
known Kalman filter. 

The rest of the paper is organized as follows. The problem 
formulation, the design of the developed estimator for 
discrete-time deterministic linear systems and the stability 
analysis of the new filter are given in section 2.  In section 3 
the case of stochastic discrete-time linear system is 
considered and the stability of the estimator is also analyzed. 
Illustrative examples for both the deterministic and stochastic 
systems are presented in section 4. The paper is concluded in 
section5. 

2. THE DEVELOPED CONSTRAINTED ESTIMATOR 

Consider the following uncertain dynamical discrete-time 
linear system: 

 k+1 k k k

k+1 k+1 k+1

x = A +ΔA x + w

y = Cx + v
                                                  (1)                                                                                                                

where n
kx R   is the state vector, r

ky R  is the measured 

output vector; n nA R  is the system matrix  with the 

nominal values of the parameters; n n
kA R    includes the 

uncertainties of the parameters which are uncorrelated white 
Gaussian or non- Gaussian with zero means and standard 
deviation either known or unknown. The system (1) is 
assumed to be stable and the pair  A,C  is observable; 

r nC R   is the output matrix; n
kw R  and   r

kv R   are 

respectively, two zero mean independent input and output 
noise vectors with covariance matrices 

 T n×n
k k kQ = E w w R ,  T m m

k k kR E v v R   ; and 

 k 1,2,... is the discrete time. System (1) satisfies the 

following model properties: 

 T
k jE x w = 0 j k  ;      T

k jE x v = 0 k, j∀ ; 

 T
k jE y v 0 k j   ;       T

k jE y w 0 j k   ;  

 kE A 0  ; the uncertain parameters of the system are 

uncorrelated with the input and output noise vectors; kx is 

independent of jA j k   ; and ky is independent of 

jA j k   . 

Knowing the estimate n
k|kx̂ R  using the 

measurements 1 2 ky , y .....y , then as we receive the 

measurements k+1y , it is desired to estimate the state vector 

k+1|k+1x̂  such that:  

k 1 k 1|k 1ˆy - y                                                                (2)                  

where r
k 1|k 1ŷ R   is the estimated output; and rR , 

rR   are respectively the lower and upper bounds of the 
estimation error element by element. 

For the deterministic case, since the best estimation is 
achieved if k 1 k 1|k 1ˆy y   , the vectors  ,  can be given a 

very small numbers. However, for the stochastic case k 1y   is 

corrupted by the measurement noise. Therefore, the best 
estimate k 1y   is the expected value of k 1|k 1ŷ   . Since this is 

unknown, a reasonable value of the ith element of i , i  is 

in the range  i i, 2  where iσ  is the standard deviation of 

the corresponding output noise signal. The proposed 
estimator is realized through the following three steps:  

Step 1: Prediction 

k 1|k k|k

k 1|k k 1|k k|k

ˆ ˆx Ax

ˆ ˆ ˆy Cx CAx



 



 
                                                   (3)                  

where  
n

k 1/kx̂ R    is the predicted estimate of the state 

vector;  and r
k 1|kŷ R  is the predicted estimate of the 

output  given the set of measurements  1 2 ky , y .....y . 
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Step 2: Filtering 

Once the measurement vector k 1y   is received, the filtered 

estimate of the state vector k 1|k 1x̂    and the corresponding 

output vector k 1|k 1ŷ    are given in by:  

k 1|k 1 k|k k 1 k 1|k

k 1|k 1 k 1|k 1

ˆ ˆ ˆx Ax L y - y

ˆ ˆy Cx

   

   

    


                                     (4)                                                                                                           

where n rL R    is the observer gain. 

Using (1) and (4), the estimation error defined by 

k 1|k 1 k 1 k 1|k 1ˆx x - x       is such that: 

k 1|k 1 c k|k k k|k

k k 1

x̂ A x (I - LC) A x

(I - LC)w Lv     

 



  

 
                                    (5)                                                                                                           

where cA (A - LCA)                                                          (6)                                                                                                                         

The observer gain L is designed such that the estimation 
error k 1|k 1x 0    as k  . However, as the poles of 

cA are allocated closer to the origin of the z-plane, the 

settling time of the estimation error is shorter but the 
estimator shows worst relative stability (large overshoot) 
which may be undesirable if the estimated states are used to 
generate closed loop control policies. To overcome this 
drawback, the gain matrix L  is chosen such that the poles 
of cA matrix are near to those of the A  matrix of the system. 

However, to achieve faster response of the estimation error 
we go to the third step of the proposed estimation technique. 

Step 3: The Linear Update Estimator 

Since the estimator is not orthogonal to the innovation space 
as in the ideal case of Kalman filter in which the system is 
certain and the input and output noise vectors are 
uncorrelated white Gaussian, then it is possible to update the 
estimator resulting from step 2 above. 

This is the main idea of the new developed filter to get a very 
fast response of the estimated states while avoiding the 
undesirable large overshoot during the transient period of the 
estimator. This idea is achieved by satisfying the imposed set 
of inequality constraints (2). Such an objective is fulfilled in 
this step. 

Let us define a new estimated state vector i
k 1|k 1

ˆ̂x    for which: 

0
k 1|k 1 k 1|k 1

ˆ̂ ˆx x                                                                    (7)                                                                                                                          

The estimation error is then defined by: 
0 0
k 1|k 1 k 1 k 1|k 1

ˆ̂x x - x                                                            (8)                                                                                                                          

Now, we have one of the following two cases which may 
arise: 

Case I: The estimated outputs satisfy the imposed set of 
constraints (2). In this case, we let: 

0
k 1|k 1 k 1|k 1

ˆˆ ˆx x                                                                    (9)                                                                                                                         

and we proceed to the next sampling instant of time. 

Case II: If a subset of the estimated outputs violates the 
imposed constraints, then this subset is identified and has to 
be saturated to the lower or the upper bounds which have 
been violated. Let us define the subset of the violated outputs 

by l
k 1z R   where l  is the number of the violated 

constraints and the vector k 1z  is given by: 

k 1 k 1 k 1
z Dx v

  
                                                            (10) 

where the matrix l nD R  contains the rows of the matrix 
C corresponding to the set of the violated outputs; and k 1v  is 

a noise vector containing the elements of the 

k 1v  corresponding to the set of the violated outputs.                 

For this subset of violated constraints, it is desired to update 
the estimator (4) to satisfy the equality constraints given by: 

k 1 k 1|k 1
iˆ̂z - z

  
                                                                (11) 

where
k 1|k 1 k 1|k 1
i iˆ ˆˆ ˆz Dx
   

 ; and lR  contains the elements 

of    or   corresponding to the violated outputs. Equation 

(10) will be assumed as a new received subset of 
measurements through which the estimator will be corrected. 
Such a procedure is valid, since as mentioned before, 
equation (4) will not lead to orthogonal projection on the 
innovation space.   

The update estimator is proposed to take the form: 

k 1|k 1 k 1|k 1

i i 1 i 1
k 1|k 1 k 1|k 1 k 1 k 1|k 1

i 1 i 1

ˆ ˆ ˆˆ ˆ ˆx x H[z - z ]

ˆ ˆˆ ˆz Dx
   

 
      

 

 


                               (12) 

where n lH R   is a gain matrix to be defined later.  

This process has to be repeated iteratively. As 

k 1 k 1|k 1
iˆ̂z - z

  
   element by element, we go to the next 

sampling instant of time.   

After the first iteration, the updated error is given by: 

1 1
k 1|k 1 k 1 k 1|k 1

ˆ̂x x - x                                                          (13)                  

Substituting (11) into (13) with the iteration number i=1, we 
get: 

 1 0 0
k 1|k 1 k 1 k 1|k 1 k 1 k 1|k 1

ˆ ˆˆ ˆx x - x H(z - z )                           (14)                  

Using (12) and (10) into (14), we have: 

1 0
k 1|k 1 k 1 k 1|k 1 k 1

0
k 1|k 1 k 1

ˆ̂x (I - HD) x - x - Hv

(I - HD)x - Hv   





     

  

    


                     (15)                  

Using the same procedure it can be shown that the updated 
estimation error at (i+1)th iteration is given by:  

i 1 i
k 1|k 1 k 1|k 1 k 1

i
i 1 i 1 0 i- j
k 1|k 1 k 1|k 1 k 1

j 0

x (I - HD)x - Hv

x (Ior - HD) x: - (I - HD) Hv

 

 


    

 
    





 
       (16)                  
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Using (5), equation (16) can be written in the following form: 

i 1 i 1 i 1
k 1|k 1 c k|k k k|k

i 1 i 1
k k 1

i
i- j

j 1
j 0

x (I - HD) A x (I - HD) (I - LC) A x

(I - HD) (I - LC)w (I - HD) Lv

- (I - HD) Hv (17)

                 

                 

   
 

 





  

 



To guarantee the stability of i 1
k 1|k 1x 
  , the gain matrix H is 

designed such that:  

 c(I - HD)A 1                                                              (18)                                                                                      

The existence of the matrix H  is guaranteed if the pair 

 cA ,  D is observable. It is worth mentioning that the 

computational requirement of this observer is very moderate 
since: 1) the update phase is applied only at the points 
violating the constraints which are usually very few, 2) the 
gain matrix H is calculated once in this phase, 3) the 
procedure to be applied in the update step requires a very few 
number of iterations to converge to the desired results. 
Validation of these facts will be verified later on in our 
simulation.  

3. STABILITY OF THE LINEAR UPDATE ESTIMATOR 

In this section we demonstrate firstly that the linear update 
estimator is equivalent to the least square quadratic estimator 
(LSQ) with special weighting matrices to allocate the poles at 
the desired values. Then, we show that such an estimator is a 
Gauss-Newton’s method which belongs to the class of 
contraction mapping algorithms. 

Since the estimator is not orthogonal to the innovation space, 
the update procedure is applied only at the sampling instants 
at which some of the constraints are violated, and all the 
information are known, then the linear update estimator is 
equivalent to a static estimation problem in which we correct 
the current estimated states iteratively using the same set of 
measurements (Aljuwaiser, 2017). 

3.1  Least Square Quadratic Estimator 

Given the assumed new received vector of measurements 

k 1z  , we define the following LSQ estimator problem to be 

solved in order to update the estimator
k 1|k 1
1ˆ̂x
 

: 

-1 -11
k 1|k 1

2 21 0 1
k 1|k 1 k 1|k 1 k 1 k 1|k 1

ˆ W Mx̂

1 1ˆ ˆ ˆˆ ˆ ˆmin J x - x z - z
2 2

 
           (19)  

where n nW R  and l lM R  are positive definite 
weighting matrices. 

The necessary condition of optimality is such that: 

-1 1 0
k 1|k 1 k 1|k 11

k 1|k 1

T -1 1
k 1 k 1|k 1

J ˆ ˆˆ ˆW [x - x ]
ˆ̂x

ˆ̂- D M [z - z ] 0

   
 

  






                   

                            (20) 

Let  1 0 0
k 1|k 1 k 1|k 1 k 1|k 1

ˆ ˆ ˆˆ ˆ ˆx x x                                           (21)                                                                                                                

Then 1 1
k 1|k 1 k 1|k 1

ˆ ˆˆ ˆz Dx                                                      (22)                  

or ; 1 0 0
k 1|k 1 k 1|k 1 k 1|k 1

ˆ ˆ ˆˆ ˆ ˆz Dx D x                                        (23)                 

Now using (21), (22) and (23) into (20) while using (10) and 
after simple algebraic manipulation, we get: 

1 0
k 1|k 1 k 1|k 1

-1 T -1 -1 T -1
k 1

-1 T -1 -1 T -1 0
k 1|k 1

-1 T -1 -1 T -1
k 1

ˆ ˆˆ ˆx x

(W D M D) D M Dx

ˆ̂- (W D M D) D M Dx

(W D M D) D M v

   



 





 



                  

                 

                 
               (24) 

The error between the actual and the estimated state, as 

defined by, 1 1
k 1|k 1 k 1 k 1|k 1

ˆ̂x x - x      , is given by: 

1 -1 T -1 -1 T -1 0
k 1|k 1 k 1|k 1

-1 T -1 -1 T -1
k 1

x [I - (W D M D) D M D]x

- (W D M D) D M v                 

    



 


              (25) 

let -1 T -1 -1 T -1H [W D M D] D M   

Therefore, 
k 1|k 1
1x
 

is such that: 

1 -1 T -1 -1 T -1 0
k 1|k 1 k 1|k 1

-1 T -1 -1 T -1
k 1

x [I - (W D M D) D M D]x

- (W D M D) D M v                 

    



 


 

1 0
k 1|k 1 k 1|k 1 k 1x [I - HD]x - Hv                                              (26)                  

Equation (26) is equivalent to equation (16) if the weighting 
matrices W and M as chosen such that the poles are allocated 
as desired by (18).  

3.2 Gauss- Newton’s Method 

In this section we show that the linear update estimator is a 
Gauss- Newton’s method. To fulfill this objective, consider 
the following nonlinear least square problem: 

T1
min . f ( ) r( )r ( )

2
                                                      (27)                  

where: 

1
k 1|k 1 k 1

1 0
k 1|k 1 k 1|k 1

-1
T

-1

ˆ̂z - z
r( )

ˆ ˆˆ ˆx - x

M 0

0 W

  

   

 
   
 
 

 
    

  

                                             (28)                  

let: 0 0
k 1|k 1 k 1 k 1|k 1 k 1

ˆ ˆˆ ˆz Dx Dx v                                    (29)                  

Then by using (21), (22) and (29), r(α)  can be written as:  

0 0
k 1|k 1 k 1|k 1

0
k 1|k 1

ˆ ˆˆ ˆ- z D x
r( )

ˆ̂x

   

 

   
   
  

                                    (30)                  

The necessary condition of optimality is such that: 
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T -1 0 0
k 1|k 1 k 1|k 10

k 1|k 1

-1 0
k 1|k 1

T -1 0
k 1|k 1

-1 T -1 0
k 1|k 1

f ˆ ˆˆ ˆD M (- z D x )
ˆ̂x

ˆ̂W x 0

ˆ̂-D M z

ˆ̂(W D M D) x 0

                   

                  

   
 

 

 

 


   



  

 

   

                  (31)                                          

from which one gets: 

0 -1 T -1 -1 T -1 0
k 1|k 1 k 1|k 1

ˆ ˆˆ ˆx (W D M D) D M z                       (32)                                                                         

Using (29) into (32) we have:  

0 -1 T -1 -1 T -1
k 1|k 1 k 1

-1 T -1 -1 T -1 0
k 1\k 1

ˆ̂x (W D M D) D M Dx

ˆ̂- (W D M D) D M Dx                   

  

 

  


             (33) 

Therefore 1
k 1|k 1

ˆ̂x   is given by:  

1 0 0
k 1|k 1 k 1|k 1 k 1|k 1

0 -1 T -1 -1 T -1
k 1\k 1 k 1

-1 T -1 -1 T -1 0
k 1|k 1

-1 T -1 -1 T -1
k 1

ˆ ˆ ˆˆ ˆ ˆx x x

ˆ̂x (W D M D) D M Dx

ˆ̂- (W D M D) D M Dx

(W D M D) D M v

             

               

               

     

  

 



  

  



 

      (34) 

Equation (34) is equivalent to equation (24) which proves 
that the linear update estimator is a Gauss- Newton’s method. 

To complete our analysis, the convergence of the mean value 

of the output error vector i i
k 1|k 1 k 1 k 1|k 1

ˆ̂z z z       is   

demonstrated.  Using (5), (11) with i=1, the error vector 
1
k 1|k 1z   is given by: 

1 0 0
k 1|k 1 k 1|k 1 k 1 k 1|k 1 k 1z Dx v - DHDx DHv              

 1 0
k 1|k 1 k 1|k 1z I - DH Dz                                                     (35)                                                                                    

In general, at the ith iteration we get:  

i i 0
k 1|k 1 k 1|k 1z (I - DH) z      

For which the norm is given by: 

i i 0 i 0
k 1|k 1 k 1|k 1 k 1|k 1z (I - DH) z (I - DH) z                 (36)                                                                                                         

If after ith iteration, the norm of matrix i(I - DH) is less than 

one, then as i
k 1|k 1i N z     and the mean value of 

the output of the system converges to the mean value of the 
desired output which satisfies the imposed set of constraints. 

4. STABILITY OF THE LINEAR STATE ESTIMATOR 

In this section, we analyze the stability of the proposed 
estimator (Aljuwaiser 2017). Using the results of steps (1), 
(2) and (3) given in section 3 while using (3) and (4) then, for 
the first iteration, we get: 

1 0 0
k 1|k 1 k 1\k 1 k 1 k 1|k 1

ˆ ˆ ˆˆ ˆ ˆx x H z - z        
      

or 1 0
k 1|k 1 k 1|k k 1 k 1|k k 1 k 1|k 1

ˆ ˆˆ ˆ ˆ ˆx x L y - y H z - z           
         

For the 2nd iteration, we have: 

2 1 1
k 1|k 1 k 1\k 1 k 1 k 1|k 1

0
k 1|k k 1 k 1|k k 1 k 1|k 1

1
k 1 k 1|k 1

ˆ ˆ ˆˆ ˆ ˆx x H z - z

ˆˆ ˆ ˆx L y - y H z - z

ˆ̂H z - z

              

                

      

     

  

    
       

   

 

Since the linear update estimator is a Gauss-Newton’s 
method which requires N number of iterations to converge to 
the required bounds as specified by the imposed set of 

constraints, then the filtered estimate at the th(k 1) sampling 

instant is given by: 
N

j 1
k 1|k 1 k 1|k k 1 k 1|k k 1 k 1|k 1

j 1

ˆˆ ˆ ˆ ˆx x L y - y H z - z 
       



           (37)                 

At the end of the convergence, the last term in k 1|k 1x̂   has a 

finite value, and can be written in the form: 

N
j-1

k 1 k 1 k 1|k 1
j 1

ˆ̂H z - z   


                                                  (38)                 

or   k 1 k 1 k 1 k 1|kˆK y - y                                                (39)                  

where Kk+1  is a gain matrix of adjustable parameters such 
that:  

N
j-1

k 1 k 1 k 1|k 1 k 1 k 1|k 1
j 1

ˆˆ ˆK y - y H z - z      


                        (40)                   

Using (1), (37) and (40) it is easy to shown that:                              



 
    

k
k 1 k- j

k 1|k 1 c 0 c j 1 j| j
j 0

j 1 j j

j 1 j j 1 j 1

x A x A -K CA x

I - LC - K C A x

I - LC - K C w - L K v

  
  





  

 

 

 

   

             

let k jL L K        

then  k 1|k 1x   can be written as: 



    

k
k 1 k- j

k 1|k 1 c 0 c j 1 j| j
j 0

j 1 j j j 1 j j 1 j 1

x A x A -K CA x

I - L C A x I - L C w - L v

  
  



   

 

    

   
        (41)                 

With assumptions that the equilibrium point is stable, 
observable or detectable, and the set or a subset of the 
imposed constraints (2) is violated only during the transient 
period of the estimator, then  c k c

k
A - K CA Alim


  .  

Therefore, we conduct the following theorem:   

Theorem 1:  

1- If the mean value of all the solutions of the homogenous 
equation: 
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k 1|k 1 c k|kx A x for k 0                                              (42)                                                                                                  

remain bounded as k  then: 
a-The same is true for the mean value of all the solutions of 

the non-homogenous system:  

 
 
   

k 1|k 1 c k 1 k|k

k 1 k k

k 1 k k 1 k 1

x A - K CA x

I - L C A x for k 0

I - L C w - L v                



   



  



  

 

  

              (43)    

provided that 
k 0

for k 0kλ



                                 (44)                                                                                                                          

where  k 1 k|k k k|kE K CA x x                                    (45)                                                                                 

and  k|k k|kE x x                                                                                 

b- If  c k 1 c
k
lim A - K CA A


                                            (46)                                                                                      

Then k 1|k 1x 0    as k   and hence the mean value of 

both the homogenous and the non-homogenous systems are 
exponentially stable. 

2-If the expected value of the norm of all the solutions of the 
homogenous equation (42) remains bounded as k  , then 
the same is also true for the expected value of the norm of all 
the solutions of the non- homogenous system (43): 

provided that  k k
k 0

for k 0



                         (47) 

where:                                                                                   

     
    

n m

k 1 wr k 1 k|k vr
r 1 r 1

k 1 k k k k|k

I - L C L E x

E I - L C A x E x





 
 



   

   

 
             (48)                 

   k 1 k k|kE K CA E x                                                (49)                                                                                                       

and    
n

2
wr

r 1
  ,   

m
2

vr
r 1

 are the summations of the squares of 

the standard deviations  of the input and output noise vectors 
respectively. 

Proof: 
1a- Equation (42) can be written as: 

k 1
k 1|k 1 c 0x A x for k 0 
                                           (50)                                                                                                      

Since the mean value of all the solutions of (50) are bounded, 
then there exists c1 such that for k≥0  

k 1
c 1A c                                                                          (51)                                                                                                                         

The expected value of (41) is given by:  

 
k

k 1 k- j
k 1|k 1 c 0 c j 1 j| j

j 0

x A x A E -K CAx  
  


                    (52) 

Taking the norm of equation (52) while using (51) we have: 

 
k

k 1 k- j
k 1|k 1 c 0 c j 1 j| j

j 0

x A x A E -K CAx  
  


 

k

k 1|k 1 1 0 1 j j| j
j 0

x c x c x   


                                         (53)                  

Let j 1 jg c                                                                        (54)                  

Using (54) into (53), we have: 

k

k 1|k 1 1 0 j j| j
j 0

x c x g x   


                                           (55)                  

From (44) there exists c2 such that:   

k 2
k 0

c



   

Using Gronwall lemma (Walsh, Ye & Bushnell, 2002), 
equation (55) can be written as follows: 

k k

k 1|k 1 1 0 j 1 0 j
j 0j 0

1 0 1 2

x c x (1 g ) c x exp g

c x exp(c c )

  



 


  




              (56)                  

This shows that the mean value of the non- homogenous 
system is bounded. 

1b- Since the equilibrium is observable and the observer gain 
matrix  L is designed such that the estimator is asymptotically 
stable, then there exists 0≤δ<1 such that:    

k 1 k
cA for k K     

Therefore, for the homogeneous and the non- homogeneous 
systems we have: 

k
k 1 k- j

k 1|k 1 c 0 c j j| j
j 0

k
k 1

k 1|k 1 c 0 1 j j| j
j 0

x A x A x

x A x c x

  

  


 




 



  

  




           

k
k 1

k 1|k 1 c 0 j 0
j 0

x A x g x  
 


                                  (57)                   

Using Gronwall lemma, equation (57) takes the form:     
k

k 1
k 1|k 1 c 0 j

j 0

k
k 1 k 1

k 1|k 1 c 0 j 0 1 2
j 0

x A x (1 g )

x A x exp g x exp(c c )

 

  


 



 
 



 

  




   (58)                 

Then, as k  , k 1 0  . This proves that the mean values 
of the homogenous and the non-homogenous systems are 
exponentially stable. 

2-From (41), the norm of the error 1| 1k kx    is given by: 
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k
k 1 k- j

k 1|k 1 c 0 c j 1 j| j
j 0

j 1 j j j 1 j j 1 j 1

x A x A -K CAx

I - L C A x I - L C w L v

  
  



   

 

     


      

 

    

k

k 1|k 1 1 0 1 j 1 j| j j 1 j j
j 0

j 1 j j 1 j 1

x c x c -K CAx I - L C A x

I - L C w L v (59)

     


  

    


  



                                             

The expected value of equation (59) is such that: 

     
  

       

k

k 1|k 1 1 0 1 j 1 j| j
j 0

j 1 j j

j 1 j j 1 j 1

E x c E x c E -K CAx

E I - L C A x

I - L C E w L E v

    




  

 

 

  



 

     
  

   

k

k 1|k 1 1 0 1 j 1 j| j
j 0

j 1 j j

n m

j 1 wr j 1 vr
r 1 r 1

E x c E x c E -K CAx

E I - L C A x

I - L C L

    




 
 

 

 

     




 

 

Let j 1 j jg c [ ]                                                                (60)                                                                                                                     

     1

k

k 1|k 1 0 j j| j
j 0

E x c E x g E x 


                           (61)                                                                      

Again, using Gronwall lemma, we 
have:

     
k k

k 1|k 1 1 0 j 1 0 j
j 0j 0

E x c E x (1 g ) c E x exp g

(62)

 


      

 From (47) there exists 3c  such that  k k 3
k 0

c



    .  

Hence (62) is give by: 

   k 1|k 1 1 0 1 3E x c E x exp(c c )                                     (63)                                         

This proves that the mean value of the norm of non- 
homogeneous system is bounded. 

However, one has to notice that the mean value of the norm 
of the solution of the non-homogenous system depends on 
the standard deviations of the corrupting noise signals as well 
as the uncertain parameters. As the levels of the noise signals 
and the uncertainties increase, especially the output noise 
signals, the algorithm will have the tendency to diverge. This 
fact is well known and it is now justified mathematically. 

5. SIMULATION AND RESULTS 

In this section, the developed algorithm is applied to both 
deterministic and stochastic discrete-time linear estimation 
problems. For the stochastic case, since uncertain discrete-

time linear stochastic systems are considered, and for the 
purpose of comparison with other estimators, Monte Carlo 
simulation (Eckhardt, 1987) is used as a vehicle to fulfill this 
objective. Two indicators are applied in our analysis. They 
are defined as follows: 

The Root Mean Square Index (RMSI):  

This is a constant indicator to be calculated for each state. It 
is defined as: 

 

f

j j
0

kNOMI 2

i i
j 1 k

i
f 0

ˆx (k) - x (k | k)

RMSI
NOMI* k - k 1



 
 




 
                          (64) 

where NOMI  is the number of  Monte Carlo iterations, 0k is 

the initial time and fk is the final  time.            

The Root Mean Square Estimation Error (RMS(k)): 
 

This is a time varying indicator to be estimated for each state 
and is given by: 
 

j j

NOMI 2

i i
j 1

i

ˆx (k) - x (k | k)

RMS (k)
NOMI



 
 




                           (65) 

Example 1:  

Consider the following crane model (Solihin et al., 2010; 
Aljuwaiser, 2017): 

33 31

42 43 41

0 0 1 0 0

0 0 0 1 0
x(t) x(t) u(t) w(t)

0 0 a 0 b

0 a a 0 b

1 0 0 0
y(t) x(t) v(t)

0 1 1 1

   
   
     
   
   

  
 

  
 


             (66)                 

where 33 42a 1/ ; a g / l     ; 43a 1/ l  ; 31 ab k  ; 

41 ab k / l   ; l 0.4m is Payload cable length; τ = 0.09s is 

identified time constant; 2g 9.81m / s is gravitational 

acceleration and ak = 0.26m / s  is identified speed constant. 

The state 1x h  is the horizontal trolley position; 2x    is 

the angular swing; 3x h   is the change in the horizontal 

trolley position; and 4x    is the change in the angular 

swing. The controller u(t) is considered to be zero and the 

system is discretized with sampling period T 0.01s.    The 
initial condition of the state x(0) and the estimated state  0|0x̂  

are given by Tx(0) [0.1 1 1 1] , T
0|0x̂ [0 0 0 0] ; 

the covariance of the input noise vector w(k) is 

 TQ E w(k)w (k) diag[q q q q]        where q is given 

different values as shown in Table 1; and finally the 
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covariance of the output noise vector v(k) is 

 TR E v(k)v (k) I  .  

Case 1: The deterministic case 

The estimated states using the developed filter are denoted by 
df
ikx . The results are compared with the estimated states using 

Luenberger observer to be denoted by lo
ikx . The gain matrix of 

Luenberger observer is adjusted to achieve almost the same 
settling time. The results are shown in Figs. 1-6. From these 
results it is clear that the Luenberger observer leads to a very 
large overshoot of the estimated states except for the first 
(measured) state, while the developed filter leads to   
satisfactory results for all of the state variables.    

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

time(sec.)

 

 

x
1k

x
1k
df

 
0 0.2 0.4 0.6 0.8 1

-1.5
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0
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1.5

time(sec.)

 

 

x
2k

x
2k
df

Fig. 1.  1kx and 1kx̂ for the 

developed filter. 

Fig. 2. 2kx and 2kx̂ for the 

developed filter. 
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Fig. 3. 3kx and 3kx̂ for  

the developed filter. 

Fig. 4.  4kx and 4kx̂ for 

 the developed filter. 
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Fig. 5. 1kx and 1kx̂ for 

luenberger observer and 
developed filter. 

Fig. 6. 2kx and 2kx̂ for 

luenberger observer and 
developed filter. 

Case 2: Stochastic case with certain parameters and white 
Gaussian noise vectors with known covariances 

In this case study, the results of the developed filter, to be 
denoted by DF, are compared with the results using Kalman 
filter, to be denoted by KF. It is worth mentioning that, for all 
the stochastic cases 100 Monte Carlo simulation runs are 
performed and the two indicators, defined by (64) and 
(65),are used to compare the performance of each filter. 
Simulation results are presented in Figs. 7, 8 for the case in 
which the covariance matrix of the input noise vector is given 
by Q = diag[0.1 0.1 0.1 0.1] . As it is expected, for such an 

ideal case, the results of Kalman filter are the best, and hence 
leads to the least RMS(k). The RMSI is also calculated for 
each state variable using different values of the covariances 
of the input noise signals. The achieved results are presented 
in Table 1. Again, KF leads to the best results in such case 
studies. Moreover, Fig. 13 shows the average estimation error 
for the developed filter.  
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Fig. 7. RMS3   

 for 3kx (Case2). 
Fig. 8.  RMS4    

for 4kx (Case2). 

Case 3: Stochastic with certain parameters, non-Gaussian 
noise vectors with known covariances 

In this case study, the input and the outputs corrupting noise 
signals are assumed to be white Non-Gaussian with uniform 
distribution and known covariance matrices.  Simulation 
results are shown in Figs. 9,10 for 
Q diag[0.1  0.1  0.1  0.1] as well as in Table 1 for the 

different values of the input covariance matrix Q.  From these 
results it is clear that the performance of the developed filter 
is better than KF. 

0 0.5 1 1.5 2 2.5
1

2

3

4

5

time(sec.)

 

 

DF
KF

 
0 0.5 1 1.5 2 2.5

1

2

3

4

5

6

7

time(sec.)

 

 

DF
KF

Fig. 9. RMS3    
for 3kx (Case3). 

Fig. 10. RMS4   

 for 4kx (Case3). 

Case 4: Stochastic with uncertain parameters, white Gaussian 
noise vectors with unknown covariances 

In this case the input and the output corrupting noise signals 
are assumed to be white Gaussian with unknown covariance 
matrices and the system parameters are considered uncertain. 
First the covariance matrices of the input and the output noise 
signals are estimated using the method developed in (Xiong  
et al., 2009) and applied when needed. Firstly, the developed 
filter is compared with the Kalman filter while using the 
nominal values of the system parameters. The results are 
denoted by KF. On the other hand, to estimate the states and 
the system parameters, Extended Kalman filter is used and 
the results are denoted by EKF. Also the results are compared 
with the iterated constrained state estimator (Hassan, 2012) to 
be denoted by ICE. Simulation results are shown in Figs. 11, 
12 for Q diag[0.1  0.1  0.1  0.1] . From these figures as well 

as the results demonstrated in Table 2, it is clear that the least 
values of the RMS(k) and the RMSI indicators  are achieved 
while using the developed filter.  
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Fig. 11.  RMS3    
for 3kx (Case4). 

Fig. 12. RMS4    

for 4kx (Case4). 
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Fig. 13. The average error between the states and the   
estimated states for the developed filter. 

Example 2:   

Consider the following servo motor model (Ramli et al.,  
2007; Aljuwaiser, 2017):  

 

tt b
m

a mm a

0 1 0

x(t) x(t) u(t) w(t)kk k1
0 D

R JJ R

y(t) 1 0 x(t) v(t)


   
                 

 

   (67)                                                                          

where mJ is motor inertia = 6 230 10 kgm ; bk is back-emf 

constant= 3 -160 10 Vrad ; tk is motor torque constant 

= 3 -117 10 NmA ; aR is armature resistance = 3.2 Ω; 

mD =equivalent viscous density by the motor = small (cannot 

be quoted). The state 1x    is the angular displacement of 

the motor shaft and  2x    is the angular velocity of the 

motor shaft. The controller u(t) is considered to be zero and 

the system is discretized with sampling period T 0.01s  . 
Again, the covariance of the input noise vector w(k) is 

 TQ E w(k)w (k) diag[q q ]    where the value of q=0.1 

and the covariance of the output noise vector v(k) is 

 TR E v(k)v (k) I.   

Table 1. Comparison between DF, KF for case 2&3. 

Case3 Case2  
 
KF 

 
DF 

 
KF 

 
DF 

 
State 

 
R 

 
Q 

0.37 
2.62 
3.10 
4.74 

0.36 
1.48 
2.68 
3.82 

0.27 
1.25 
0.65 
2.74 

0.32 
1.46 
2.77 
3.98 

x1 

x2 

x3 

x4

1 0.01 
 

1.18 
4.81 
4.16 
5.37 

0.94 
3.5 

3.18 
4.62 

0.49 
3.36 
1.81 
4.49 

0.71 
3.49 
3.06 
5.34 

x1 

x2 

x3 

x4 

1 0.1 

1.84 
7.12 
6.57 
7.88 

1.56 
5.21 
4.98 
6.10 

0.72 
4.97 
2.10 
5.91 

1.56 
5.21 
4.98 
6.10 

x1 

x2 

x3 

x4 

1 1 

Table 2. Comparison between DF, KF and ICE for case4. 

Case4  
 

ICE 
 

KF 
 

DF 
 

State 
 

R 
 

Q 
0.45 
3.02 
3.89 
5.95 

0.59 
6.27 
4.65 
7.81 

0.41 
2.30 
3.11 
4.28 

x1 

x2 

x3 

x4 

1 0.01 
 

0.86 
5.19 
5.47 

10.65 

1.03 
6.86 
7.72 

15.62 

0.81 
2.31 
2.16 
7.24 

x1 

x2 

x3 

x4 

1 0.1 

2.51 
10.48 
6.56 

12.19 

2.97 
13.62 
11.47 
18.91 

2.01 
7.44 
5.92 
9.09 

x1 

x2 

x3 

x4 

1 1 
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Fig. 14. 1kx and 1kx̂  

forthe developed filter. 

    Fig. 15. 2kx and 2kx̂  

for the developed filter. 

0 0.5 1 1.5 2 2.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time(sec.)

 

 

DF
KF

 
0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

time(sec.)

 

 

DF
KF

 

Fig. 16.  RMS1 
for 1kx (Case3). 

Fig. 17. RMS2 
for 2kx (case3). 
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Fig. 18. RMS1  
 for 1kx (case4). 

Fig. 19. RMS2   
for 2kx (case4).     

The present estimation problem is solved for the case studies 
1,3,4 as in the first example. For case 1, Figs. 14, 15 show the 
results of the actual and the estimated states for the 
deterministic case. A 100 Monte Carlo simulations are 
executed for the other two cases with Q diag[0.1  0.1 ] . 

Figs. 16,17 show the results of case 3, while the results of 
case 4 are demonstrated in Figs 18,19. Again, from these 
results it is clear that the developed filter is also the best for 
case 3 and 4. 

Discussion: 

Based on our simulation results, one can conclude the 
following: 

From Tables 1, 2 it is clear that the least RMSI values are 
achieved with the application of the developed estimator in 
case 3 and 4. 

The estimated states using the developed approach are stable 
either for case 4 in which the EKF is unstable (Figs. 11,12). 

In the case study 1, Luenberger observer is designed such that 
the settling time of the estimation errors are more or less the 
same as the developed filter. In this case the results of 
Luenberger observer showed large overshoot at the start of 
the estimation process except for the measured states. 

The average estimation error of the developed filter is almost 
stable at least for the worked examples.  

In noisy cases, in order to insure that the estimated outputs 
are bounded and not tracking the actual measurements, the 
upper and lower bounds are chosen within the ranges as 
stated in section 2.  

6. CONCLUSIONS 

In this paper a new state estimator is developed for either 
deterministic or uncertain stochastic discrete-time linear 
systems. The proposed observer is based on pole placement 
technique with an added update phase to handle a set of 
imposed inequality constraints on the output estimation error. 
For the stochastic case, the proposed estimator can deal with 
either certain or uncertain systems, Gaussian or non-Gaussian 
noise signals with known or unknown statistical data. The 
state estimation errors of the proposed technique reach the 
desired zero steady state values very shortly without showing 
any undesired overshoots. The stability of the developed 
approach is rigorously investigated. Illustrative examples are 
presented to show the effectiveness of the developed 
technique. For the deterministic case, simulation results show 

that the developed estimator leads to superior results than 
those achieved while using Luenberger observer. On the 
other hand, for the stochastic case, it leads to much better 
results when compared with the results of the well-known 
Kalman filter except for the ideal case in which the system is 
certain and the input and output noise signals are white 
Gaussian with known covariances.   
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